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Abstract— Classical gradient based adaptive laws in model
reference adaptive control for uncertain nonlinear dynamical
systems with a Radial Basis Function (RBF) neural networks
adaptive element do not guarantee that the network weights
stay bounded in a compact neighborhood of the ideal weights
without Persistently Exciting (PE) system signals or a-priori
known bounds on ideal weights. Recent work has shown,
however, that an adaptive controller using specifically recorded
data concurrently with instantaneous data can guarantee such
boundedness without requiring PE signals. However, in this
work, the assumption has been that the RBF network centers
are fixed, which requires some domain knowledge of the
uncertainty. We employ a Reproducing Kernel Hilbert Space
theory motivated online algorithm for updating the RBF centers
to remove this assumption. Along with showing the boundedness
of the resulting neuro-adaptive controller, a connection is also
made between PE signals and kernel methods. Simulation
results show improved performance.

I. INTRODUCTION

Model Reference Adaptive Control (MRAC) has been

widely studied for broad classes of uncertain nonlinear

dynamical systems with significant modeling uncertainties

(see [1, 8, 16, 22] and the references therein). In MRAC,

the system uncertainty is approximated using a weighted

combination of basis functions, with the numerical values

of the weights adapted online to minimize the tracking

error. When the structure of the uncertainty is unknown,

a neuro-adaptive approach is often employed, in which a

Neural Network (NN), with its weights adapted online, is

used to capture the uncertainty. A popular example of such

NN is the Radial Basis Function (RBF) NN for which the

universal approximation property is known to hold [18].

Classical MRAC methods however, do not guarantee that the

weights of the NN approach and stay bounded around their

ideal values without requiring a condition on Persistency of

Excitation (PE) in the system states [2]. These conditions

are overly restrictive and often infeasible to implement

or monitor online. Hence, authors have introduced various

modifications to the adaptive law to ensure that the weights

stay bounded around an a-priori determined value (usually

set to 0). Examples of these include Ioannou’s σ-mod [9],

Narendra’s e-mod, and the use of a projection operator to

bound the weights [22]. However, recent work in concurrent
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learning [5] has shown that if carefully selected and recorded

data is used concurrently with current data for adaptation,

then the stored information can be used to guarantee that the

weights remain bounded within a compact neighborhood of

the ideal weights, without requiring PE [6].

In order to approximate the uncertainty, a set of RBF

centers must be chosen over the domain of the uncertainty. In

previous work in neuro-adaptive control, it is either assumed

that the centers for the RBF network are fixed [6, 20, 23],

or that the centers are moved to minimize the tracking

error e [14]. In both these cases, the system designer needs

some domain knowledge about the uncertainty to determine

how the centers should be selected. In this work, we use

methods from the theory of Reproducing Kernel Hilbert

Spaces (RKHSs) to remove this assumption. The algorithm

we propose, called Budgeted Kernel Restructuring (BKR) is

motivated by a connection between PE signals and RKHSs.

If it is augmented with previous work in concurrent learning,

the resulting algorithm (BKR-CL) selects the most appropri-

ate set of centers during operation to allow us to control the

system effectively even if all the RBF centers are initialized

to the same value in the state space (for example 0 ∈ R
n). In

addition to removing the assumption on fixed RBF centers,

we also show that given a fixed budget (maximum number

of allowable centers), the presented method outperforms

existing methods that uniformly distribute the centers over

an expected domain.

The organization of this paper is as follows; in Section II,

we outline some preliminaries, including the definition of PE

and the relevant ideas from RKHS theory. Section III poses

the MRAC problem for nonlinear systems, along with the

concurrent learning method. Section IV shows a connection

between PE and RKHS theory, and outlines a kernel linear

independence method for selecting the centers that utilizes

this connection. Section V establishes the boundedness of

the weights for the centers using Lyapunov analysis. Section

VI presents the results of an exemplary simulation study.

Section VII concludes the paper.

II. PRELIMINARIES

Partly due to the success of Support Vector Machines,

there has been great interest in recent years in kernel

methods, a class of algorithms that exploit the properties

of Reproducing Kernel Hilbert Spaces [3]. A kernel function

on R
n is any continuous, symmetric positive-semidefinite

function of the form k : Rn × R
n → R. Mercer’s Theorem

implies that there exists some Hilbert space H (of functions)
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and a mapping ψ : Rn → H s.t.

k(x, y) = 〈ψ(x), ψ(y)〉H, (1)

where 〈·, ·〉H is an inner product on H. For a given kernel

function, the mapping ψ(x) ∈ H does not have to be unique,

and is often unknown. However, since ψ is implicit, it does

not need to be known for most machine learning algorithms,

which exploit the nonlinearity of the mapping to create

nonlinear algorithms from linear ones [7]. For the purpose of

this paper, it is sufficient to note that the Gaussian function

used in RBF networks is an example of a bounded kernel

function, which generates an infinite dimensional RKHS H
(see for example [19]). In this work, the Gaussian function

is used in the RBF network. Given a point x ∈ R
n, the

mapping ψ(x) → H can be thought of as a point in the

Hilbert space H; however, in R
n, it is a Gaussian function

centered at x, and is thus given by kx(y) = e(−‖x−y‖2/2µ2),

where µ is the bandwidth. An alternative description is

k(x, ·) = 〈ψ(x), ψ(·)〉H, to emphasize that the function is

an inner product in H.

Fixing a dataset C = {c1, . . . , cn}, where ci ∈ R
n, we

define by

FC :=

{

n
∑

i=1

αik(ci, ·) : αi ∈ R

}

(2)

the linear subspace generated by C in H. Note that this

is in fact a class of functions, and that any RBF network

with a fixed bandwidth can be defined as an element in this

subspace. To see this, let σ(x) = [k(x, c1) . . . , k(x, cn)]
T ,

and let W = [w1, . . . , wn] where wi ∈ R. Then WTσ(x)
is the output of a standard RBF network. In the machine

learning literature, σ(x) is sometimes known as the empirical

kernel map. Two different datasets C1 and C2 generate

two different families of functions FC1
and FC2

, and two

different empirical kernel maps σC1
(x) and σC2

(x).
In this work we will use Tao’s definition of a PE signal

[22]:

Definition 1 A bounded vector signal x(t) is persistently

exciting if for all t > t0 there exists T > 0 and γ > 0 such

that
∫ t+T

t

Φ(τ)ΦT (τ)dτ ≥ γI. (3)

III. MODEL REFERENCE ADAPTIVE CONTROL AND

CONCURRENT LEARNING

This section outlines the formulation of Model Reference

Adaptive Control using approximate model inversion [5, 10,

12–14]. Let Dx ∈ R
n be compact, let x(t) ∈ Dx be the

known state vector, let δ ∈ R
k denote the control input, and

consider the following dynamical system:

ẋ = f(x(t), δ(t)), (4)

where the function f is assumed to be continuously dif-

ferentiable in x ∈ Dx, and control input δ is assumed to

be bounded and piecewise continuous. The conditions for

the existence and the uniqueness of the solution to (4) are

assumed to be met. Since the exact model (4) is usually not

available or not invertible, an approximate inversion model

f̂(x, δ) is introduced which can be used to determine the

control input δ:

δ = f̂−1(x, ν), (5)

where ν is the pseudo control input, which represents the

desired model output ẋ and is expected to be approximately

achieved by δ. Hence, the pseudo control input is the output

of the approximate inversion model:

ν = f̂(x, δ). (6)

This approximation results in a model error of the form:

ẋ = ν(x, δ) + ∆(x, δ) (7)

where the model error ∆ : Rn+k → R
n is given by:

∆(x, δ) = f(x, δ)− f̂(x, δ). (8)

A reference model can be chosen to characterizes the desired

response of the system:

ẋrm(t) = frm(xrm(t), r(t)), (9)

where frm(xrm(t), r(t)) denotes the reference model dy-

namics which are assumed to be continuously differentiable

in x for all x ∈ Dx ⊂ R
n. The command r(t) is assumed

to be bounded and piecewise continuous. Furthermore, it is

assumed that all requirements for guaranteeing the existence

of a unique solution to (9) are satisfied. It is also assumed

that the reference model states remain bounded for a bounded

reference input.

A tracking control law consisting of a linear feedback part

upd = Kx, a linear feedforward part ucrm = ẋrm, and an

adaptive part uad(x) can be chosen to have the following

form [4, 6, 11]:

u = ucrm + upd − uad. (10)

Define the tracking error e as e(t) = xrm(t)− x(t), then,

letting A = −K the tracking error dynamics are found to

be:

ė = Ae+ [uad(x, δ)−∆(x, δ)]. (11)

The baseline full state feedback controller upd = Kx is

assumed to be designed such that A is a Hurwitz matrix.

Hence for any positive definite matrix Q ∈ R
n×n , a positive

definite solution P ∈ R
n×n exists to the Lyapunov equation:

ATP + PA+Q = 0. (12)

Let x̄ = [x, δ] ∈ R
n+k. Generally, two cases for charac-

terizing the uncertainty ∆(x̄) are considered. In structured

uncertainty, the mapping Φ(x̄) is known, whereas in unstruc-

tured uncertainty, it is unknown. We focus on the latter in

this paper.

Assume that it is only known that the uncertainty ∆(x̄) is

continuous and defined over a compact domain D ⊂ R
n+k.

A Radial Basis Function (RBF) Neural Network (NN) can

1797



be used as the adaptive element. In this case the adaptive

element takes the following form

uad(x̄) =WTσ(x̄). (13)

where W ∈ R
n×l and σ(x̄) = [1, σ2(x̄), σ3(x̄), ....., σl(x̄)]

T

is a vector of known radial basis functions. For i = 2, 3..., l
let ci denote the RBF centroid and µi denote the RBF width.

Then for each i, the radial basis functions are given as

σi(x) = e−‖x̄−ci‖
2/2µ2

, (14)

which can also be written as k(ci, ·) according to the notation

introduced earlier in the paper. Appealing to the universal

approximation property of RBF NN [18, 21], we have that

given a fixed number of radial basis functions l there exists

ideal weights W ∗ ∈ R
n×l and a real number ǫ̃(x̄) such that

the following approximation holds for all x ∈ D where D
is compact:

∆(x) =W ∗Tσ(x̄) + ǫ̃(x̄), (15)

and ǭ = supx̄∈D ‖ǫ̃(x̄)‖ can be made arbitrarily small when

a sufficient number of radial basis functions are used.

A commonly used update law, which will be referred to

as the baseline adaptive law, is given as [1, 16, 22]

˙̂
W = −ΓWσ(x̄)eTPB, (16)

which only guarantees that the weights approach their ideal

values (W ∗) if and only if the signal σ(x̄) is PE. In absence

of PE, without additional modifications such as σ mod[8],

e mod[15], or without projection based adaptation [22], this

adaptive law does not guarantee that the weights W remain

bounded.

The work in [5] shows that if specifically selected recorded

data is used concurrently with instantaneous measurements,

then the weights approach and stay bounded in a compact

neighborhood of the ideal weights subject to a sufficient

condition on the linear independence of the recorded data;

PE is not needed. This is captured in the following theorem:

Theorem 1 Consider the system in (4), the control law of

(10), x̄(0) ∈ D where D is compact, and the case of unstruc-

tured uncertainty. For the jth recorded data point let ǫj(t) =
WT (t)σ(x̄j)−∆(x̄j). Also, let p be the number of recorded

data points σ(x̄j) in the matrix Z = [σ(x̄1), ...., σ(x̄p)], such

that rank(Z) = l. Then, the following weight update law

Ẇ = −ΓWσ(x̄)eTPB − ΓW

p
∑

j=1

σ(x̄j)ǫ
T
j , (17)

renders the tracking error e and the RBF NN weight errors

W̃ uniformly ultimately bounded. Furthermore, the adaptive

weights W (t) will approach and remain bounded in a

compact neighborhood of the ideal weights W ∗.

IV. THE KERNEL LINEAR INDEPENDENCE METHOD

A. PE Signals and the RKHS

We consider a general system

ẋ(t) = f(x) (18)

In this section, we leverage RKHS theory to relate PE of x(t)
to PE of σ(x(t)). To make a connection to kernel methods,

let G = σ(x(t))σ(x(t))T . Then

G =







k(x, c1)
...

k(x, cn)







(

k(x, c1) · · · k(x, cn)
)

=







〈ψx,c1〉〈ψx,c1〉 · · · 〈ψx,c1〉〈ψx,cn〉
...

. . .
...

〈ψx,cn〉〈ψx,c1〉 · · · 〈ψx,cn〉〈ψx,cn〉







where 〈ψx,ci〉 is shorthand for 〈ψ(x), ψ(ci)〉. A matrix G is

positive definite if and only if vTGv > 0 ∀v ∈ R
n. In the

above, this translates to

vTGv =

n
∑

i,j=1

vivjGi,j

=

n
∑

i,j=1

vivj〈ψ(x), ψ(ci)〉〈ψ(x), ψ(cj)〉

=

〈

ψ(x),
n
∑

i=1

viψ(ci)

〉2

.

From basic results on the Gaussian kernel, it is known that

if ci 6= cj , then ψ(ci) and ψ(cj) are linearly independent in

H. Further, if the trajectory x(t) ∈ R
n is bounded for all

time, then k(x(t), c) 6= 0. From this, it follows trivially that

the signal
∫ t+T

t
G(τ)dτ is bounded. Further, the next two

theorems follow immediately.

Theorem 2 Suppose x(t) evolves in the state space accord-

ing to Equation (18). Then if there exists some time tf ∈ R+

s.t. the mapping ψ(x(t)) → H for t > tf is orthogonal to

the linear subspace FC ⊂ H for all time, the signal σ(x(t))
is not persistently exciting.

Theorem 3 Suppose x(t) evolves in the state space accord-

ing to Equation (18). If there exists some state xf ∈ R
n

and some tf ∈ R+ s.t. x(t) = xf ∀t > tf , σ(x(t)) is not

persistently exciting.

Thus PE of σ(x(t)) follows only if neither of the above

conditions are met. Figure 1 shows an example of the

mapping ψ in H. Figure 2 depicts a geometric description

of a non PE signal in the Hilbert space. This implies that

ψ(x(t)) starts becoming orthogonal to the centers C =
{c1, . . . , cn} in H if x(t) is extremely far away from them

in R
n. Therefore, even though orthogonality is desired in the

state space R
n for guaranteeing PE, orthogonality in H is

detrimental to PE of σ(x(t)).
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move in the same direction together. Furthermore, from the

above analysis, it is clear that the amount of excitation is

maximized when the centers are previous states themselves.

Summarizing, the following are the advantages of picking

centers online with the linear independence test (21):

1) In light of Theorem 2, Algorithm 1 ensures inserted

excitation in the system does not disappear by selecting

centers that ensure FC is not orthogonal to current

states. In less formal terms, it ensures that at least some

centers are “sufficiently” close to the current state.

2) Algorithm 1 enables the design of adaptive controllers

without any prior knowledge of the domain. For ex-

ample, this method would allow one to initialize all

centers to zero, with appropriate centers then selected

by Algorithm 1 online.

3) On a budget, selecting centers with Algorithm 1 is

better than evenly spacing centers, since the centers are

selected along the path of the system in the state space.

This results in a somewhat optimal distribution of

centers without any prior knowledge of the uncertainty.

If the centers for the system are picked using the kernel

linear independence test, and the weight update law is given

by the standard baseline law (16), we call the resulting

algorithm Budgeted Kernel Restructuring (BKR). If BKR

is augmented with a concurrent learning update law, the

resulting algorithm is denoted by BKR-CL.

V. LYAPUNOV ANALYSIS

In this section, we prove the boundedness of the closed

loop signals when using BKR-CL. Note that Algorithm 1

picks the centers discretely; therefore, there always exists an

interval [tk, tk+1] where k ∈ N where the centers are fixed.

The discrete update of the centers introduces switching in

the closed loop system. Let σk(x) denote the value of σ
given by this particular set of centers, and denote by W k∗

the

ideal set of weights for these centers and by σk(x̄) the radial

basis function for these centers. Then, over each interval, the

tracking error dynamics are given by the following switching

system

ė = Ae+ [WTσk(x̄)−∆(x̄)]. (22)

The NN approximation error of (15) for the kth system can

be rewritten as

∆(x̄) =W k∗
T

σk(x̄) + ǫ̃k(x̄), (23)

with ǭk = supx̄∈D ‖ǫ̃k(x̄)‖. Now, we prove the following

equivalent of Theorem 1 for the following switching weight

update law

Ẇ = −ΓWσk(x̄)eTPB − ΓW

p
∑

j=1

σk(x̄j)ǫ
kT

j . (24)

Theorem 4 Consider the system in (4), the control law of

(10), x̄(0) ∈ D where D is compact, and the case of

unstructured uncertainty. For the jth recorded data point

let ǫkj (t) = WT (t)σk(x̄j) − ∆(x̄j), let p be the number

of recorded data points σk
j := σk(x̄j) in the matrix Z =

[σk
1 , ...., σ

k
p ], such that rank(Z) = l, and assume that the

RBF centers are updated using Algorithm 1. Then, the weight

update law in (24) ensures that the tracking error e of (22)

and the RBF NN weight errors W̃ k of (23) are bounded.

Proof: Consider the tracking error dynamics given by

(22) and the update law of (24). Note that since νad =
WT (σk(x)), so ǫj = WTσk(x̄) − ∆(x̄). The NN approxi-

mation error is now given by (23). With W̃ k = W −W k∗

,

this implies that

ǫkj (x) = W̃ kσk(x)− ǫ̃k(x).

Therefore over [tk, tk+1], the weight dynamics are given by

the following switching system

˙̃W k(t) = −Γ









p
∑

j=1

σk(x̄j)σ
kT

(x̄j)



 W̃ k(t)

+

p
∑

j=1

σk(x̄j)ǫ̃
kT

(zj)− σk(x̄(t))eT (t)PB



 .

(25)

Consider the family of positive definite functions V k =
1
2e

TPe+ 1
2 Tr(W̃

kT

Γ−1
W W̃ k), where Tr(·) denotes the trace

operator. Note that V k ∈ C1, V k(0) = 0 and V k(e, W̃ k) >
0 ∀e, W̃ k 6= 0, and define Ωk :=

∑

j σ
k
j s

kT
j . Then

V̇ k(e, W̃ k) = −1

2
eTQe− Tr



W̃ kT





∑

j

σk
j σ

kT
j W̃ k

+ eTPBǫ̃−
∑

j

σj ǫ̃
k
j









≤ −1

2
λmin(Q)eT e− λmin(Ω

k)W̃ kT

W̃ k

+ ‖eTPBē‖ − ‖W̃ kT
∑

i

σk
i ǫ̃

k‖

≤ ‖e‖
(

Ck
1 − 1

2
λmin(Q)‖e‖

)

+ ‖W̃ k‖(Ck
2 − λmin(Ω

k)‖W̃ k‖),
where Ck

1 = ‖PB‖ǫ̃k and C2 = pǫ̃k
√
q, (q being the number

of RBFs in the network). Hence if ‖e‖ > 2C1/λmin(Q)
and ‖W̃ k‖ > C3/λmin(Ω

k), we have V̇ (e, W̃ k) < 0,

which means the set Πk = {(e, W̃ k) : ‖e‖ + ‖W̃ k‖ ≤
2C1/λmin(Q)+C2/λmin(Ω

k)} is positively invariant for the

kth system.

Let S = {(t1, 1), (t2, 2), . . . } be an arbitrary switching

sequence with finite switches in finite time (note that this is

always guaranteed due to the discrete nature of Algorithm 1).

The sequence denotes that a system Sk was active between tk
and tk+1. Suppose at time tk+1, the system switches from Sk

to Sk+1. Then e(tk) = e(tk+1) and W̃ k+1 = W̃ k+∆W k∗

,

where ∆W k∗

= W k∗ − W (k+1)∗ . Since V̇ k(e, W̃ k) is

guaranteed to be negative definite outside of a compact

interval, it follows that e(tk) and W̃ k(tk) are guaranteed

to be bounded. Therefore, e(tk+1) and W̃ k+1(tk+1) are

also bounded and since V̇ k+1(e, W̃ k+1) is guaranteed to be

1800



negative definite outside of a compact set e(t) and W̃ k+1(t)
are also bounded. Furthermore, over every interval [tk, tk+1],
they will approach the positively invariant set Πk+1 or stay

bounded within Πk+1 if inside.

VI. SIMULATION RESULTS

In this section we present simulation results of the above

scheme for adaptive control of a nonlinear system. Let θ
denote the angular position and δ denote the control input;

then the unstable dynamics under consideration are given by

θ̈ = δ + sin(θ)− |θ̇|θ̇ + 0.5eθθ̇. (26)

A second order reference model with natural frequency

and damping ratio of 1 is used, the linear controller is given

by K = [1.5, 1.3], and the learning rate is set to ΓW =
3.5. The initial conditions are set to x(0) = [θ(0), θ̇(0)] =
[1, 1]. The model uncertainty is given by y =W ∗TΦ(x) with

W ∗ = [−1, 1, 0.5] and Φ(x) = [sin(θ), |θ̇|θ̇, eθθ̇]. A step in

position (θc = 1) is commanded at t = 20 sec.

The comparisons were made between Budgeted Kernel

Restructuring without concurrent learning (BKR), concurrent

learning without BKR (CL) and BKR with concurrent learn-

ing (BKR-CL). In both cases, the number of centers was

chosen to be 35. In BKR, the centers were all initialized to

0 ∈ R
2 at t = 0, while in CL they were spaced evenly across

the domain of uncertainty (where the prior knowledge of

the domain was determined through experiments conducted

beforehand). Figure 3(a) shows the tracking of the reference

model by CL, BKR and BKR-CL. Figure 3(b) shows the

tracking error for the same. As can be seen, BKR-CL is the

most effective scheme. Figure 4 shows an example of how

concurrent learning affects the evolution of weights; it has a

tendency to spread the weights across a broader spectrum of

values, leading the algorithm to choose from a richer class

of functions in FC . This is the reason BKR-CL does better

than BKR alone. Figure 5 shows the final set of centers that

are used; as can be seen, the centers follow the path of the

system in the state space. Figure 6 shows how our scheme is

better at uncertainty tracking than evenly spaced centers on

a budget; Figure 6(a) shows uncertainty tracking with CL,

while Figure 6(b) shows the same with BKR-CL.

VII. CONCLUSION

In this work, we established a connection between ker-

nel methods and Persistently Exciting (PE) signals using

Reproducing Kernel Hilbert Space theory. Particularly, we

showed that in order to ensure PE, not only do the system

states have to PE, but the centers need to be also selected

in such a way that the mapping from the state space to

the underlying RKHS is never orthogonal to the linear

subspace generated by the Radial Basis Function (RBF)

centers. This ensures that the output of the radial basis

function does not vanish. We used this connection to motivate

an algorithm called Budgeted Kernel Restructuring (BKR)

that updates the RBF network in a way that ensures any
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inserted excitation is retained. This enabled us to design

adaptive controllers without assuming any prior knowledge

about the domain of the uncertainty. Furthermore, it was

shown through simulation that on a budget (limitation on the

maximum number of RBFs used), the method is better at cap-

turing the uncertainty than evenly spaced centers, because the

centers are selected along the path of the system through the

state space. We augmented BKR with Concurrent Learning

(CL), a method that concurrently uses specifically recorded

and instantaneous data for adaptation, to create the BKR-CL

adaptive control algorithm. It was shown through Lyapunov-

like analysis that the weights for the centers picked by BKR-

CL are bounded without needing PE, simulations showed

improved tracking performance.
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BKR is clearly more accurate on a budget, mainly due to the centers being
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