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Abstract—An approximate online solution is developed for a
two-player zero-sum game subject to continuous-time nonlinear
uncertain dynamics and an infinite horizon quadratic cost. A
novel actor-critic-identifier (ACI) structure is used to implement
the Policy Iteration (PI) algorithm, wherein a robust dynamic
neural network (DNN) is used to asymptotically identify the
uncertain system, and a critic NN is used to approximate
the value function. The weight update laws for the critic NN
are generated using a gradient-descent method based on a
modified temporal difference error, which is independent of
the system dynamics. This method finds approximations of the
optimal value function, and the saddle point feedback control
policies. These policies are computed using the critic NN and
the identifier DNN and guarantee uniformly ultimately bounded
(UUB) stability of the closed-loop system. The actor, critic and
identifier structures are implemented in real-time, continuously
and simultaneously.

I. INTRODUCTION

Noncooperative game theory [1]–[3] can be used to pro-
vide a solution to a number of control engineering appli-
cations. In a differential game formulation, the controlled
system is influenced by a number of different inputs, com-
puted by different players that are individually trying to
optimize a performance function. The control objective is
to determine a set of policies that minimize individual
performance functions to yield a Nash equilibrium , and are
admissible [4], i.e. control policies that guarantee the stability
of the dynamic system. The Nash solution is characterized
by an equilibria, in which each player has an outcome that
cannot be improved by a unilateral change of strategy. A
Nash equilibrium formulation that has received heavy interest
in control theory is the two-player min-max optimization H∞
control problem [5], where the controller is a minimizing
player and the disturbance is a maximizing player in a
zero-sum game. In a zero-sum game with linear dynamics
and an infinite horizon quadratic cost function, the Nash
equilibrium solution is equivalent to solving the generalized
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game algebraic Riccati equation (GARE). However for non-
linear dynamics, developing an analytical solution is even
further complicated by the sufficient condition of solving
a Hamilton-Jacobi-Isaacs (HJI) partial differential equation;
where a solution may not exist.

Given the difficulty in solving the HJI equation analyti-
cally, an alternative approach is to find an approximate solu-
tion to the HJI. Previous research on reinforcement learning
(RL) using adaptive critics (AC) in the machine learning
community [6]–[10] has provided inroads to determining
approximate solutions of optimal control problems using
Approximate Dynamic Programming (ADP) methods [11]–
[15]. The discrete/iterative nature of the ADP formulation
lends itself naturally to the design of discrete-time optimal
controllers [14], [16]–[20]. Baird [21] proposed Advantage
Updating, an extension of the Q-learning algorithm which
could be implemented in continuous-time and provided fast
convergence. A Hamiltonian Jacobi Bellman (HJB)-based
framework is used in [22] and [23], and Galerkin’s spectral
method is used to approximate the generalized HJB solution
in [24]. All of the aforementioned approaches for continuous-
time nonlinear systems required complete knowledge of
the dynamics. A contribution in [25] is the requirement of
only partial knowledge of the system in the design of the
controller for policy iteration (PI). Vamvoudakis and Lewis
[26] extended the idea by designing a model-based online
algorithm called synchronous PI which involved synchronous
continuous-time adaptation of both actor and critic neural
networks. The synchronous PI method was then further
generalized to solve the two-player zero-sum game problem
for nonlinear continuous-time systems with known dynamics
in [27] . Bhasin et. al [28] developed an actor-critic-identifier
(ACI) which uses a robust dynamic neural network (DNN)
to identify the dynamics and a critic NN to approximate
the value function, thereby removing the requirement of
complete knowledge of the dynamics.

This paper generalizes the method given in [28] to solve
a two-player zero-sum infinite horizon game subject to
continuous-time unknown nonlinear dynamics. The novel
ACI architecture implements the PI algorithm online which
yields controller policies that converges to the solution of the
two-player differential game. A DNN-based robust system
identifier is used to identify the nonlinear plant. The policy
evaluation process involves value function approximation
which can be achieved by tuning the weights of the critic
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NN using a temporal difference (TD) error [29] that does
not depend on complete model knowledge. The critic NN is
used to construct the actor, which is an approximate control
law that stabilizes the closed-loop system. The proposed ACI
architecture is a robust implementation of the PI algorithm
which is shown to approach the solution of the two-player
zero-sum game, and guarantee UUB stability in the sense of
Lyapunov.

II. TWO PLAYER ZERO-SUM DIFFERENTIAL GAME

Consider the nonlinear time-invariant control affine dy-
namic system given by

ẋ = f (x) + g (x)u (x) + k (x) d (x) , (1)

where x (t) ∈ Rn is the state vector, u (x) , d(x) ∈ Rm
are the control inputs, and f (x) ∈ Rn, g (x) ∈ Rn×m and
k (x) ∈ Rn×p are the drift, and the two input matrices,
respectively. Assume that f (x) and g (x) are Lipschitz
continuous and that f (0) = 0 so that x = 0 is an equilibrium
point for (1). The performance index is given as [30]

J (x, u, d) =

ˆ ∞
0

(
Q (x) + uTRu− γ2dT d

)
dt,

where Q (x) ∈ R , R = RT ∈ Rm×m are positive
definite, and γ ≥ γ∗ > 0, where γ∗ is the smallest γ for
which the system is stabilized [31]. For the two player zero-
sum differential game, the infinite-horizon scalar value or
cost functional V u (x (t) , u, d) associated with the control
policies {u = u (x (s)) ; s ≥ t} and {d = d (x (s)) ; s ≥ t}
can be defined as

V u (x) = min
u

max
d

ˆ ∞
t

r (x (s) , u (s) , d (s)) ds, (2)

where t is the initial time, and r (x, u, d) ∈ R is the local
cost for the state, and controllers, defined as

r (x, u, d) = Q (x) + uTRu− γ2dT d. (3)

In this differential game, u (x) is the minimizing player and
d (x) is the maximizing player. This two player optimal
control problem has a unique solution if the Nash condition
holds

min
u

max
d
J (x (0) , u, d) = max

d
min
u
J (x (0) , u, d) .

The objective of the optimal control problem is to find ad-
missible feedback policies [5] (u∗ = u (x) and d∗ = d (x)),
such that the cost in (2) associated with the system in
(1) is minimized [32]. Assuming the value functional is
continuously differentiable, Bellman’s principle of optimality
can be used to derive the following optimality condition

0 = min
u

max
d

[
∂V ∗ (x)

∂x

T

(f (x) + g (x)u+ k (x) d)

+r (x, u, d)] , (4)

which is a nonlinear PDE, also called the Hamilton-Jacobi-
Isaacs (HJI) equation. A solution V ∗(x) ≥ 0 to (4) is the

value (2) for the given feedback policies u (x) and d(x).
Using the local cost given in (3) a closed form expression
of the optimal controllers can be determined from (4) as

u∗ = −1

2
R−1gT (x)

∂V ∗ (x)

∂x
(5)

d∗ =
1

2γ2
kT (x)

∂V ∗ (x)

∂x
. (6)

The closed form expression for the optimal control policies in
(5) and (6), obviates the need to search for a feedback policy
that minimizes the value function; however, the solution
V ∗(x) to the HJI equation given in (4) is required. The HJI
equation in (4), can be rewritten by substituting for the local
cost in (3) and the optimal control policies in (5) and (6), as

0 = Q (x) +

(
∂V ∗

∂x

)T
f (x) (7)

−1

4

(
∂V ∗

∂x

)T
g (x)R−1gT (x)

∂V ∗

∂x

+
1

4γ2

(
∂V ∗

∂x

)T
k (x) kT (x)

∂V ∗

∂x
V ∗ (0) = 0.

Since the HJI equation is troublesome to solve in general,
an approximate solution is sought.

III. POLICY ITERATION ALGORITHM

For a nonlinear system a policy iteration algorithm can
provide an approximate solution to the HJI equation. A
contribution of this paper is the use of the ACI architecture
[28], which eliminates the need for complete model knowl-
edge, to find the solution to the two player zero-sum game.
Specifically, a DNN is used to robustly identify the system,
a critic NN approximates the value function, and an actor is
used to determine the optimal control policies, which mini-
mize the value function. The PI algorithm involves: choosing
admissible control policies estimating the value function with
respect to those policies, and then improving the current poli-
cies based on information from the value function estimate.
Typically, PI would be implemented in a two-step fashion,
involving only policy evaluation and policy improvement;
however, an additional system identification step is used to
relax the requirement for complete model knowledge. The
proposed PI algorithm is suited for online implementation,
where the system identification, policy evaluation, and policy
improvement steps are updated simultaneously.

IV. DNN-BASED SYSTEM IDENTIFICATION

Consider the system in (1), with additive unknown-
unstructured disturbances

ẋ = f (x) + g (x)u (x) + k (x) d (x) ; x (0) = x0, (8)

where the state x (t) is assumed to be measurable. The
following assumptions about the system will be utilized in
the subsequent development.

Assumption 1: For any bounded admissible controls
u, d ∈ U with ||u|| ≤ ū and ‖d‖ ≤ d̄, and any finite initial
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condition x0, the state trajectories are uniformly bounded for
any T > 0, i.e. x(T ) ∈ L∞ [33].

Assumption 2: Given a continuous function h : S→ Rn,
where S is a compact simply connected set, there exists
ideal weights W , such that the output of the NN, ĥ (x,W ),
approximates h (x) to an arbitrary accuracy [34].

Using Assumption 2, the unknown nonlinear system in (8)
can be represented as

ẋ = Asx+WT
f σf (x) + εf +

(
WT
g σg (x) + εg

)
u

+
(
WT
k σk (x) + εk

)
d, (9)

where As ∈ Rn×n is a Hurwitz matrix, the functions f (x)−
Asx, g (x), and k (x) are approximated by NNs as

f (x)−Asx = WT
f σf (x) + εf (x) (10)

g (x) = WT
g σg (x) + εg (x) (11)

k (x) = WT
k σk (x) + εk (x) , (12)

where Wf ∈ RNf×n, Wg ∈ RNg×n, and Wk ∈ RNk×n

are the constant bounded ideal weight matrices of the three
NN with Nf , Ng , and Nk representing the neurons in the
output layers, respectively. The activation functions are given
by σf (·) ∈ RNf , σg (·) ∈ RNg , and σk (·) ∈ RNk , while
εf (·) ∈ Rn, εg (·) ∈ Rn×m, and εk (·) ∈ Rp are the function
reconstruction errors in approximating the functions f (x),
g (x), and k (x), respectively.

Assumption 3: The activation functions σf (·), σg (·),
σk (·), and φ (·), and their time derivatives with respect to
their arguments are bounded.

Assumption 4: The ideal NN weights are bounded by a
positive known constant [35] i.e. ||Wf || ≤ W̄f , ||Wg|| ≤ W̄g ,
||Wk|| ≤ W̄k, and ||Wv|| ≤ W̄v .

Assumption 5: The NN function reconstruction errors are
bounded [35], as ||εf || ≤ ε̄f , ||εg|| ≤ ε̄g , and ||εk|| ≤ ε̄k. For
ease in deriving weight update laws, single-layer linear-in-
the-parameter(LIP) NNs are used in (10), (11), and (12). The
universal approximation property does not generally hold for
LIP NNs, however, if the activation functions are chosen as
a basis, the approximation property still holds [36].

The proposed DNN used to identify the system in (8) is
·
x̂ = Asx̂+ ŴT

f σf (x̂) + ŴT
g σg (x̂)u (13)

+ŴT
k σk (x̂) d+ βsgn(x̃),

where x̂ (t) ∈ Rn is the state of the DNN, Ŵf ∈ RNf×n,
Ŵg ∈ RNg×n, and Ŵk ∈ RNk×n are the estimates of the
ideal weights of the NNs, and β ∈ R is a constant positive
control gain. The measurable identification error x̃ (t) ∈ Rn
is defined as

x̃ , x− x̂. (14)

Due to the NN reconstruction errors εf (·), εg (·), and εk (·),
the classical Hopfield DNN structure [33], [37], [38] is
modified by the addition a robust sliding mode term in (13).
As proven in the subsequent stability analysis, the sliding
mode term is used to guarantee asymptotic identification

of the plant and robustly identify the disturbances in the
system. The proposed structure in (13) is motivated by the
desire to prove that with a suitable choice of weight update
laws, the identification error converges to zero; thereby
demonstrating that the input-output behavior of the DNN
model approximates the input-output behavior of the plant.
The identification error dynamics are developed by taking
the time derivative of (14) and substituting for (9) and (13)
as
·
x̃ = Asx̃− ŴT

f σf (x̂) +WT
f σf (x) +WT

g σg (x)u

−ŴT
g σg (x̂)u+WT

k σk (x) d− ŴT
k σk (x̂) d

+εf + εgu+ εkd− βsgn (x̃) .

Adding and subtracting WT
f σf (x̂), WT

g σg (x̂)u, and
WT
k σk (x̂) d, and grouping terms yields

·
x̃ = Asx̃+ W̃T

f σf (x̂) + W̃T
g σg (x̂)u (15)

+W̃T
k σk (x̂) d+ h− βsgn (x̃) ,

where W̃f = Wf − Ŵf ∈ RNf×n, W̃g = Wg − Ŵg ∈
RNg×n, and W̃k = Wk − Ŵk ∈ RNk×n are the estimate
mismatch of the DNN ideal weights, and the auxiliary signal
h (t) ∈ Rn is given by

h = WT
f (σf (x)− σf (x̂)) +WT

g (σg (x)− σg (x̂))u

+WT
k (σk (x)− σk (x̂)) d+ εf + εgu+ εkd.

Using Assumptions 1-5, it is clear that h (t) is bounded as
follows

||h|| ≤ h̄, (16)

where h̄ ∈ R is a known positive constant. Based on the
subsequent stability analysis, the update law for the DNN
can be designed as

·
Ŵ f = Γfproj

(
σf (x̂) x̃T

)
(17)

·
Ŵ g = Γgproj

(
σg (x̂)ux̃T

)
(18)

·
Ŵ k = Γkproj

(
σk (x̂) dx̃T

)
. (19)

Theorem 1: The DNN-based robust identifier in (13),
along with the NN weight update laws in (17)-(19) respec-
tively, guarantees asymptotic identification, in the sense that

lim
t→∞

||x̃ (t)|| = 0, (20)

provided the following sufficient gain condition is satisfied

β > h̄, (21)

where β and h̄ were introduced in (13) and (16), respectively.
Proof : Consider a positive definite, continuously differen-

tiable function V (t) defined as

V =
1

2
x̃T x̃+

1

2
tr
(
W̃T
f Γ−1

f W̃f

)
+

1

2
tr
(
W̃T
g Γ−1

g W̃g

)
+

1

2
tr
(
W̃T
k Γ−1

k W̃k

)
. (22)
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Taking the time derivative of (22), and substituting the
dynamics from (15), and update laws in (17)-(19) yields

V̇ = x̃T
(
Asx̃+ W̃T

f σf (x̂) + W̃T
g σg (x̂)u (23)

+W̃T
k σk (x̂) d+ h− βsgn (x̃)− tr

(
W̃T
f σf (x̂) x̃T

)
−tr

(
W̃T
g σg (x̂)ux̃T

)
− tr

(
W̃T
k σk (x̂) dx̃T

)
.

Simplifying and using (16), the expression in (23) can be
upper-bounded as

V̇ ≤ x̃TAsx̃+ h̄ ||x̃|| − β
n∑
i=1

|x̃i| .

Using the fact that
∑n
i=1 |x̃i| ≥ ||x̃||, the following inequality

is obtained

V̇ ≤ x̃TAsx̃+
(
h̄− β

)
||x̃|| . (24)

Provided the sufficient gain condition in (21) is satisfied, the
expression in (24) can be written as

V̇ ≤ x̃TAsx̃, (25)

which proves that V (t) ∈ L∞. Hence,
x̃ (t),W̃f (t),W̃g (t) , W̃k (t) ∈ L∞. Since As is Hurwitz,
(25) indicates that x̃ (t) ∈ L2. Furthermore, since u (t),
d (t) ∈ L∞, from Assumption 1, h (t) ∈ L∞ from (16),
and x̃ (t),W̃f (t),W̃g (t) , W̃k (t) ∈ L∞, it can be shown that
·
x̃ ∈ L∞ from (15); hence x̃ (t) is uniformly continuous
(UC). Having shown that x̃ (t) ∈ L∞ ∩ L2 and x̃ (t) is UC,
then Barbalat’s lemma [39] can be used to prove the result
in (20).

V. POLICY EVALUATION

The value function V u(x) is assumed to be a continuously
differentiable function that can be represented by a single-
layer NN as

V u(x) = WT
v φ (x) + ε (x) , (26)

where Wv ∈ RM are the unknown ideal weights, φ (·) ∈ RM
is the basis activation function, M denotes the number of
hidden layer neurons, and ε (x) ∈ R is the bounded function
reconstruction error of the NN (i.e. ||ε|| ≤ ε̄ ). The object of
the policy evaluation step is to design weight update laws that
approximate the value function. Taking the time derivative of
the value function in (2), the following expression is obtained

0 =
∂V u(x (t))

∂x
ẋ+ r (x, u, d) , (27)

which is also called the self consistency condition [22], and
must hold for any control policy. Using the NN approxima-
tion of the value function in (26), the consistency equation
in (27) can be written as

0 =
(
WT
v φ

′
(x) + ε

′
(x)
)
ẋ+ r (x, u, d) , (28)

where φ
′
(x) , ∂φ

∂x ∈ RM×n and ε
′
(x) , ∂ε

∂x ∈ RM×n are
the gradients of the activation function and reconstruction

error respectively. In addition to Assumption 6 which states
that the reconstruction error is bounded, it is further assumed,
in the case of the critic NN, that the gradient of the
reconstruction error ε

′
(x) is also bounded. Since the ideal

NN weights are unknown, (28) can be written in terms of
estimates of the weights as

δ = ŴT
v φ

′
(x) ẋ+ r (x, u, d) , (29)

where δ (t) ∈ R is similar to a continuous-time version of the
TD error. The goal is to tune the weights Ŵv (t) ∈ RM of the
critic NN such that the error δ (t) is minimized and the critic
NN approximately satisfies the self-consistency condition in
(27); thus approximating the value function V u (x (t)). It
is clear from the expression of the TD error in (29) that
knowledge of the system dynamics is required to minimize
the error. To overcome this limitation, the DNN-based system

identifier
·
x̂ (t) in (13) is used to replace the system dynamics

ẋ (t) in (29) to yield a modified expression for the TD error

δm = ŴT
v φ

′
(x)

·
x̂+ r (x, u, d) .

A standard steepest descent algorithm for NNs is used
to minimize the modified TD error δm (t). The objective
function Jδ (t) ∈ R for steepest descent method is defined
as

Jδ (t) =
1

2
δm (t)

2
.

The gradient of the objective function with respect to the
weight estimate is given by

∂Jδ

∂Ŵv

= δm
∂δm

∂Ŵv

= δm
·
x̂
T

φ
′
(x)

T
. (30)

Using (30), the critic NN weights can be updated as
·
Ŵv = −ηproj

(
∂Jδ

∂Ŵv

)T
= −ηproj

(
δmφ

′
(x)

·
x̂

)
, (31)

where η ∈ R+ is the learning rate of the critic NN, and
proj (·) is a smooth projection used to guarantee that weight
estimate Ŵv (t) remains bounded. Although projection is
used in (31) to ensure bounded weights, a persistency of
excitation (PE) condition could be used to develop a more
precise bound on the weight mismatch error W̃v (t), as in
[27]. The novelty of the ACI technique [28] is the use of
a stable asymptotic identifier ˙̂x (t), for updating the critic
weights in (31), thus removing the requirement for exact
model knowledge.

VI. POLICY IMPROVEMENT

The objective of policy improvement is to select a policy
which minimizes the current estimate of the value function
in (26). The policy improvement step involves the use of the
closed-form solutions in (5) and (6). After substituting for
g(x) and k (x) from (11) and (12), and ∂V u(x)

∂x from (27),
the expressions in (5) and (6) are

u =
−1

2
R−1

(
WT
g σg + εg

)T (
φ

′
(x)

T
Wv + ε

′T
)

(32)

d =
1

2γ2

(
WT
k σk + εk

)T (
φ

′
(x)

T
Wv + ε

′T
)
. (33)
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The approximate control policies û (t) and d̂ (t), respectively,
for the expressions defined in (32) and (33) can be developed
as

û = −1

2
R−1

(
ŴT
g σg (x)

)T
φ

′
(x)

T
Ŵv (34)

d̂ =
1

2γ2

(
ŴT
k σk (x)

)T
φ

′
(x)

T
Ŵv. (35)

The (actor) policies defined in (34) and (35) are approxi-
mations of the optimal Nash equilibrium policies, however
further analysis is needed to ensure guaranteed closed-loop
stability as the actor policies refine their approximation with
time. The subsequent Lyapunov analysis proves the closed-
loop stability of the proposed actor policies and ensures they
are admissible.

Assumption 7: For given feedback control policies the
nonlinear Lyapunov equation given as [27]

0 = Q (x) +

(
∂V u

∂x

)T
(f (x) + g (x)u+ k (x) d)

+uTRu− γ2dT d,

has a smooth local solution V u(x) ≥ 0.
Theorem 2: The approximate optimal control policies in

(34) and (35), and the weight update laws in (17), (18), and
(19) ensure that, for some initial condition x (t0) = x0, there
exists a time T (x0, B) such that x (t) is UUB, where the
bound B is given by

||x (t)|| ≤
√

ζ

λmin

{
Q̄
} ≡ B t ≥ t0 + T,

where ζ ∈ R and Q̄ ∈ Rn×n are known positive constants.
Proof : For a positive definite local cost r (x, u, d), it can

be shown that V u (x) < 0 for trajectories generated by the
optimal control policies (u∗ (t) , d∗ (t)) in (5) and (6); hence
x (t) is asymptotically stable. To determine the stability of
the approximate (actor) control policies in (34) and (35), we
take the derivative of V u (x) along the trajectory generated
by the approximate control policies û (t) and d̂ (t), and use
the dynamics in (8) as

V̇ u=
∂V u (x (t))

∂x

T(
f (x) + g (x) û+ k (x) d̂+ εt

)
. (36)

Considering the system with disturbance in (8) and using (7),
the value function V u (x) satisfies the following HJI equation

0 = Q (x) +

(
∂V u

∂x

)T
(f (x) + εt)

−1

4

(
∂V u

∂x

)T
g (x)R−1gT (x)

∂V u

∂x

+
1

4γ2

(
∂V u

∂x

)T
k (x) kT (x)

∂V u

∂x
. (37)

Substituting
(
∂V u

∂x

)T
(f (x) + εt) from (37) into (36) yields

V̇ u =
∂V u (x (t))

∂x

T (
g (x) û+ k (x) d̂

)
(38)

+
1

4

(
∂V u

∂x

)T
g (x)R−1gT (x)

∂V u

∂x

− 1

4γ2

(
∂V u

∂x

)T
k (x) kT (x)

∂V u

∂x
−Q (x) .

Adding and subtracting ∂V u(x(t))
∂x

T
g (x)u to (38) and using

(5) yields

V̇ u = −∂V
u (x (t))

∂x

T (
u− û− k (x) d̂

)
(39)

−1

4

(
gT (x)

∂V u

∂x

)T
R−1

(
gT (x)

∂V u

∂x

)
− 1

4γ2

(
kT (x)

∂V u

∂x

)T (
kT (x)

∂V u

∂x

)
−Q (x) .

Adding and subtracting ∂V u(x(t))
∂x

T
σTg Ŵgφ

′
(x)

T
Wv , sub-

stituting (11), (12), (26), (32), (33) (34), and (35) into (39)
and performing some algebraic manipulations, the following
expression is obtained

V̇ u = −Q (x)− 1

4

(
gT (x)

∂V u

∂x

)T
R−1

(
gT (x)

∂V u

∂x

)
− 1

4γ2

(
kT (x)

∂V u

∂x

)T (
kT (x)

∂V u

∂x

)
+
(
WT
v φ

′
+ ε

′
)T

(40)

×
(

1

2

(
WT
g σg + εg

) [
σTg W̃gφ

′TWv + σTgWgε
′T

−σTg Ŵgφ
′T W̃v + εTg φ

′TWv +
(
ε
′
εg

)T]
−
(
WT
k σk + εk

) (
ŴT
k σk

)T
φ

′T Ŵv

)
.

Using (11), (12), Assumptions 1-5, (18), (19), (26), and (31)
the last term in (40) can be bounded as

ζ ≥
∥∥∥∥(W̄T

v φ
′
+ ε

′
)T

(41)

×
(

1

2

(
W̄T
g σg + ε̄g

) [
σTg W̃gφ

′T W̄v + σTg W̄gε
′T

−σTg Ŵgφ
′T W̃v + ε̄Tg φ

′T W̄v +
(
ε
′
ε̄g

)T]
−
(
W̄T
k σk + ε̄k

) (
ŴT
k σk

)T
φ

′T Ŵv

)∥∥∥∥ ,
where ζ ∈ R is a computable constant. Using (41), and the
fact that R−1 is positive definite, (40) can be upper bounded
as

V̇ u (x) ≤ −Q (x) + ζ. (42)

Assuming Q (x) has a quadratic form Q (x) = xT Q̄x where
Q̄ ∈ Rn×n is a constant positive definite matrix, V̇ u (x) in
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(42) can be further upper bounded as

V̇ u (x) ≤ −λmin

{
Q̄
}
||x||2 + ζ, (43)

which shows that V̇ u (x) is negative whenever x(t) lies

outside the compact set Ωx ,

{
x : ||x|| ≤

√
ζ

λmin{Q̄}

}
,

and hence, ||x (t)|| is UUB [40]. For values of Q (x) that
satisfy the Lyapunov equation in Assumption 7, the size
of Ωx can be made smaller by increasing λmin

{
Q̄
}

, the
penalty on the state x (t). It can also be seen from (43)
that the value function V u ∈ L∞. Since x (t), V u ∈ L∞,
then the approximate control policies û (t) and d̂ (t) are
admissible (see definition in [4]). Also, from the projection
algorithms in (18), (19), and (31) and using the approximate
control policies in (34) and (35), û (t),d̂ (t) ∈ L∞; hence,
Assumption 2 holds.

VII. CONCLUSION

A novel actor-critic-identifier architecture is generalized
for a two-player zero-sum differential game. The ACI ar-
chitecture implements the PI algorithm in real-time, where
the actor, critic, and identifier operate simultaneously. The
use of a robust DNN-based identifier circumvents the need
for complete model knowledge, yielding an identifier which
is proven to be asymptotically convergent. A gradient-based
weight update law is used for the critic NN to approximate
the value function. Using the identifier and the critic, an
approximation to the optimal control law (actor) is developed
which stabilizes the closed loop system and approaches the
optimal solution to the two-player zero-sum game.
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