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Abstract— This work deals with the source-seeking problem
in which the task is to locate the source of some signal using a
fleet of Autonomous Underwater Vehicles (AUVs). The present
paper proposes a distributed solution in which a group of
vehicles uniformly distributed in a fixed circular formation,
estimates the gradient direction of the signal propagation. The
distributed algorithm takes into account the communication
constraints and depends on direct signal measurements. Our
approach is based on the previous results in formation control
to stabilize the fleet in a circular formation with time-varying
center and in a collaborative source-seeking algorithm. The
results are supported through computer simulations.

I. INTRODUCTION

Cooperative control problems and multi-agent systems

have received much attention in recent years. The field

includes consensus algorithms for multi-agent systems [1],

[2], flocking [3], distributed sensor networks [4], [5], and au-

tonomous systems as underwater and unmanned air vehicles

(AUVs and UAVs) [6], [7]. Cooperative formation control

and motion coordination have been extensively studied, see

[8], [9], [10], among many others. Control laws have been

provided to make a fleet of agents (vehicles) obtain circular

and parallel formations [6], [11]. Many extensions based

on these works have been developed: three-dimensional

formation control [12], planar circular formation control in

a flow-field [13], and stabilization of a fleet to other closed

forms [14], [15].

In [16], a new control law is proposed to translate a

circular formation following a desired external reference

trajectory of its center. Designing a collaborative reference

to move the formation is a first step to achieve the source

location of some signal. The source could be a point of

chemical contamination and the signal would be that chem-

ical’s concentration in the environment, for example. The

objective of the source-seeking problem is to obtain the

direction to steer the formation towards the source by a

cooperative algorithm using the concentration measurements

of the agents.

There exist many different approaches to resolve the

source-seeking problem in the literature. The extremum

seeking problem is solved under different hypotheses using

a single nonholonomic vehicle, [17], [18]. In this case all
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the measurements would come from a single vehicle as

it changes position over time. An other strategy consists

in approximating the gradient value of the signal using

concentration measurements of multiple vehicles at different

locations [4]. Some collaborative methods have been pro-

posed, based on distributed estimation of the concentration

plume [19], [20]. In theses cases, the function signal is esti-

mated or approximated and the source localization becomes

a distributed optimization problem.

The work presented in [21] deals with a collaborative

multi-agent algorithm to solve the source seeking prob-

lem using only direct signal measurements by a circular

formation of agents. This new approach considers all-to-

all communication (i.e., every agent talks to every other

agent) between the agents and the control law needs the

information of all the agents to converge. Our objective now

is to design a distributed algorithm based on this previous

one but considering restricted communication. The present

paper addresses an other possible solution to the source

localisation problem. We show how a group of vehicles

uniformly distributed in a circular formation, is able to

approximate the gradient direction of the signal propagation

to steer the formation towards the source location. In order

to achieve this objective under limited communication, each

agent estimates its own direction based on its neighbors’ con-

centration measurements. We include a consensus algorithm

to converge to the same desired gradient direction.

This paper is organized as follows. First, Section II

presents a result on gradient approximation and the problem

formulation. In Section III we propose a first algorithm that

combines standard consensus tools, and show its limitations

both by theoretical convergence analysis and simulations.

Then, Section IV presents an improved estimation algorithm

based on averaging. Conclusions and future works are pre-

sented in Section V.

Notation. Let G = (V,E) be an undirected graph with an

adjacency matrix A = [akj ] that specifies the communication

topology of the multi-agent system: akj = 1 if agents k and j
∈ V communicate, else akj = 0. The set of nodes (agents) is

denoted by V = {1, . . . , N}. Let Nk = {k ∈ V : akj 6= 0}
the set of neighbors of agent k and Jk = Nk ∪ {k}. The

Laplacian matrix L of graph G is defined as L = ∆ − A
where ∆ is the diagonal matrix which contains the degree

of each agent, i.e., ∆kk = dk =
∑

j akj . In the sequel, ⊗
denotes the Kronecker product and, for simplicity, we define

M2 = M ⊗ I2 where M is a square matrix and IN is the

identity matrix of order N .
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II. PROBLEM FORMULATION

The objective of this work, is to estimate the gradient

direction of a signal distribution based on the concentration

measurements obtained by a circular formation of agents,

taking into account the communication constraints. This

estimated direction will be the reference velocity of the

formation center in order to steer the group of agents to

the source location.

A. Background

The algorithm to estimate the gradient direction of a signal

distribution presented in this paper builds on the previous

result on formation control from [16]. In this work a control

law which asymptotically stabilizes the vehicles to a circular

formation around a dynamic center point c(t) = (cx, cy)
T

with a uniform distribution (i.e., with the agents evenly

separated on the circle by 2π/N radians each) is developed.

The center of the formation c(t) is an external reference

known for all the agents. Consider now the stable circular

formation described by a center point c, a radius R and an

angle φ which is linearly increasing with time (i.e., φ = ω0t
for some angular speed ω0 > 0. Therefore, the position of

each agent k is given by the following equation:

xk = cx +R cos (φ+ k
2π

N
)

yk = cy +R sin (φ+ k
2π

N
) (1)

This equation describes a formation where the agents are

uniformly distributed on a circle of radius R. In the context

of source-seeking problem, the objective is that the center of

the formation c(t) follows a trajectory which converges to

the maximum of a signal, that is usually its source. Using

this previous work on formation control, a first result in

collaborative source-seeking is accomplished in [21]. The

authors consider here a stable circular formation of N mobile

agents in the plane. An outer-loop control that steers the

formation by determining ċ(t) in a collaborative way is

provided. The main constraint of the algorithm of [21] is

the all-to-all communication assumption.

B. Gradient Approximation

Our approach considers that the circular formation is

not moving. Only the estimation of gradient direction is

addressed here.

Assumption 1 In the sequel, we assume that the center of

the circular formation c, is fixed and known for all the agents.

The distribution of the signal strength in the environment

will be described by an unknown positive spatial mapping

ρ : R2 → R
+, and so agent k measures the signal strength

at its position rk = (xk, yk)
T , as ρ(rk). Our approach deals

with the approximation of the gradient direction of this signal

distribution ρ by a circular formation of agents at a given

location c, see Fig. 1.

Consider a fleet of agents given by (1) taking mea-

surements of a signal distribution ρ. Let ∇ρ(c) =

ω0

r1 − c

r2 − c

r4 − c

r3 − c

SOURCE

u
∗

Fig. 1. Problem formulation

(∇xρ(c),∇yρ(c)) denote the gradient of function ρ in the

center of the circular formation. The following lemma is

proposed:

Lemma 1 Let ρ be a bounded function and ρ(rk) the

measure obtained by agent k where rk is its position vector

given by (1). If Assumption 1 is satisfied and the agents are

uniformly distributed along the circle centered at c, then:

(i) Considering a fleet of N > 2 agents the following

equation is satisfied:

1

N

N
∑

k=1

ρ(rk)(rk − c) =
R2

2
∇ρ(c)T + o(R2) (2)

(ii) Considering a limitless number of agents along the

circular formation (N → ∞) the following equation is

satisfied:

1

2π

∫ 2π

0

ρ(rk)(rk − c)dφ =
R2

2
∇ρ(c)T + o(R2) (3)

Proof: In both cases (i) and (ii) the uniform distribution

of the agents along a fixed circle is assumed, then
∑N

k=1(rk−
c) = 0 and

∫ 2π

0
(rk − c)dφ = 0 respectively. By definition of

gradient of the function ρ at a fixed location c the following

equation holds:

ρ(rk)− ρ(c) = ∇ρ(c)(rk − c) + o(R) (4)

Multiplying this previous equation by the relative vector

(rk − c) and summing over k = 1, . . . , N , it yields:

1

N

N
∑

k=1

ρ(rk)(rk−c) =
1

N

N
∑

k=1

[∇ρ(c)(rk−c)](rk−c)+o(R2)

Analyzing in terms of components and using (1) to express

the position of the agents rk, the right-hand side of the

previous equation is given by:

R2

N

N
∑

k=1

(

∇xρ(c) cos
2 φk +∇yρ(c) cosφk sinφk

∇xρ(c) sinφk cosφk +∇yρ(c) sin
2 φk

)

where φk = φ+ k 2π
N . Thanks to the uniform distribution if

N > 2 then
∑N

k=1 cos (2k
2π
N ) = 0 (the same equality also
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holds for the sinus) and trigonometric properties ensure that:

1

N

N
∑

k=1

[∇ρ(c)(rk − c)](rk − c) =
R2

2
∇ρ(c)T

Thus, the equality (2) is satisfied. A similar analysis can be

applied to second case (ii). Using trigonometric properties,

integrating along the circle (in the interval [0, 2π]) and thanks

to the equality
∫ 2π

0
cosφdφ = 0 (the same equality also holds

for sinφ) we obtain the following equation:

1

2π

∫ 2π

0

[∇ρ(c)(rk − c)](rk − c)dφ =
R2

2
∇ρ(c)T

and equality (3) is straightforwardly obtained.

This result provides an approximation of gradient of the

signal distribution at the center of the circular formation.

C. Problem Formulation

The objective of this paper is to develop a distributed

algorithm to estimate the gradient direction of the signal

distribution ρ at the center of a circular formation of agents.

The communication constraints are taken into account

through a communication graph G. Due to these commu-

nication restrictions each agent estimates its own gradient

direction zk using the information of its neighbors according

to the communication topology. The aim is to make all esti-

mated directions zk converge to the mean direction defined

as:

u∗ =
1

N

N
∑

k=1

uk; uk = ρk(rk − c) (5)

where uk is the relative position vector of agent k weighted

by its concentration measurement ρk = ρ(rk). Thanks

to Lemma 1 (i), this mean vector u∗ approximates the

gradient direction of the signal distribution at the center of

the formation c. A consensus algorithm is implemented to

obtain the same estimated gradient direction of the signal

distribution for all the agents.

III. COLLABORATIVE ESTIMATION OF GRADIENT

DIRECTION

A. Consensus algorithm

Consensus filters for sensor networks are developed in [2].

In this work, the authors consider a sensor network of size

N with information flow (communication graph) G. Each

sensor k measures the same signal that is corrupted by noise.

Based on this approach for sensor networks, we propose the

following consensus algorithm for the multi-agents system

to estimate the gradient direction of the signal propagation

by a fixed circular formation in a collaborative way:

żk = κ
∑

j∈Nk

akj(zj − zk) +
∑

j∈Jk

akj(uj − zk)

where κ > 0 is a control parameter which is introduced to

make the algorithm more flexible. The consensus variable is

the vector zk ∈ R
2 which represents the estimated gradient

direction by agent k. The input uk = ρk(rk − c) ∈ R
2,

depends on the concentration measurements and the position

of the agent in the formation.

Using the Laplacian matrix of the communication topol-

ogy of the multi-agents system the previous equation can be

rewritten in a matrix way:

ż = −κL ⊗ I2z + IN ⊗ I2(u − z) +A⊗ I2u −∆⊗ I2z

= −(IN +∆+ κL)2z + (IN +A)2u

where z = (zT1 , z
T
2 , . . . , z

T
N )T and u = (uT

1 , u
T
2 , . . . , u

T
N )T

are vectors of dimension 2N , and IN the identity matrix of

order N . Let Aκ = (IN +∆ + κL)2, and B = (IN + A)2.

Note that by definition, Aκ is a positive definite matrix. Then,

the previous equation becomes:

ż = −Aκz + Bu (6)

Consider the vector of dimension 2N , u∗ = 1 ⊗ u∗, where

1 = (1, . . . , 1)T ∈ R
N is the vector of ones that is always

a right eigenvector of L corresponding to the eigenvalue

0. Then the error equation is η = z − u∗. Using (6), the

dynamics of the error can be written as:

η̇ = −Aκη + B(u − u∗)− u̇
∗

The stability of this algorithm is analyzed using the Lya-

punov function V = 1
2η

T Aκη. Differentiating this function

we obtain:

V̇ = −ηT AT
κ Aκη + (u − u∗)T BT Aκη − u̇

∗T
Aκη

Let ‖u̇∗‖ ≤ ν, due to the soft variation of the concentration

levels of the signal distribution considered here, then

V̇ ≤ −λ2
min(Aκ)‖η‖2 + ν

√
N(1 + dmax)‖η‖

+‖(u − u∗)T BT Aκη‖

It is plausible to assume that a bound on maximal signal

concentration is known from the problem setting. Therefore,

‖(u−u∗)‖ ≤ α where α depends on the radius of the circular

formation and on the greatest concentration measurement

obtained by the agents. For simplicity, let γ be a bound

of the following matrix norm
∥

∥BT Aκ

∥

∥ ≤ γ. Taking these

considerations into account the following equation holds:

‖(u − u∗)T BT Aκ‖ ≤ αγ

The derivative of the Lyapunov function is bounded by:

V̇ ≤ −λ2
min(Aκ)‖η‖2 +

(

ν
√
N(1 + dmax) + αγ

)

‖η‖

Based on the proof of Proposition 2 from [2] a closed ball

Bβ centered at η = 0 is defined with radius

β =
ν
√
N(1 + dmax) + αγ

λ2
min(Aκ)

Let Ωm = {η : V (η) ≤ m} be a level set of the Lyapunov

function V (η) with m = 1
2λmax(Aκ)β

2. Then, Bβ is

contained in Ωc because

‖η‖ ≤ β =⇒ V (η) =
1

2
ηT Aκη ≤ 1

2
λmax(Aκ)β

2 = m,

5585



−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

(a) Estimated directions zk

0 10 20 30 40 50
−10

−5

0

t (s)

z
x

0 10 20 30 40 50
−10

−5

0

t (s)

z
y

(b) Components of estimated directions zk

Fig. 2. Simulation of a circular formation of five agents centered at c =
(2, 2)T . The consensus algorithm of Theorem 1 is implemented with κ =
50.

and thus η ∈ Ωm. As a result, any solution of (7) starting

in R
2N\Ωm satisfies V̇ < 0. Thus, it enters Ωm in some

finite time and remains in Ωm thereafter. This guarantees

global asymptotic ǫ-stability of η = 0 with a radius ǫ =
βλmax(Aκ)/λmin(Aκ). To show this, note that

1

2
λmin(Aκ)‖η‖2 ≤ V (η) ≤ 1

2
λmax(Aκ)β

2

Thus, the solutions enter the region

‖η‖ ≤ β

√

λmax(Aκ)

λmin(Aκ)

which implies the radius of ǫ-stability is

ǫ =
ν
√
N(1 + dmax) + αγ

λ2
min(Aκ)

√

λmax(Aκ)

λmin(Aκ)

The ǫ-stability of η = 0 implies ǫ-tracking of the mean vector

u∗ by every agent, therefore ǫ-consensus is asymptotically

reached. After the previous detailed analysis, this result can

be presented as a theorem:

Theorem 1 Consider a circular formation of N agents

defined by (1) with a connected communication graph G
and Assumption 1 is satisfied. Let ρ : R

2 → R
+ be a

bounded function and the mean vector u∗ defined in (5)

satisfies ‖u̇∗‖ ≤ ν. Then, z∗(t) = 1 ⊗ u∗ is a globally

asymptotically ǫ- stable equilibrium of the dynamics of the

distributed algorithm given by

ż = −κL2z − L2u + (IN +∆)2(u − z) (7)
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(b) Components of estimated directions zk

Fig. 3. Simulation of a circular formation of five agents centered at c =
(0, 0)T . The consensus algorithm (7) is implemented with κ = 50.

with u = (ρ1(r1 − c)T , . . . , ρN (rN − c)T )T and

ǫ =
(ν
√
N(1 + dmax) + αγ)λ

1

2

max(Aκ)

λ
5

2

min(Aκ)

where the matrix Aκ and the constants α and γ are previ-

ously defined.

B. Simulations

In this section we present simulations results of the pre-

vious algorithm. All simulations show a circular formation

of five agents with radius R = 1m and angular velocity

ω0 = 1rad/s. The communication graph is a ring (i.e,. each

agent is linked to its two closest neighbors on the circle).

In Figs. 2 and 3, the source-seeking consensus algorithm

(7) from Theorem 1 is implemented with κ = 50. For

these simulations, the function ρ representing the signal

distribution centered at the origin has circular level sets,

ρ(x, y) = 100e−(x2+y2)/10. Therefore, the gradient vector

∇ρ(c) provides the adequate direction to steer the formation

to the source location. Both figures (a) show two snapshots.

The void circles represent the initial conditions and the

black dashed lines the initial estimated direction zk of each

agent. The red circles represent the position of the agents

at t = 50s and the red lines are the estimated gradient

directions at that time. The blue line is the real direction

of the gradient at center c. Both figures (b) show the

components of the consensus variable zk and the mean vector

u∗. The estimated directions zk oscillate around the vector
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u∗ which approximates the true gradient direction for any

initial conditions.

In Fig. 2 the circular formation is centered at c = (2, 2)
and the oscillations of the estimated gradient directions zk
are smaller than in Fig. 3 where the formation is centered

at source location. In this second case, as the mean of the

directions is equal to zero, the convergence region of radius

ǫ leads to completely wrong gradient direction estimations.

C. Conclusions and limitations of the algorithm

The final gradient direction zk estimated by each agent

oscillates with period T = 2π/ω0. The amplitude of these

oscillations depends on the concentration measurements ρk.

When the formation is closer to the source location, the

measurements are greater, thus, the amplitude of oscillations

are greater as well. Moreover, as the gradient is closer to

zero in the neighborhood of the source (at least with the

Gaussian profile we use), a ball of radius ǫ around 0 leaves

the gradient direction essentially unknown; thus Theorem 1

does not guarantee good behavior in the neighborhood of

the source. In order to avoid these problems, an averaging

approach is presented in the following section.

IV. REFINED COLLABORATIVE ESTIMATION OF

GRADIENT DIRECTION RESULT

The previous section presents a collaborative algorithm,

which uses the concentration measurements obtained by a

formation of agents to estimate the gradient direction of a

signal distribution in its center.

The agents describe a periodic movement, it means that

rk(t) = rk(t + T ) with T = 2π/ω0. Therefore, the mea-

surements ρk obtained by agent k is a periodic map because

ρ(rk(t)) = ρ(rk(t + T )). In conclusion, the input variable

of the consensus algorithm uk = ρk(rk − c) is a T -periodic

function with T = 2π/ω0. Estimated directions zk obtained

by the consensus algorithm (7) shown in Figs. 2 and 3 are

also periodic. The average of these solutions approximates

the gradient direction of the signal propagation. Thanks to

these observations, an analysis of the average properties of

the input variable uk seems adequate. In this section, the

previous distributed consensus algorithm is improved using

the periodic properties of the measurements ρ(rk).

A. Estimation Algorithm using time-average inputs

We present an improved estimation algorithm based on the

periodic properties of the input uk. The input vector uk in

previous consensus algorithm is replaced by its mean value

over one period T = 2π/ω0 which is defined as:

uk =
1

T

∫ t

t−T

ρk(rk(τ)− c)dτ (8)

Therefore, thanks to Lemma 1 (ii) the new mean vector u∗

approximates the gradient of the signal propagation ρ in the

center of the circular formation:

u∗ =
1

N

N
∑

k=1

uk (9)

The new input variable of the improved algorithm based

on (7), is the mean vector u = (uT
1 , u

T
2 , . . . , u

T
N )T , and

the objective is defined as u∗ = 1 ⊗ u∗. Following the

analysis developed in section III-A, let us assume that the

following inequality ‖(u−u∗)‖ ≤ α is satisfied. Using these

considerations, a new algorithm is proposed in the following

corollary:

Corollary 1 Consider a circular formation of N agents

defined by (1) with a connected communication graph G
and Assumption 1 is satisfied. Let ρ : R

2 → R
+ be a

bounded function and the mean vector u∗ defined in (9)

satisfies ‖u̇∗‖ ≤ ν. Then, z∗(t) = 1 ⊗ u∗ is a globally

asymptotically ǫ-stable equilibrium of the dynamics of the

distributed algorithm given by

ż = −κL2z − L2u + (IN +∆)2(u − z) (10)

with

ǫ =
(ν
√
N(1 + dmax) + αγ)λ

1

2

max(Aκ)

λ
5

2

min(Aκ)

Remark 1 Considering Assumption 1 by definition, the

mean input u is a constant vector after a time period T .

Therefore, the input variable u converges to the mean vector

u
∗ and moreover, its derivative is equal to zero. Then, ν → 0

and α → 0. It implies that the radius of the convergence

region ǫ converges to zero after a period T , the consensus

is achieved and all the agents estimate the mean vector u
∗

which approximates the gradient direction at the center of

the formation.

B. Simulations

The simulations show the same circular formation of five

agents from the previous simulations. In Figs. 4 and 5 the

improved distributed algorithm (10) from Corollary 1 is

implemented with κ = 1 by a circular formation centered

at c = (2, 2)T and at source location, respectively. The

measured signal is the same as in previous simulations.

Due to the circular level sets of the signal propagation the

gradient vector ∇ρ(c) provides the adequate direction to

steer the formation to the source location. Both figures (a)

show two snapshots, the initial conditions and the stable

situation at t = 50s. Both figures (b) show the components

of consensus variable zk. This algorithm allows to remove

the oscillations and the final vectors zk (red lines) are parallel

to the gradient direction for all the agents (blue line). The

problem of oscillations when the formation is centered at

source location is also solved and the final directions zk are

equal to zero, i.e., the formation decides to stay in the desired

location. The estimated directions zk converge to the gradient

direction approximated by the mean vector u∗ for any initial

conditions.

V. CONCLUSIONS

This paper presents a cooperative multi-agent algorithm to

estimate the gradient direction of a signal distribution. This

distributed algorithm uses the concentration measurements
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Fig. 4. Simulation of a circular formation of five agents centered at c =
(2, 2)T . The mean input consensus algorithm (10) is implemented.

of the signal obtained by a group of vehicles uniformly dis-

tributed in a fixed circular formation. Our approach takes into

account the communication constraints of the network. To

achieve this objective, a first distributed consensus algorithm

based on instantaneous sensor measurements is presented.

Then, we propose an improved algorithm based on the

average inputs. We note that if the formation is fixed, this

second algorithm reaches exact consensus and converge to

the gradient direction at the formation center.

This analysis requires that formation is fixed. Our final

objective is to use this estimated direction to locate the

source. Then, our next research aim is to analyze and

improve these algorithms when the formation moves along

the estimated gradient direction towards the source location.
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