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Abstract— This paper presents explicit solutions for a few
distributed LQG problems in which players communicate their
states with delays. The resulting control structure is reminiscent
of a simple management hierarchy, in which a top level input
is modified by newer, more localized information as it gets
passed down the chain of command. It is hoped that the
controller forms arising through optimization may lend insight
into the control strategies of biological and social systems with
communication delays.

I. INTRODUCTION

Imagine a large event, such as a conference, is being
planned. A group of people must move chairs and tables,
prepare and serve food, and set up audio-visual equipment.
In addition, typically, there are also people who do little
or none of the physical, work, but whose main function is
coordination. Someone oversees the food, while someone
else might coordinate the audio-visual equipment. At the top
level, there is often an individual, or group, that manages the
coordinators. Management hierarchies, such as the one just
described, are common, even though they are not actually
necessary to perform the actions needed for the event.

This paper studies how hierarchical control structures can
arise as optimal methods to deal with communication delays.
While the problem studied is a simple variant of distributed
linear quadratic Gaussian (LQG) control, the results have
some intuitive similarities with the event planning exam-
ple discussed above. In the problems studied, a group of
players works together to minimize a quadratic cost. The
players have access to local state information, but can only
communicate their state with a delay. This paper shows that
for such problems, a hierarchical control structure emerges
as the optimal strategy. In particular, the optimal inputs
can be decomposed into partially ordered components. The
lowest level components represent the players (which do the
physical work), while higher level components are used for
coordination.

A. Related Work
The focus of this paper, LQG control with communication

delays, is a basic problem in distributed or decentralized
control. Decentralized control has a long history, [1], [2], [3],
[4], [5], but computationally tractable solutions to nontrivial
problems have been rare, until recently. Notably, in the past
ten years, certain decentralized optimal control problems
were shown to be convex [6], [7]. More recently, compu-
tationally efficient solutions to some of the convex problems
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have been found [8], [9], [10], [11], [12]. Of the work cited,
Rantzer’s paper on linear quadratic teams is the most closely
related [8]. In this paper, Rantzer solves the problem studied
in this chapter using semidefinite programming (SDP), but
does not explore the structure of the solution. The solution
techniques used in this chapter are closely related to the
dynamic programming methods used in [11]. Also related
are the works of [3], [4], [5], which give solutions to the
problem of Section III. The work in Section III differs from
these works, in that it naturally leads to generalizations.

B. Motivation and Contributions
The main motivation for studying the present problem

is the analysis of biological and social systems. Thus, the
primary goal is to develop intuition about the consequences
of communication delay in optimized control systems.

Given the focus on intuition, the primary contribution of
this paper is the explicit structure of the optimal controllers
found. While the problems of this paper can be solved
using the SDP method of [8], the structures of the optimal
solutions are not explicit. Using a novel derivation, this paper
shows that by simply assuming that communication between
players is delayed, a control hierarchy arises as the optimal
solution. Furthermore, the optimal solution is computed from
a standard algebraic Riccati equation. The new knowledge
about the control structure can give insight into hierarchies
found in existing control systems.

Finally, the techniques developed in this paper are useful
for other problems in decentralized control. Indeed, the
dynamic programming arguments below can be modified to
recover the results of [10], [11], [12].

C. Overview
The article is structured as follows. Section II defines the

problems studied in the paper. Section III gives a full solution
for the first problem, called the two-player problem. This
section develops basic ideas on decoupling information into
independent terms, and the associated dynamic programming
problem. Next, a solution for a more complex example
termed the three-player chain is sketched in Section IV.
To solve this problem, a systematic method for decoupling
information based on how it is shared by the players is
introduced. Conclusions and future work are outlined in
Section V.

Notation. The expected value of a random variable, x, is
denoted by E[x]. The conditional expectation of x given y
is denoted by E[x|y]. The sequence x(0), x(1), . . . , x(t) is
denoted by x(0 : t).
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II. PROBLEM STATEMENT

Consider dynamics of the form

x(t+ 1) = Ax(t) +Bu(t) + w(t),

with initial condition x(0) = 0. Here (A,B) is assumed to
be stabilizable. The state is given by x, u is the input, and
w is process noise. In the two problems studied, the goal is
to minimize the steady-state cost

lim
t→∞

E
[
x(t)TQx(t) + u(t)TRu(t)

]

subject to input constraints to be specified below. The matrix
Q is positive semidefinite, and R is positive definite. To guar-
antee a stabilizing solution to the corresponding algebraic
Riccati equation, (

√
Q,A) is assumed to be stabilizable.

Aside from that, no other assumptions are made about Q
and R.

The problems considered in this paper are referred to as
the two-player problem and the three-player chain. The ideas
required to solve these problems extend naturally to a more
general class of decentralized control problems [13].

For the two-player problem, the state, input, and process
noise are partitioned as

x =

[
x1
x2

]
, u =

[
u1
u2

]
, w =

[
w1

w2

]
,

where xi ∈ Rki , ui ∈ Rpi , and wi ∈ Rki . The state matrices
have sparsity structure (conforming to the partitions of x and
u)

A =

[
A11 A12

A21 A22

]
, B =

[
B1 0
0 B2

]
,

and inputs are restricted to the form

u1(t) = γ1,t(x1(0 : t), x2(0 : t− 1)) (1)
u2(t) = γ2,t(x1(0 : t− 1), x2(0 : t)).

Here γi,t are Borel-measurable functions to be chosen in the
optimization procedure. The process noise w(t) is Gaussian
white noise with covariance given by

E[wwT ] = E
[[
w1

w2

] [
wT1 wT2

]]
=

[
W1 0
0 W2

]
.

For the three-player chain, the state, input, and process
noise are partitioned as

x =



x1
x2
x3


 , u =



u1
u2
u3


 , w =



w1

w2

w3


 ,

where xi ∈ Rki , ui ∈ Rpi , and wi ∈ Rki . The state matrices
have the sparsity

A =



A11 A12 0
A21 A22 A23

0 A32 A33


 , B =



B1 0 0
0 B2 0
0 0 B3


 ,

and the inputs have the delay structure

u1(t) = γ1,t(x1(0 : t), x2(0 : t− 1), x3(0 : t− 2))

u2(t) = γ2,t(x1(0 : t− 1), x2(0 : t), x3(0 : t− 1)) (2)
u3(t) = γ3,t(x1(0 : t− 2), x2(0 : t− 1), x3(0 : t)).

Fig. 1. Two-player graph.

Fig. 2. Three-player chain.

In this case the process noise is Gaussian white noise with
covariance given by

E[wwT ] =

E





w1

w2

w3


 [wT1 wT2 wT3

]

 =



W1 0 0
0 W2 0
0 0 W3


 .

Throughout the paper, ui(t) will be interpreted as the
“input chosen by player i” at time t. Note that for the two-
player problem, Equation (1) shows that at time t+ 1 player
2 has access to all of the information available to player 1
at time t, and vice versa. This can be interpreted as players
1 and 2 communicating their information after a one-step
delay. Similarly, Equation (2) specifies that, in the three-
player chain, players 1 and 2 communicate their information
after a one-step delay and players 2 and 3 communicate
their information after a one-step delay. The delay patterns
from the two-player problem and the three-player chain
can be captured by the graphs shown in Figures 1 and 2,
respectively.

Note that the assumptions about the structure of the input
and the sparsity of the dynamics guarantee that communica-
tion between the players choosing ui occurs as least as fast
as information travels through the plant. This assumption
implies that the information structure (the set of input
constraints) is partially nested, which in turn implies that
the optimal inputs are linear in the associated information
[1].

In the deriving the optimal controller, the following finite-
horizon variant of the control problem is studied. Minimize

E

[
N−1∑

t=0

(
x(t)TQx(t) + u(t)TRu(t)

)
+ x(N)TΛx(N)

]

(3)
with inputs of the form of Equation (1) or Equation (2). Here
Λ is a positive semidefinite matrix of appropriate dimensions,
corresponding to a terminal cost. If Λ is positive definite,
then as N →∞, the optimal controller for this finite-horizon
problem approaches the steady-state controller.

III. TWO-PLAYER PROBLEM

This section presents a solution to the two-player problem
which extends to other delay patterns. The delay pattern of
the two-player problem is often referred to in the literature as
the “one-step delay information pattern.” Dynamic program-
ming solutions for the this problem have been known since
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the 1970s [3], [4], [5]. The approaches in the cited work
differ from the work of this paper, and it is not immediately
clear how to generalize them to other delay structures, such
as the three-player chain. The method of this paper is to
decompose the information into independent components, a
priori, and use this decomposition to decouple the dynamic
programming problem into independent subproblems.

The section is organized as follows. First the optimal
controller is presented in Subsection III-A. Subsection III-
B derives the optimal solution to a finite-horizon version of
the optimal control problem. Finally, the optimal controller is
derived in Subsection III-C by applying a limiting argument.

A. Two-Player Problem: Optimal Solution

In order to find a structure for the optimal controller,
decompose x(t) into three independent terms

x(t) =

[
ζ1(t)
ζ2(t)

]
+ x̂(t), (4)

where x̂(t) = E[x(t)|x(0 : t− 1)]. Since the input u(t− 1)
depends on x(0 : t− 1), it follows that

x̂(t) = Ax(t− 1) +Bu(t− 1)

ζ1(t) = w1(t− 1) (5)
ζ2(t) = w2(t− 1).

Thus x̂(t), ζ1(t), and ζ2(t) are, indeed, pairwise independent.
The term x̂(t) denotes the expected value of x(t) given the
information shared by both player 1 and player 2. The term
ζ1(t) depends on the information available only to player
1, and similarly ζ2(t) depends on the information available
only to player 2.

Theorem 1: There exist matrices K, H1, H2, X1, and
X2, such that the optimal controller for the two-player
problem is given by

u(t) = −
[
H1ζ1(t)
H2ζ2(t)

]
−Kx̂(t),

and the optimal cost is given by

Tr(W1X1) + Tr(W2X2). (6)

Remark 1: The input −Kx̂(t) could be interpreted as a
command sent by a “manager” based information x(0 : t−1).
Player 1 then applies a correction term −H1ζ1(t), based on
newer information unavailable to the “manager.” Similarly,
−H2ζ2(t) represents player 2’s correction term.

The gains, as well as the costs are specified by the
stabilizing solution to the algebraic Riccati equation, S:

S = Q+ATSA−ATSB(R+BTSB)−1BTSA.

For more compact notation, define the block columns of
A and B as

[
A1 A2

]
=

[
A11 A12

A21 A22

]
, (7)

[
B1 B2

]
=

[
B11 0
0 B22

]
.

The gains are then given by

K = (R+BTSB)−1BTSA

H1 = (R11 +BT1 SB1)−1BT1 SA1

H2 = (R22 +BT2 SB2)−1BT2 SA2,

and the cost matrices, X1 and X2, are given by

X1 =
Q11 +AT1 SA1

−AT1 SB1(R11 +BT1 SB1)−1BT1 SA1

X2 =
Q22 +AT2 SA2

−AT2 SB2(R22 +BT2 SB2)−1BT2 SA2.

B. Two-Player Problem: Finite-Horizon Derivation
In order to derive the optimal controller, the finite-horizon

version, with cost given by Equation (3), will be solved, and
the infinite-horizon version follows by taking limits.

The following lemma shows how an input structure based
on the distribution of information between the players can
be assumed. The proof is omitted for space.

Lemma 1: The optimal input can be decomposed as

u(t) =

[
ϕ1(t)
ϕ2(t)

]
+ û(t), (8)

where ϕ1(t), ϕ2(t), and û(t) are independent random vari-
ables which are linear functions of ζ1(t), ζ2(t), and x(0 :
t− 1), respectively.

The lemma combined with the decomposition of the state
in terms of x̂, ζ1, and ζ2 implies that the summand of the
cost function can be decomposed as

E
[
x(t)TQx(t) + u(t)TRu(t)

]

= E
[
x̂(t)TQx̂(t) + û(t)TRû(t)

]
(9)

+E
[
ζ1(t)TQ11ζ1(t) + ϕ1(t)TR11ϕ1(t)

]

+E
[
ζ2(t)TQ22ζ2(t) + ϕ2(t)TR22ϕ2(t)

]
.

The solution will proceed via a dynamic programming
argument. Let E[J(x̂, ζ1, ζ2, t)] denote the optimal expected
cost-to-go function, when the state is decomposed as x̂, ζ1,
and ζ2 at time t. By independence, E[J(x̂, ζ1, ζ2, N)] can be
decoupled as

E[J(x̂, ζ1, ζ2, N)]

= E
[
x̂TΛx̂

]
+ E

[
ζT1 Λ11ζ1

]
+ E

[
ζT2 Λ22ζ2

]
.

Let S(N) = Λ, X1(N) = Λ11, and X2(N) = Λ22. For
t ≤ N , it will be shown that J(x̂, ζ1, ζ2, t) has the form

J(x̂, ζ1, ζ2, t) = x̂TS(t)x̂+ ζT1 X1(t)ζ1 + ζT2 X2(t)ζ2

+

N∑

j=t+1

(Tr(W1X(j)) + Tr(W2X2(j))) ,(10)

for some matrices S(t), X1(t), and X2(t) to be specified.
Inductively assume that J(x̂, ζ1, ζ2, t + 1) has the form

given in Equation (10). Then E[J(x̂, ζ1, ζ2, t)] is given by
the Bellman equation:

E[J(x̂, ζ1, ζ2, t)] =

min
û,ζ1,ζ2

E
[
xTQx+ uTRu+ J(Ax+Bu,w1, w2, t+ 1)

]
.
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Note that J(Ax+Bu,w1, w2, t+ 1) can be expanded as

J(Ax+Bu,w1, w2, t+ 1) =

(Ax+Bu)TS(t+ 1)(Ax+Bu) (11)
+wT1 X1(t+ 1)w1 + wT2 X2(t+ 1)w2

+

N∑

j=t+2

(Tr(W1X1(j)) + Tr(W2X2(j))).

The expected value of the third and fourth lines of Equa-
tion (11) can be grouped as

N∑

j=t+1

(Tr(W1X1(j)) + Tr(W2X2(j))).

The independence of the terms in Equations (4) and (8)
implies that the expected value of the first term on the
right-hand side of Equation (11) can be expanded further
as follows:

E[(Ax+Bu)TS(t+ 1)(Ax+Bu)] =

E[(Ax̂+Bû)TS(t+ 1)(Ax̂+Bû)] (12)

+E
[
(A1ζ1 +B1ϕ1)

T
S(t+ 1) (A1ζ1 +B1ϕ1)

]

+E
[
(A2ζ2 +B2ϕ2)

T
S(t+ 1) (A2ζ2 +B2ϕ2)

]
.

Here A1, A2, B1, and B2 are the block columns defined in
Equation (7). Note that in the expansion, independent cross
terms are set to zero.

Combining Equations (9), (11), and (12) shows that the
right-hand side of the Bellman equation can be decomposed
into three independent minimizations, plus a constant term:

min
û,ζ1,ζ2

E
[
xTQx+ uTRu+ J(Ax+Bu,w1, w2, t+ 1)

]
=

min
û

E [Ψ(x̂, û)] + min
ϕ1

E [Θ1(ζ1, ϕ1)] + min
ϕ2

E [Θ2(ζ2, ϕ2)]

+

N∑

j=t+1

(Tr(W1X1(j)) + Tr(W2X2(j))),

with functions given by

Ψ(x̂, û) = x̂TQx̂+ ûTRû+

(Ax̂+Bû)TS(t+ 1)(Ax̂+Bû)

Θ1(ζ1, ϕ1) = ζT1 Q11ζ1 + ϕT1 R11ϕ1 +

(A1ζ1 +B1ϕ1)TS(t+ 1)(A1ζ1 +B1ϕ1)

Θ2(ζ2, ϕ2) = ζT2 Q22ζ2 + ϕT2 R22ϕ2 +

(A2ζ2 +B2ϕ2)TS(t+ 1)(A2ζ2 +B2ϕ2).

Quadratic minimization shows that the optimal inputs are
given by

û(t) = −K(t)x̂(t)

ϕ1(t) = −H1(t)ζ1(t)

ϕ2(t) = −H2(t)ζ2(t),

where the gains are given by

K(t) = (R+BTS(t+ 1)B)−1BTS(t+ 1)A

H1(t) = (R11 +BT1 S(t+ 1)B1)−1BT1 S(t+ 1)A1

H2(t) = (R22 +BT2 S(t+ 1)B2)−1BT2 S(t+ 1)A2.

Finally, the matrices S(t), X1(t), and X2(t) are computed
recursively as follows:

S(t) = Q+ATS(t+ 1)A

−ATS(t+ 1)B(R+BTS(t+ 1)B)−1BTS(t+ 1)A

X1(t) = Q11 +AT1 S(t+ 1)A1

−AT1 S(t+ 1)B1(R11 +BT1 S(t+ 1)B1)−1BT1 S(t+ 1)A1

X2(t) = Q22 +AT2 S(t+ 1)A2

−AT2 S(t+ 1)B2(R22 +BT2 S(t+ 1)B2)−1BT2 S(t+ 1)A2.

By construction, J(x̂, ζ1, ζ2, t) satisfies the Bellman equa-
tion for all t ≤ N . Thus, since E[J(x̂, ζ1, ζ2, N)] is the
optimal expected cost-to-go at time N , it follows inductively
that E[J(x̂, ζ1, ζt, t)] is the optimal expected cost-to-go for
all t ≤ N , and the optimal control has been found. Noting
that x(0) = 0, the optimal expected cost is given by

N∑

t=1

(Tr(W1X1(t)) + Tr(W2X2(t))) . (13)

C. Two-Player Problem: Steady State

To derive the steady state regulator from the finite-horizon
regulator, assume that as N approaches ∞, S(t) approaches
the stabilizing solution of the corresponding algebraic Riccati
equation. Then K(t), H1(t), H2(t), X1(t), and X2(t) will
approach the values of K, H1, H2, X1, and X2 specified by
the theorem and the derivation of the controller is complete.

To compute the steady state cost, note that the average
cost approaches the steady state cost as N →∞:

lim
t→∞

E
[
x(t)TQx(t) + u(t)TRu(t)

]
=

limN→∞
1
N

∑N
t=1 (Tr(W1X1(t)) + Tr(W2X2(t))) ,

where the optimal finite-horizon cost has been taken from
Equation (13). Furthermore, since X1(t) → X1 and
X2(t)→ X2, Equation (6) follows.

IV. THREE-PLAYER CHAIN

This section studies the three-player chain. While the
problem description is not much more complex than that of
the two-player problem, the controller structure is noticeably
more involved. The ideas presented in this section generalize
naturally to other delay structures [13], but the generalization
is outside the scope of this paper.

This section is organized as follows. Subsection IV-A
describes how to decompose the state and input into indepen-
dent components. Next, Subsection IV-B presents the optimal
controller. Finally, Subsection IV-C sketches a derivation of
the controller.

Notation. For a matrix partitioned into blocks

M =



M11 M12 M13

M21 M22 M23

M31 M32 M33
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{1} {2} {3}

{1, 2, 3}

w1(t − 1) w2(t − 1) w3(t − 1)

w3(t − 2)

{1, 2}
w1(t − 2)




x1(0 : t − 2)
x2(0 : t − 1)
x3(0 : t − 2)


 {2, 3}

Fig. 3. Information Hierarchy Graph. The nodes correspond to subsets of
{1, 2, 3} and are labeled information vectors. If a node v ⊂ {1, 2, 3} is
labeled by a vector Lv(t), then Lv(t) is available to player i if i ∈ v and
not available to player i if i /∈ v.

and s, v ⊂ {1, 2, 3}, let Ms,v = (Mi,j)i∈s,j∈v . For instance

M{1,2,3},{1,2} =



M11 M12

M21 M22

M31 M32


 .

A. Information Decomposition

This subsection describes how to decouple the state and
input into independent random variables, similar to what
was done for the two-player problem. First, the information
available to the various players is decomposed. Next the state
and input are decomposed as functions as of the independent
information components.

The information available to the players is decomposed ac-
cording to a labeled graph, called the information hierarchy
graph, I = (V ,E ) (Figure 3). The nodes,

V = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}},

correspond to sets of players, or alternatively sets of nodes in
the delay graph (Figure 2). Each node v is labeled by a vector
Lv(t) which corresponds to information available only to the
players in the set v. For instance, at time t, players 1 and
2 share w1(t− 2) but it is unavailable to player 3, and thus
L{1,2}(t) = w1(t−2). Likewise, node {1, 2, 3} is labeled by
the common information (x1(0 : t− 2), x2(0 : t− 1), x3(0 :
t−2)). Note that the labels, Lv(t) are pairwise independent.
There is an edge (v, s) if and only if s is the set of nodes
of the delay graph reachable from v within one step. Thus
if (v, s) ∈ E , then v ⊂ s and so the edges induce a partial
order on the nodes.

Lemma 2: The state and optimal input can be decom-
posed as

x(t) =



ζ{1}(t)
ζ{2}(t)
ζ{3}(t)


+

[
ζ{1,2}(t)

0

]
+

[
0

ζ{2,3}(t)

]
+ ζ{1,2,3}(t),

(14)

u(t) =



ϕ{1}(t)
ϕ{2}(t)
ϕ{3}(t)


+

[
ϕ{1,2}(t)

0

]
+

[
0

ϕ{2,3}(t)

]
+ϕ{1,2,3}(t),

(15)

where ϕv(t) and ζv(t) are linear functions of the label
Lv(t). Furthermore, the ζv(t) terms are computed by the
following dynamic equations:

ζ{i}(t+ 1) = wi(t), i = 1, 2, 3 (16)

ζ{1,2}(t+ 1) = A{1,2},{1}ζ{1}(t) +B{1,2},{1}ϕ{1}(t)

ζ{2,3}(t+ 1) = A{2,3},{3}ζ{3}(t) +B{2,3},{3}ϕ{3}(t)

ζ{1,2,3}(t+ 1) = (17)

A{1,2,3},{1,2,3}ζ{1,2,3} +B{1,2,3},{1,2,3}ϕ{1,2,3} +

A{1,2,3},{1,2}ζ{1,2} +B{1,2,3},{1,2}ϕ{1,2} +

A{1,2,3},{2,3}ζ{2,3} +B{1,2,3},{2,3}ϕ{2,3}

with initial conditions ζv(0) = 0.

Lemma 2 can be proved by noting that the input can be
assumed to be linear and inductively applying Equations (16)
and (17). Note that the partial order induced by E can be
applied to the input decomposition to distinguish between
“high-level” and “low-level” inputs. Furthermore, note that
ζs(t + 1) depends on ζv(t) if and only if (v, s) ∈ E . Thus
Equations (16) and (17) can be viewed as specifying how
information “travels up the information hierarchy graph”.

B. Three-Player Chain: Optimal Solution

This section gives the optimal solution for the three-player
chain. The controller is structurally similar to the controller
for the two-player problem.

Theorem 2: There are matrices Kv and Xv such that the
optimal control has the form of Equation (15) with

ϕv(t) = −Kvζv(t),

and the optimal cost is given by

Tr(W1X{1}) + Tr(W2X{2}) + Tr(W3X{3}).

The gains are computed as

Kv =
(
Rv,v +Bs,vTXsB

s,v
)−1

Bs,vTXsA
s,v, (18)

where s is the unique node such that (v, s) is an edge in the
information hierarchy graph, I .

The matrices Xv are computed as follows. Let X{1,2,3}
be the stabilizing solution to the algebraic Riccati equation

S = Q+ATSA−ATSB(R+BTSB)−1BTSA.

Then assuming that Xs is defined and (v, s) is an edge,
define Xv by

Xv = Qv,v +As,vTXsA
s,v− (19)

As,vTXsB
s,v
(
Rv,v +Bs,vTXsB

s,v
)−1

Bs,vTXsA
s,v.

Note that the gain corresponding to node {1, 2, 3} is
exactly the standard LQR gain. The other gains are found by
propagating the solution to the LQR Riccati equation through
the information hierarchy graph, based on the equations for
Xv .

6905



Remark 2: In terms of a management hierarchy, ϕ{1,2,3}
could be thought of as the command sent by the “boss,”
based on delayed global information. Next ϕ{1,2} and ϕ{2,3}
correspond to modifications made by “middle managers” at
nodes {1, 2} and {2, 3}. Finally ϕ{1}, ϕ{2}, and ϕ{3} are the
corrections made at the site of the physical activity, based
on the most recent local information.

C. Three-Player Chain: Controller Derivation

This subsection sketches a derivation of the optimal con-
troller. A more complete derivation based on the limits of
an associated finite-horizon problem is possible, but omitted
for space reasons.

Lemma 2 shows that the cost function can be decomposed
as

E
[
x(t)TQx(t) + u(t)TRu(t)

]
= (20)∑

v∈V

E
[
ζv(t)

TQv,vζv(t) + ϕv(t)
TRv,vϕv(t)

]
.

Using the decomposition of the state and input into ζv and
ϕv , respectively, a function J and a constant c will be found
satisfying the steady-state Bellman equation:

E[J(ζ)] + c = (21)

min
ϕ

E

[∑

v∈V

(
ζTv Q

v,vζv + ϕTv R
v,vϕv

)
+ J(ζ ′)

]
,

where ζ ′ corresponds to the updated variables. Note that c
will specify the optimal steady-state cost.

The function J is proposed to have the form

J(ζ) =
∑

v∈V

ζTv Xvζv,

where Xv are the matrices defined above.
Applying Equations (16) and (17) and dropping indepen-

dent cross terms shows that

E[J(ζ ′)] =
3∑

i=1

Tr(WiX{i})+ (22)

∑

v∈V

E
[
(As,vζv +Bs,vϕv)

TXs(A
s,vζv +Bs,vϕv)

]
,

where s is the unique node such that (v, s) is an edge in I .
Combining Equations (21) and (22) shows that the right-

hand side of the Bellman equation decomposes into indepen-
dent minimizations plus a constant term:

min
ϕ

E

[∑

v∈V

(
ζTv Q

v,vζv + ϕTv R
v,vϕv

)
+ J(ζ ′)

]
=

∑

v∈V

min
ϕv

E [Θv(ζv, ϕv)] +

3∑

i=1

Tr(WiX{i}),

with functions given by

Θv(ζv, ϕv) = ζTv Q
v,vζv + ϕTv R

v,vϕv+

(As,vζv +Bs,vϕv)
TXs(A

s,vζv +Bs,vϕv).

Standard quadratic minimization arguments show that
E[Θv(ζv, ϕv)] is minimized by ϕv = −Kvζv , where Kv

is computed from Equation (18). Plugging in the optimal
inputs and applying Equation (19) shows that the Bellman
equation is satisfied with c =

∑3
i=1 Tr(WiX{i}).

V. CONCLUSION

This paper presents Riccati-based solutions to two dis-
tributed control problems with communication delays.
The controllers can be interpreted as simple management
schemes. In these schemes, a top level “boss” generates an
input, based on delayed global information. The input is
modified using newer, more localized information as it gets
passed down the chain of command.

Future work will fall into two main categories. First,
output feedback will be studied. Next, links between the
hierarchy resulting from the optimization process and control
structures from biology and social sciences will be studied
in greater depth.
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