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Abstract— This paper deals with observer designs to math-
ematical models of circadian rhythms which exist in every
living organism. Two mathematical models are considered,
with a 3rd order model for Neurospora, and a 7th order
model for Mammals. The observer design is based on systems
with Lipschitz nonlinearities. In particular, observers based on
onesided Lipschitz condition are investigated, and the observers
are then designed for both circadian models. Detailed analysis
is performed for nonlinear functions in the models to show the
one-sided Lipschitz observers can indeed be applied. Several
simulations studies of proposed observers are carried out with
the results shown in this paper.

I. INTRODUCTION

Circadian rhythms exist in most of living species on the

Earth as self-sustained, periodic oscillations, and govern the

daily biological activities of these species. Physiological

functions such as sleep-walk cycle, blood pressure, and heart

rate are examples of circadian rhythms. Robustness to exter-

nal environmental changes is a property of these rhythms.

Circadian rhythms can be disrupted, and this phenomenon is

known as circadian disorders. Lack of treatment of circadian

disorders may lead to negatively impact to daily activities

and health. Jet lag caused by transcontinental flight, and

sleeping disorder caused by irregular sleep patterns are two

well known examples of circadian disorders. Because of

the importance of circadian rhythms to daily life, study

of characteristics of circadian rhythms has attracted the

attention from researchers in many years. Many results have

been presented ([1], [2], [3]). Among those results, the

identification of key genes which contribute to oscillations of

circadian rhythms ([4], [5], [6], [7]), and the development of

circadian models ([8], [9], [10], [11]), are most successfully

achieved results.

With the existence of the circadian models, different areas

of research studies of circadian rhythms have been carried

out, e.g. analyses of amplitude under light constraints [12],

entrainment in light/dark cycle [13], robustness analysis

[14], and sensitivity analysis ([15], [16]). A result has

presented the application of observer to Neurospora model

[17]. In control theory, observers are designed to estimate

the unknown state variables in both linear and nonlinear

systems. Therefore, they are often used for control imple-

mentations when unmeasured state variables are needed, e.g.

[18]. Besides, using observer also helps to reduce number
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of output measurements. Reduction of measurements by

using observers has not been much considered in system

biology, especially to circadian models. This may due to

the complexities of circadian models which are difficult for

nonlinear observer design. It may also due to lack of right

methods for observer designs in the past. Nevertheless, in

recent years, some new methods of observer designs have

been developed such as reduced order observer[19], and one-

sided Lipschitz observer design [20]. An observer is called

one-sided Lipschitz observer if its design is based on systems

with one-sided Lipschitz nonlinearities. Since mathematical

models of Neurospora and mammalian rhythms consist of

nonlinear functions which are one-sided Lipschitz nonlinear-

ities, therefore, in this paper, we propose one-sided Lipschitz

observer to these models. The proposed observer design is

based on new result obtained in [20] for one-sided Lipschitz

observer.

II. CIRCADIAN MODELS

A. Neurospora

A 3rd order model from [8] that describes molecular mech-

anism of circadian rhythms in Neurospora is considered. This

model is based on the negative feedback exerted by FRQ pro-

teins on the expression of frq gene. Its mechanism consists

of the transcription, translation, and inhibition processes.

Transcription of frq gene yields messenger RNA (mRNA),

and the translation of which synthesize FRQ protein. Given

that there are not complexes between FRQ protein and other

proteins, and the FRQ protein is not phosphorylated [8],

the synthesized FRQ proteins are then transferred back into

nucleus where these proteins inhibit the transcription of

frq gene. New transcription of frq gene restarts the cycle.

Dynamics of these variables are governed by the following

set of differential equations:

ẋ1 = vs
Kn

i

Kn
i + xn

3

− vm
x1

KM + x1

ẋ2 = ksx1 − vd
x2

Kd + x2
− k1x2 + k2x3, (1)

ẋ3 = k1x2 − k2x3

where x1 denotes concentration of frq mRNA, x2 denotes

concentration of FRQ protein outside nucleus, and x3 rep-

resents concentration of nucleus FRQ protein. States x1, x2,

and x3 are assumed to be positive values. The parameters

have their values as: vs = 1.6nM.h−1, Ki = 1nM , n=4,

vm = 0.7nM.h−1, KM = 0.4nM , ks = 1h−1, vd =
4nM.h−1, Kd = 1.4nM , k1 = 0.3h−1, k2 = 0.15h−1.
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B. Mammals

Circadian model of mammals is a 7th order model, and

is proposed in [11] to investigate negative and positive

feedback in mammalian circadian oscillator. Similar to Neu-

rospora model, this model describes molecular mechanism

of mammalian circadian rhythms. In mammals, Per2 gene,

Cry gene, and Bmal1 gene have been identified as part

of circadian oscillations. Therefore, oscillatory mechanism

of this model consists of oscillations of PER2, CRY, and

BMAL1 proteins. Clock gene has also been identified as

part of circadian oscillations in mammals. The expression of

Clock gene, CLOCK protein, together with the expression of

Bmal1 gene, BMAL1 protein, are phosphorylated to form

a heterodimer which activates the transcriptions of Per2

and Cry genes [11]. However, since CLOCK protein is

expressed at a constant level [21], only oscillation of BMAL1

protein is considered [11]. Furthermore, the heterodimer

BMAL1/CLOCK which activates the transcriptions of Per2

and Cry genes is now replaced by BMAL1*. BMAL1*

is considered as a phosphorylated form of BMAL1 ([11],

[22]), or as a complex with CLOCK protein ([11], [23]).

The mechanism starts with the activation of BMAL1* to

the transcription of Per2 to produce Per2 mRNA, and

the transcription of Cry genes to produce Cry mRNA.

However, in this mechanism, the expressions of Per2 gene

and Cry gene, which are mRNAs of Per2 and Cry, and

their proteins, are represented by the same variables [11].

Dynamics of involved mRNAs and proteins are described

by the following set of differential equations:

ẋ1 =
v1b(x7 + c)

k1b(1 + ( x3

k1i
)p) + x7 + c

− k1dx1

ẋ2 = k2bx
q
1 − (k2d + k2t)x2 + k3tx3

ẋ3 = k2tx2 − (k3t + k3d)x3

ẋ4 =
v4bx

r
3

kr4b + xr
3

− k4dx4, (2)

ẋ5 = k5bx4 − (k5d + k5t)x5 + k6tx6

ẋ6 = k5tx5 − (k6t + k6d − k6a)x6 + k7ax7

ẋ7 = k6ax6 − (k7 + k7d)x7

where x1, x2, and x3 represent concentrations of Per2/Cry
mRNA, PER2/CRY complex protein in cytoplasm, and

PER2/CRY complex in nucleus respectively. x4 denotes

concentration of Bmal1 mRNA. x5 denotes concentration

of BMAL1 protein in cyptoplasm, and x6 represents nuclear

BMAL1 protein. State x7 represents the concentration of

BMAL1*. All of state variables are assumed to be positive

values. Values of parameters are given in [11] with: v1b =
9nM.h−1, k1b = 1nM , k1i = 0.56nM , c = 0.01nM ,

p = 8, k1d = 0.12h−1, k2b = 0.3nM−1.h−1, q = 2, k2d =
0.05h−1, k2t = 0.24h−1, k3t = 0.02h−1, k3d = 0.12h−1,

v4b = 3.6nM.h−1, k4b = 2.16nM , r = 3, k4d = 0.75h−1,

k5b = 0.24h−1, k5d = 0.06h−1, k5t = 0.45h−1, k6t =
0.06h−1, k6d = 0.12h−1, k6a = 0.09h−1, k7a = 0.003h−1,

k7d = 0.09h−1.

III. OBSERVER

Consider the class of nonlinear system which is described

by:

ẋ = Ax+ ϕ(x, u),
y = Cx

(3)

where x ∈ R
n, u ∈ R

p, A ∈ R
n×n, C ∈ R

m×n, y ∈ R
m,

and ϕ(x, u) ∈ R
n × R

m → R
n are nonlinear functions. If

ϕ(x, u) satisfies Lipschitz condition described by

‖ϕ(x, u)− ϕ(x̂, u)‖ ≤ γ ‖x− x̂‖ , ∀x, x̂ ∈ R
n, (4)

where γ is Lipschitz constant, ϕ(x, u) is called Lipschitz

nonlinearity. Another condition is called one-sided Lipschitz

condition which is described by

< f(x, u)−f(x̂, u), x−x̂ >≤ υp ‖x− x̂‖ , ∀x, x̂ ∈ R
n, (5)

where υp, which may be negative value, is one-sided Lips-

chitz constant. In addition, f(x, u) = Pϕ(x, u), where P is

positive definite matrix, and < ., . > is an Euclidean product

on R
n. If ϕ(x, u) satisfies (5), ϕ(x, u) is called one-sided

Lipschitz nonlinearity.

For nonlinear system (3), observer design has its form

described by:

˙̂x = Ax̂+ ϕ(x̂, u) + L(y − Cx̂), (6)

where L is observer gain with L ∈ R
n×m. If ϕ(x, u) satisfies

(5), observer design is given in [24]:

Lemma 1: If a gain L is chosen such that (A − LC) is

stable and the following inequality

(A− LC)TP + P (A− LC) + 2υpI < 0 (7)

is satisfied, where P is a positive definite matrix, and υp
is one-sided Lipschitz constant of f(x, u) = Pϕ(x, u)
such that (5) holds, the observer (6) yields asymptotically

convergence estimate for system (3).

However, condition for existence of observer gain L such

that (7) admits a positive definite matrix solution P , and

how to obtain value of this gain L are not shown in [24].

This problem is solved by new result of one-sided Lipschitz

observer design in [20]. This new observer design is given

through a theorem and a corollary:

Theorem 1: For a nonlinear system (3) which satisfies

one-sided Lipschitz condition (5), a gain matrix L can be

chosen such that the inequality (8) has a positive definite

matrix if and only if there exists a positive constant σ such

that P satisfies the following condition
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ATP + PA− σCTC + 2υpI < 0, (8)

where υp is one-sided Lipschitz constant of Pϕ(x, u) with

respect to x.

Corollary 1: Consider nonlinear system (3) with condi-

tion (5). If there exists a positive value σ such that the

following condition

ATP + PA− σCTC + 2υpI < 0 (9)

is satisfied, where P is a positive definite matrix, and υp
is one-sided Lipschitz constant. The observer (6) having

L = σ
2P

−1CT as observer gain yields asymptotically con-

vergence estimate for system (3).

Given that ϕ(x, u) are Lipschitz nonlinearities, according

to [20], instead of (9), linear matrix inequality (LMI) is

modified with the form described by

ATP + PA− σCTC + 2n
n∑

i=1

γiλiI < 0, (10)

where γi indicates Lipschitz constants for each of Lipschitz

nonlinear functions, n denotes number of state variables of

the system, and λi are small positive real constants. Values

of λi can be chosen such that n
∑n

i=1 γiλi < (
∑n

i=1 γ
2
i )

1

2 .

IV. MAIN RESULTS

A. Preliminary

Simulation studies have been performed in MATLAB,

and they are carried out with x(0)=
[
1 1 1

]
for Neu-

rospora model, and x(0)=
[
1 1 1 1 1 1 1

]
for

mammalian model.

Lipschitz constants can be computed by using (4) or (5).

Another useful tool for finding Lipschitz constants is mean

value theorem. This theorem is described by

|f ′(ζ)| =

∣∣∣∣
f(x)− f(x̂)

x− x̂

∣∣∣∣ , (11)

where ζ ∈ [x, x̂]. Value of Lipschitz constant is equivalent

to maximum value of function f ′(ζ).

Basing on (3), (1) has nonlinear functions ϕ(x, u) as

ϕ1a(x1) = −vm
x1

KM + x1

ϕ1b(x3) = vs
Kn

i

Kn
i + xn

3

,

ϕ2(x2) = −vd
x2

Kd + x2

and (2) has its nonlinear functions ϕ(x, u) as

ϕ1(x3, x7) =
v1b(x7 + c)

k1b(1 +
x
p

3

k
p

1i

) + x7 + c

ϕ2(x1) = xq
1

ϕ4(x3) =
v4bx

r
3

kr4b + xr
3

B. Choice of output values

In literature, outputs of the mathematical models of Neu-

rospora and Mammals are not clearly specified. Thus, in

this paper, we choose the outputs for these models. In

order to use observers, observability has to be guaranteed,

that is, matrix (C,A) is observable. This condition is com-

pulsory condition applied to both models. To Neurospora

model, given that matrix (C,A) is observable, and val-

ues of C are kept as simple as possible, C can be cho-

sen as: C=
[
0 1 0

]
, C=

[
0 0 1

]
, C=

[
0 1 0
0 0 1

]
,

C=

[
1 0 0
0 1 0

]
, C=

[
1 0 0
0 0 1

]
. Oscillations of circadian

rhythms are caused by oscillations of proteins leading to

the required measurements of dynamics of proteins. In

other words, oscillations of mRNAs are less important than

oscillations of proteins. Thus, the measurements of mR-

NAs can be reduced. As a result, values of C are left to

C=
[
0 1 0

]
, C=

[
0 0 1

]
, C=

[
0 1 0
0 0 1

]
. Since

value of state variable x3, dynamic of nuclear FRQ protein,

is required for computation of Lipschitz constant of nonlinear

function ϕ1b(x3), x3 is compulsory value that can not be

reduced. Therefore, values of C are left to C=
[
0 0 1

]
,

C=

[
0 1 0
0 0 1

]
. These values are chosen output values for

Neurospora model. The same procedure of selection of out-

put values C is applied to mammalian model. A set of values

C are chosen such that matrix (C,A) is observable. Since

the dynamics of mRNAs are less important than dynamics of

proteins, their measurements can be reduced. However, since

value of state variable x1, dynamic of Per2/Cry mRNA,

will be used for the computaion of Lipschitz constant of

nonlinear function ϕ2(x1) in mammalian model, this value

has to be measurable. In addition, values of x3 and x7,

which are dynamics of nuclear PER2/CRY complex protein,

and BMAL1* respectively, are also used to obtain Lipschitz

constants of nonlinear functions ϕ1(x3, x7) and ϕ4(x3).
Therefore, these values have to be measurable. Given that

value of C is kept as simple as possible, C can be chosen

as: C=




1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1


.
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C. Neurospora model

According to Lipschitz condition (4), we have

∥∥∥∥−vm
x1

KM + x1
+ vm

x̂1

KM + x̂1

∥∥∥∥ ≤
vm
KM

‖x1 − x̂1‖
∥∥∥∥−vd

x2

Kd + x2
+ vd

x̂2

Kd + x̂2

∥∥∥∥ ≤
vd
Kd

‖x2 − x̂2‖

Values of Lipschitz constants are obtained with γ1a =
vm

KM
=1.01 for ϕ1a(x1), and γ2 = vd

Kd
=10.7962 for ϕ2(x2).

Lipschitz constant of nonlinear function ϕ1b(x3) is not

straightforward to obtain by using (4). Instead of (4), this

value is calculated by using (11). According to (11),

|f ′(ζ)| =

∣∣∣∣−
nζn−1

(Kn
i
+ζn)

2

∣∣∣∣ =
∣∣∣ϕ1b(x3)−ϕ1b(x̂3)

x3−x̂3

∣∣∣ , (12)

where ζ ∈ [min (x3, x̂3) ,max (x3, x̂3)]. Maximum value

of |f ′(ζ)| is equivalent to Lipschitz constant γ1b, and

this value is calculated by solving |f ′′(ζ)|=0. Dynamic

of state x3, dynamic of nuclear FRQ protein, is known,

and x3 ∈ [0.6175, 1.057]. Maximum and minimum values

of x3 are then substituted to |f ′′(ζ)|=0 to find maximum

value of |f ′(ζ)|. The result has maximum value of |f ′(ζ)|
or Lipschitz constant γ1b = 1.7043 for ϕ1b(x3). Then,

we solve (10) to obtain σ=197.1422, L =




1.4721
1.6396
4.4247




in case of C =
[
0 0 1

]
, and σ=50.0883, L =


0.8667 0.2354
2.0833 −0.0152
−0.0152 0.9276


 for C=

[
0 1 0
0 0 1

]
. Error dy-

namics between the unmeasured states x1, x2 and their

estimate are shown in Fig. 1 in case of C=
[
0 0 1

]
.

Error dynamic between the unmeasured states x1 and its

estimate is shown in Fig. 2 in case of C=

[
0 1 0
0 0 1

]
.
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Fig. 1. Error dynamics of frq mRNA, FRQ protein and their estimate
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Fig. 2. Error dynamic of frq mRNA and its estimate

D. Mammalian model

Since C=




1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1


, dynamics of states

x1, x3, and x7 are known. According to (11),

|f ′(ζ1)| =
∣∣∣qζq−1

1

∣∣∣ =
∣∣∣ϕ2(x1)−ϕ2(x̂1)

x1−x̂1

∣∣∣ , (13)

where ζ1 ∈ [min (x1, x̂1) ,max (x1, x̂1)]. Since x1 is known,

and oscillation of x1 ∈ [0, 1.518], therefore, ζ1 ∈ [0, 1.518].
With q = 2, Lipschitz constant of ϕ2(x1) is calculated

as γ2 = 2 ∗ |ζ1| = 3.038. Value of Lipschitz constant of

ϕ4(x3) is calculated by using the same method applied to

find Lipschitz constant of ϕ1b(x3) in Neurospora model. This

constant is obtained with γ2 = 0.864. To nonlinear function

ϕ1(x3, x7), according to (4),

‖ϕ1(x3, x7)− ϕ1(x̂3, x̂7)‖ ≤ γ1

∥∥∥∥
x3 − x̂3

x7 − x̂7

∥∥∥∥ , (14)

where γ1 is Lipschitz constant. On the other hand, we have

|ϕ1(x3, x7)− ϕ1(x̂3, x7) + ϕ1(x3, x7)− ϕ1(x3, x̂7)|

= |f ′(ζ2) (x3 − x̂3) + f ′(ζ3) (x7 − x̂7)| (15)

because according to (11),

|ϕ1(x3, x7)− ϕ1(x̂3, x7)| = |f ′(ζ2)| |x3 − x̂3|
|ϕ1(x3, x7)− ϕ1(x3, x̂7)| = |f ′(ζ3)| |x7 − x̂7|

with ζ2 ∈ [min (x3, x̂3) ,max (x3, x̂3)], and ζ3 ∈
[min (x7, x̂7) ,max (x7, x̂7)]. Function f ′(ζ2) is differenti-

ated function of ϕ1(x3, x7) with respect to x3, and function

f ′(ζ3) is differentiated function of ϕ1(x3, x7) with respect

to x7. Besides,

(15) ≤

∥∥∥∥
f ′(ζ2)
f ′(ζ3)

∥∥∥∥
∥∥∥∥

x3 − x̂3

x7 − x̂7

∥∥∥∥ (16)

Therefore, inequality (16) is equivalent to inequality (14),

and γ1 =

√
(max (f ′(ζ2)))

2
+ (max (f ′(ζ3)))

2
. Maximum

values of f ′(ζ2) and f ′(ζ3) are obtained by solving
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|f ′′(ζ2)|=0 and |f ′′(ζ3)|=0. Nevertheless, in order to cal-

culate maximum values of f ′(ζ2) and f ′(ζ3) by solving

|f ′′(ζ2)|=0 and |f ′′(ζ3)|=0, values of states x3 and x7 are

required. Dynamics of states x3 and x7 are known, and x3 ∈
[0.8, 1.861], x7 ∈ [0.85, 1.11]. We substitute these values to

solve |f ′′(ζ2)|=0, and |f ′′(ζ3)|=0. The results are obtained

with max(f ′(ζ2)) = 2.9909 × 10−17 and max (f ′(ζ3)) =
0.4906. Lipschitz constant of nonlinear function ϕ1(x3, x7)

has its value as γ1 =

√
(2.9909× 10−17)

2
+ (0.4906)

2
=

0.4906. We then solve (10) to get σ=181.0579, L =


0.3323 0 0
0 −0.0402 0
0 0.4278 0
0 0 −0.0022
0 0 0.0045
0 0 0.0155
0 0 0.3247




. Error dynamics between

the unmeasured states x2, x4, x5, x6 and their estimate are

shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6 .
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Fig. 3. Error dynamic of Per2/Cry mRNA and its estimate

E. Discussion

The result obtained from [25] is used as standard result

to judge the performance of one-sided Lipschitz observer.

According to [25], with control of light input, the phase is

restored and tracked within 40h. Therefore, we expect the

desired performances of one-sided Lipchitz observer are also

within 40h (0 ≤ τ ≤ 40h) for both Neurospora and mam-

malian models. According to results depicted from Fig. 1

to Fig. 6, the performances of one-sided Lipschitz observer

applied to both models satisfy the desired performances.

Furthermore, the observer designed for Neurospora model

has better performance than the one for mammalian model.

This mainly due to the complexity in the mamalian model

compared with a 3rd order one for Neurospora. Computation
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Fig. 4. Error dynamic of Bmal1 mRNA and its estimate
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Fig. 5. Error dynamic of BMAL1 protein and its estimate
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Fig. 6. Error dynamic of nuclear BMAL1 protein and its estimate
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of Lipschitz constants may also be responsible for slower

performance of observer designed for mammalian model

than the one for Neurospora model. Different values of C
may affect the performance of the observer. This is shown

with slightly faster convergence of error dynamic of frq
mRNA in Fig. 2 than dynamic of frq mRNA in Fig. 1. The

reason may be due to fewer unmeasured state variables in

case of C=

[
0 1 0
0 0 1

]
than in case of C=

[
0 0 1

]
,

e.g. 1 unknown state variable for C=

[
0 1 0
0 0 1

]
while 2

unknown state variables for C=
[
0 0 1

]
, which affect

the speed of estimation.

V. CONCLUSIONS

We have analyzed the nonlinearities in both circadian

models of Neurospora and Mammals, and have shown that

observers with one-sided Lipschitz nonlinearities can be ap-

plied. These observers have been designed for both models,

and their performances have been evaluated by simulation

studies. Detailed evaluation does show that both observers

give asymptotic estimates of unmeasured state variables,

and they provide a possibility of reducing measurements in

biological study of circadian rhythms. Control designs for

circadian models which are based on observer remains as

topic for future research.
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