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Abstract— Pseudospectral approximation techniques have
been shown to provide effective and flexible methods for solving
optimal control problems in a variety of applications. In this
paper, we provide the conditions for the convergence of the
pseudospectral method for general nonlinear optimal control
problems. Further, we show that this proof is directly extendible
to the multidimensional pseudospectral method for optimal
ensemble control of a class of parameterized dynamical systems.
Examples from quantum control and neuroscience are included
to demonstrate the method.

I. INTRODUCTION

Optimal control is a systematic and powerful approach to

characterize a wide variety of problems arising in all areas

of science and engineering. Many computational methods

have been developed to solve these challenging problems.

In the past two decades, a pseudospectral method for dis-

cretizing a continuous-time optimal control problem into

a finite dimensional constrained nonlinear optimization has

garnered significant interest and found application in research

ranging from the design of satellite maneuvers [1] to the

control of quantum phenomena [2]. In addition, a multi-

dimensional extension has been developed to apply these

methods to parameterized families of dynamical systems,

arising in such areas as quantum control and neuroscience

[3], [4], [5]. Despite widespread use, only recently has the

literature addressed the important topic of convergence of

the pseudospectral method.

Substantial work, including proof of convergence and the

corresponding rates, has been done for systems that belong to

the class of feedback linearizable form [6]. As there are many

systems that do not conform to this specialized dynamics

- for example, ensemble systems, as described in Section

VI, do not belong to this category - analysis for general

systems is of keen interest. Gong et al. have also shown major

components of convergence with regard to general systems,

including the convergence of the dual problem [1]. Here we

extend these results and relax the necessary assumptions.

In particular, we use results from polynomial approximation

theory to make the proof more transparent and touch upon

the convergence of the multidimensional extension.
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We briefly introduce a standard optimal control prob-

lem and review the pseudospectral method to provide a

foundation for the proof. Several useful preliminary results

are developed before we present the main result in section

V. We then discuss the multidimensional extension for the

pseudospectral method and comment on the convergence in

section VI. We conclude by showing illustrative examples

from quantum control and neuroscience.

II. PROBLEM STATEMENT

Without loss of generality, we consider an optimal control

problem defined on the time interval Ω = [−1, 1].
Problem 1 (Continuous-Time Optimal Control):

min J(x, u) = ϕ(x(1)) +

∫ 1

−1

L(t, x(t), u(t))dt, (1)

s.t. ẋ(t) = f(x(t), u(t)), (2)

e(x(−1), x(1)) = 0, (3)

g(x(t), u(t)) ≤ 0, (4)

‖u(t)‖ ≤ A, u ∈ Hα
m(Ω), α > 2 (5)

where ϕ ∈ C0 is the terminal cost; the running cost, L ∈
Cα, where Cα is the space of continuous functions with α
classical derivatives, and dynamics, f ∈ Cα−1

n , where Cα−1
n

is the space of n-vector valued Cα−1 functions, with respect

to its arguments the state, x(t) ∈ R
n, and control, u(t) ∈

R
m; e and g are terminal and path constraints, respectively;

Hα
m(Ω) is the m-vector valued Sobolev space. The norm

associated with the Sobolev space with m = 1, Hα(Ω), is

given with respect to the L2(Ω) norm,

‖h‖(α) =

( α
∑

k=0

∣

∣

∣

∣h(k)
∣

∣

∣

∣

2

2

)1/2

.

An optimal nonlinear control problem of this form is, in

general, intractable and difficult to solve analytically. Here

we use a direct collocation approach based on pseudospectral

approximations to discretize this problem into a finite dimen-

sional constrained nonlinear optimization. In the following

section we review the key concepts of the pseudospectral

method for optimal control.

III. PSEUDOSPECTRAL METHOD

As a collocation (interpolation) method, the pseudospectral

method uses Lagrange polynomials to approximate the states

and controls of the optimal control problem,

x(t) ≈ INx(t) =
∑N

k=0 x̄kℓk(t), (6)

u(t) ≈ INu(t) =
∑N

k=0 ūkℓk(t), (7)
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where x(tk) = INx(tk) = x̄k and u(tk) = INu(tk) =
ūk because the Lagrange polynomials have the property

ℓk(ti) = δki, where δki is the Kronecker delta function and

tk are the interpolation nodes [7]. Therefore, x̄k and ūk are

the discretized values of the original problem and become

the decision variables of the subsequent discrete problem.

Although interpolating with Lagrange polynomials dis-

cretizes Problem 1, we need to ensure that the integral in (1)

is computed accurately and the dynamics in (2) are obeyed.

The integral can be approximated through Gauss quadrature;

here we use Legendre polynomials as the orthogonal basis

for the pseudospectral method. The Legendre-Gauss-Lobatto

(LGL) quadrature approximation,

∫ 1

−1

f(t)dt ≈

N
∑

i=1

f(ti)wi, wi =

∫ 1

−1

ℓi(t)dt, (8)

is exact if the integrand f ∈ P2N−1 and the nodes ti ∈
ΓLGL, where P2N−1 denotes the set of polynomials of

degree at most 2N − 1 and where ΓLGL = {ti : L̇N(t)|ti =
0, i = 1, . . .N − 1}

⋃

{−1, 1} are the N + 1 LGL nodes

determined by the derivative of the N th order Legendre

polynomial, L̇N (t), and the interval endpoints [8].

Using the LGL nodes, we can rewrite the Lagrange poly-

nomials in terms of the orthogonal Legendre polynomials.

This is critical for the approximation to inherit the special

derivative and spectral accuracy properties of orthogonal

polynomials, despite the use of Lagrange interpolating poly-

nomials. Given tk ∈ ΓLGL, we can express the Lagrange

polynomials as [9],

ℓk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L̇N (t)

t− tk
.

The derivative of (6) at tj ∈ ΓLGL is then,

d

dt
INx(tj) =

N
∑

k=0

x̄k ℓ̇k(tj) =
N
∑

k=0

Djkx̄k , (DNx)(tj),

(9)

where D is the constant differentiation matrix [8].

We are now able to write the discretized optimal control

problem using equations (6), (7), (8), and (9). We transform

the continuous-time problem to a constrained optimization.

Problem 2 (Algebraic Nonlinear Programming):

min J̄(x̄, ū) = ϕ(x̄N ) +

N
∑

k=0

L(x̄k, ūk)wk (10)

s.t.
∣

∣

∣

∣f(INx, INu)−DNx
∣

∣

∣

∣

N
≤ cdN

1−α (11)

e(x̄0, x̄N ) = 0 (12)

g(x̄k, ūk) ≤ 0 (13)

‖uk‖ ≤ A ∀ k = 0, 1, . . . , N (14)

where cd is a positive constant; we define the discrete L2
n(Ω)

norm ‖h‖N =
√

〈h, h〉N , for h, h1, h2 ∈ L2
n(Ω), with

〈h1, h2〉N =

N
∑

k=0

hT
1 (tk)h2(tk)wk.

Remark 1: The dynamics in (11) have been relaxed from

the equality in (9) to ensure that the discrete problem is

feasible, which will become clear in Proposition 1.

IV. PRELIMINARIES

We seek to address three questions related to solving the

continuous-time optimal control (Problem 1) by solving the

pseudospectral discretized constrained optimization (Prob-

lem 2). Suppose a feasible solution (x, u) exists to Problem

1. What are the conditions for:

1) Feasibility: For a given order of approximation, N , does

Problem 2 have a feasible solution, (x̄, ū), which are the

interpolation coefficients given in (6) and (7)?

2) Convergence: As N increases, does the sequence of

optimal solutions, {(x̄†, ū†)}, to Problem 2 have a

corresponding sequence of interpolating polynomials

which converges to a feasible solution of Problem 1?

Namely,

lim
N→∞

(INx†, INu†) = (x, u)

3) Consistency: As N increases, does the convergent se-

quence of interpolating polynomials corresponding to

the optimal solutions of Problem 2 converge to an

optimal solution of Problem 1? Namely,

lim
N→∞

(INx†, INu†) = (x∗, u∗)

The results in this section will provide the foundation

on which we can analyze the feasibility, convergence, and

consistency of the pseudospectral approximation method for

optimal control problems. We begin by presenting several

key established results in polynomial approximation theory

and the natural vector extensions. With these inequalities,

we are able then to prove feasibility and convergence. We

define an optimal solution to Problem 1 as any feasible

solution that achieves the optimal cost J(x∗, u∗) = J∗.

We use this definition of an optimal solution within the

subsequent preliminaries and the main result. To this end,

the last lemma of this section introduces the error in the

cost due to interpolation.

Remark 2: Note that x ∈ Hα
n (Ω). Since x(t) exists and

f ∈ Cα−1
n , all the derivatives x(k) ∈ C0

n, ∀ k = 0, 1, . . . , α
exist and are square integrable on the compact domain Ω,

x(k) ∈ L2
n(Ω). Therefore, x ∈ Hα

n (Ω).

Lemma 1 (Interpolation Error Bounds [8], p. 289): If

h ∈ Hα(Ω), the following hold with c1, c2, c3, c > 0.

(a) The interpolation error is bounded,

‖h− INh‖2 ≤ c1N
−α‖h‖(α).

(b) The error between the exact derivative and the derivative

of the interpolation is bounded,

‖ḣ−DNh‖2 ≤ c2N
1−α‖h‖(α).

The same bound holds for the discrete L2(Ω) norm,

‖ḣ−DNh‖N ≤ c3N
1−α‖h‖(α).
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(c) The error due to quadrature integration is bounded,

∣

∣

∣

∣

∫ 1

−1

h(t)dt−

N
∑

k=0

h(tk)wk

∣

∣

∣

∣

≤ cN−α‖h‖(α),

where tk is the kth LGL node and wk is the correspond-

ing kth weight for LGL quadrature.

Lemma 2: If h ∈ Hα
n (Ω), i.e., an n-vector valued Sobolev

space, h = (h1 h2 . . . hn)
T , hi ∈ Hα(Ω), i = 1, 2, . . . , n.

(a) The vector-valued extension of Lemma 1a is, by the

triangular inequality on the L2
n(Ω) norm,

‖h−INh‖2 ≤

n
∑

i=1

‖hi −INhi‖2 ≤

n
∑

i=1

ciN
−α‖hi‖(α).

(b) Similarly, 1b can be extended,

‖ḣ−DNh‖2 ≤

n
∑

i=1

‖ḣ−DNh‖2 ≤

n
∑

i=1

ciN
1−α‖hi‖(α)

≤ cN1−α,

which again also holds for the discrete L2
n(Ω) norm.

Proposition 1 (Feasibility): Given a solution (x, u) of

Problem 1, then Problem 2 has a feasible solution, (x̄, ū),
which are the corresponding interpolation coefficients.

Proof: Given the feasible solution (x, u), let

(INx, INu) be the polynomial interpolation of this solution

at the LGL nodes. Our aim is to show that the coefficients

of this interpolation satisfy (11)-(13) of Problem 2. Consider

the constraints imposed by the dynamics in (11). Because the

discrete norm is evaluated only at the interpolation points,

‖f(INx, INu)−DNx‖N = ‖f(x, u)−DNx‖N

= ‖ẋ−DNx‖N

≤ cdN
1−α

where the last step is given by Lemma 2b. Therefore, the

interpolation coefficients (x̄, ū) satisfy the dynamics of Prob-

lem 2 in (11). We can easily show that the path constraints

are also satisfied because g(x(t), u(t)) ≤ 0 for all t ∈ Ω by

(4). Because this holds for all t ∈ Ω, it also holds for all

LGL nodes tk ∈ ΓLGL, i.e.,

g(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0,

which gives (13). The endpoint constraints are trivially

satisfied by the definition of interpolation and the presence

of interpolation nodes at both endpoints. Therefore, (x̄, ū) is

a feasible solution to Problem 2.

Proposition 2 (Convergence): Given the sequence of so-

lutions to Problem 2, {(x̄, ū)}N , then the sequence of

corresponding interpolation polynomials, {(INx, INu)}, has

a convergent subsequence, such that

lim
Nj→∞

(INx, INu) = (I∞x, I∞u),

which is a feasible solution to Problem 1.

Proof: Given that (x̄, ū) is a feasible solution of

Problem 2, it satisfies (11)-(13). Our goal is to show that the

sequence of polynomials, {(INx, INu)}N , (i) is bounded,

(ii) has a convergent subsequence and (iii) its limit is a

feasible solution of Problem 1, satisfying (2)-(4).

(i) Explicitly writing out the discrete norm in (11) gives

(

N
∑

k=0

n
∑

i=1

(fi(INx, INu)−DNxi)
2(tk)

)1/2

≤ cdN
1−α.

Because f is continuous, it satisfies

lim
N→∞

(

fi(INx, INu)−DNxi

)

(tk) (15)

=
(

fi( lim
N→∞

INxi, lim
N→∞

INu)− ( lim
N→∞

INxi)
′
)

(tk)

= 0,

which means that the derivative of the interpolating polyno-

mial and the state dynamics match at the interpolation nodes.

Moreover, as N → ∞, the LGL nodes tk ∈ ΓLGL are dense

in Ω, which shows that they match along the entire domain.

(ii) The sequence {INx} is a sequence of polynomials

on the compact domain Ω, therefore, for each finite N ,

INx ∈ Hα
n (Ω). In the limit, we showed above in (15) that

(limN→∞ INx)′ matches the state dynamics f ∈ Cα−1
n , so

that {INx} are bounded, because f is bounded over Ω, and

also satisfy INx ∈ Hα
n (Ω) for all N . With the boundedness

of these interpolating polynomials {INx} all supported in

Ω, Rellich’s Theorem (cf., e.g., [10], p. 272) gives that there

is a subsequence {INj
x} which converges in Hα−1

n (Ω).
The same is true for the control interpolating polynomial.

Therefore, there exists at least one limit point of the function

sequence {(INx, INu)} which we denote (I∞x, I∞u).

(iii) Because {INx}N has a convergent subsequence, we can

express (15) as

d

dt
(I∞x)(tk) = f(I∞x, I∞u)(tk), (16)

which states that (I∞x, I∞u) satisfies the dynamics in (2)

at the interpolation nodes. Again, as N → ∞, the LGL

nodes tk ∈ ΓLGL are dense in Ω, which further shows that

(I∞x, I∞u) satisfies the dynamics of Problem 1 at all points

on the interval Ω. Similarly, one can prove that this solution

satisfies the path constraints because the LGL nodes become

dense in Ω as N → ∞ and g(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0
at all LGL nodes. Again, the endpoint constraints are met

exactly because the LGL grid has nodes at the endpoints.

Lemma 3: Given (x, u), where x ∈ Hα
n (Ω) and u ∈

Hα
m(Ω), and the corresponding interpolation coefficients,

(x̄, ū), then the error in the cost functionals defined in (1)

and (10) due to interpolation is given by,

|J(x, u)− J̄(x̄, ū)| ≤ cN−α.

Remark 3: Notice that (x, u) and (x̄, ū) are not required

to be a feasible solutions to Problem 1 and 2, respectively.

This result characterizes the error due to interpolation.
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Proof: From (2) and (11) since ϕ(x(1)) = ϕ(x̄N ),

|J(x, u)− J̄(x̄, ū)| =

∣

∣

∣

∣

∫ 1

−1

L(x, u)dt −
N
∑

k=0

L(x̄k, ūk)wk

∣

∣

∣

∣

.

Since L ∈ Cα, x ∈ Hα
n (Ω), and u ∈ Hα

m(Ω), the

composite function L̃(t) = L(x(t), u(t)) ∈ Hα(Ω). Let

Lk = L(x̄k, ūk). Substituting these definitions and employ-

ing Lemma 1c, we obtain

∣

∣

∣

∣

∫ 1

−1

L̃(t)dt−

N
∑

k=0

Lkwk

∣

∣

∣

∣

≤ cN−α‖L̃(t)‖(α).

Because L̃ ∈ Hα(Ω), ‖L̃(t)‖(α) is finite, from which the

result follows.

V. MAIN RESULT

Theorem 1 (Consistency): Suppose Problem 1 has an op-

timal solution (x∗, u∗). Given a sequence of optimal so-

lutions to Problem 2, {(x̄†, ū†)}N , then the corresponding

sequence of interpolating polynomials, {(INx†, INu†)}N ,

has a limit point, (I∞x†, I∞u†) which is an optimal solution

to the original optimal control problem.

Proof: We break the proof into four sections, employing

the results from the previous section.

(i) By Proposition 1, since (x∗, u∗) is a solution to Problem

1, then for each choice of N , the corresponding interpolation

coefficients, (x̄∗, ū∗), are a feasible solution to Problem 2.

By the definition of optimality of (x̄†, ū†),

J̄(x̄†, ū†) ≤ J̄(x̄∗, ū∗). (17)

(ii) By Proposition 2, the limit point of the polynomial

interpolation of the discrete optimal solution to Problem

2, limN→∞(INx†, INu†) = (I∞x†, I∞u†), is a feasible

solution of Problem 1. Therefore, we have, by the definition

of the optimality of (x∗, u∗) and the continuity of J ,

J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†) (18)

= J(I∞x†, I∞u†).

(iii) Using Lemma 3, we can bound the error in the cost

between the optimal solution of Problem 1, (x∗, u∗), and

the corresponding interpolating coefficients, (x̄∗, ū∗), as

|J(x∗, u∗)− J̄(x̄∗, ū∗)| ≤ c1N
−α. (19)

Similarly, we can bound the error in the cost between the

optimal solution of Problem 2, (x̄†, ū†), and the polynomial

interpolation of this solution, (INx†, INu†), as

|J(INx†, INu†)− J̄(x̄†, ū†)| ≤ c2N
−α. (20)

Recall that Lemma 3 does not require (INx†, INu†) to be

a feasible solution of Problem 1. From (19) and (20),

lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗), (21)

lim
N→∞

[

J(INx†, INu†)− J̄(x̄†, ū†)
]

= 0. (22)

(iv) We are now ready to assemble the various pieces of this

proof. Combining (21) and (17) we have,

lim
N→∞

J̄(x̄†, ū†) ≤ lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗).

Adding the result from (18),

lim
N→∞

J̄(x̄†, ū†) ≤ J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†).

(23)

Since the difference between the left and right sides, as

given by (22), decreases to zero as N → ∞, the quantities

J̄(x̄†, ū†) and J(INx†, INu†) converge to J(x∗, u∗), i.e.,

0 ≤ lim
N→∞

[

J(x∗, u∗)− J̄(x̄†, ū†)
]

≤ lim
N→∞

[

J(INx†, INu†)− J̄(x̄†, ū†)
]

= 0.

Thus the optimal discrete cost J̄(x̄†, ū†) of Problem 2 and the

continuous cost J(INx†, INu†) of the corresponding inter-

polation polynomials converge to the optimal cost J(x∗, u∗)
of Problem 1. Moreover, (I∞x†, I∞u†) is a feasible solution

to Problem 1 and achieves the optimal cost. Therefore,

(I∞x†, I∞u†) is an optimal solution to Problem 1.

VI. ENSEMBLE EXTENSION

Ensemble Control pertains to the study of a continuum of

dynamical systems of the form [11], [12],

d

dt
x(t, s) = f

(

t, s, x(t, s), u(t)
)

, (24)

which is indexed by a parameter vector that exhibits variation

within an interval, s ∈ S ⊂ R
d but controlled by the

open loop input u(t). Such systems arise from environmental

interactions, uncertainty, or inherent variability that induces

inhomogeneity in the characteristic parameters of the dynam-

ics. An optimal ensemble control problem is formulated by

replacing the dynamics with the ensemble dynamics in (24)

and the cost with,

J =
(

∫

S

ϕ(x(1, s)) +

∫ 1

−1

L(x(t, s), u(t))dt
)

ds, (25)

and the end and path constraints are extended in a straight-

forward manner. The method employs d + 1 dimensional

interpolating polynomials to represent x and u with the

approximate dynamics (compare to (9)) given by [4],

d

dt
IN×Ns1

×···×Nsd
x(t, sj) =

N
∑

k=0

Dikx̄kj1 ...jd , (26)

where s = (s1, s2, . . . , sd)
′ ∈ S ⊂ R

d. This extension hinges

upon the lack of time dependence in the new dimensions

of the problem (d parameter dimensions). Propositions 1

and 2 can then be extended in a straightforward manner

by incorporating additional dynamics constraints that act

in parallel. Lemma 3 will include gaussian quadrature ap-

proximations of both the s and t integrals. With these

limited modifications, the approach above guarantees the

convergence of the multidimensional pseudospectral method

applied to optimal ensemble control problems.
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VII. EXAMPLES

In this section we demonstrate the multidimensional

pseudospectral method and the convergence of the method

through examples from quantum control and neuroscience.

A. POLARIZATION TRANSFER IN NMR

Polarization transfer is an important fundamental tech-

nique used in NMR spectroscopy to reveal the structure

of complex biomolecules and has far-reaching impacts on

our understanding of, e.g., cell signaling and drug deliv-

ery. Optimal control techniques have achieved significant

advancements in pulse design, which in turn yield increased

efficiencies in polarization transfer [13], [2], [3]. Physical

models of this transfer contain parameters that are perturbed

by the chemical environment surrounding the system. It is

possible for the spin coupling variation to be on the same

order as the value of the nominal coupling, for example 5-13

Hz in a HNCα protein. Recent studies of such ensemble po-

larization transfer have used an optimal control formulation

given by,

max η =
1

2δJ

∫ 1+δJ

1−δJ

x6(T, J) dJ

s.t.

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=

















0 −u1 u2 0 0 0
u1 −ξa −0 −J −ξc 0
−u2 0 −ξa −ξc J 0
0 J −ξc −ξa 0 −u2

0 −ξc −J −0 −ξa u1

0 0 0 u2 −u1 0

































x1

x2

x3

x4

x5

x6

















,

x(0, J) = [1 0 0 0 0 0]′,
√

u2
1(t) + u2

2(t) ≤ A, ∀t ∈ [0, T ], (27)

where the transfer efficiency (cost) η maximizes the value

of x6 over the ensemble at the terminal time T ; xi are

expectation values of components of the spin operators; J ∈
[1− δJ, 1+ δJ ], δJ ∈ (0, 1), is the scalar coupling between

spins exhibiting variation; ξa and ξc are autocorrelated and

cross-correlation relaxation rates, respectively; u1 and u2

are the applied pulses (controls); and A is the maximum

allowable amplitude [2]. The dynamics and parameters are

normalized by a nominal scalar coupling J0.

Figure 1 displays the convergence of the multidimensional

pseudospectral method as the order of approximation, N ,

increases and corresponding to solutions of (27) with a

30 Hz variation around the nominal scalar coupling J0 =
93 Hz (δJ = 30/93 ≈ 0.32 in the normalized case).

The analytically derived optimal transfer efficiency of a

single-valued system (i.e., δJ=0), denoted as CROP [13],

is plotted as an upper bound on the expected efficiency for

the ensemble case. As a dissipative system, the ensemble

case is not expected to fully compensate for the ensemble

variation, but achieves a more uniform transfer efficiency

with a small error from this upper bound. Consideration of

the ensemble control problem as in (27) is motivated by

the efficiency corresponding to a single-valued optimization

(gray dashed line in Figure 1), which performs well at the

CROP

(N,NJ) = (6,3)

(7,3)

(8,3) (9,3)
(11,3)
(15,3)
(19,3)
(23,3)(23,1)

Fig. 1. A series of solutions to the problem of polarization transfer achieved
by the multidimensional pseudospectral method. The level of discretization,
N is increased illustrating the rapid convergence characteristic of the
pseudospectral method. The analytically derived optimal transfer efficiency
for the single-valued system, CROP [13], provides an upper bound on
the expected ensemble efficiency. A single-valued pseudospectral optimized
solution (gray dashed line) achieves a narrow window of performance with
degraded performance on the edges of the variation, which prompts us to
specifically consider the ensemble variation. (Parameters: J ∈ [63, 123] Hz,
ξa = 183 Hz, ξc = 163 Hz, T = 25ms, A=50 Hz)

nominal parameter value, but degraded performance at the

edges.

B. SPIKING OF NEURON OSCILLATORS

The dynamic interactions of neurons in the human brain

are often modeled as a network of weakly connected nonlin-

ear oscillators [14]. Each individual neuron can be modeled

by a system ẋ = f(x, I, α) with an attractive, non-constant,

periodic limit cycle, where x(t) ∈ R
n, I(t) ∈ R, and α ∈ R

p

are the state, control, and parameter set, respectively. This

can be reduced to a scalar system, called a phase model,

of the form θ̇ = ω(α) + Z(θ, α)I , where θ(t) is a phase

variable that represents the position of x(t) near the limit

cycle, ω(α) is the natural frequency, I(t) is the control, and

the phase response curve (PRC) Z(θ, α) is a 2π-periodic

function of θ, which quantifies the shift in θ due to an

infinitesimal perturbation in x [15]. The reduction is valid

for bounded input, i.e. |I| ≤ A, and provides a theoretical

basis for controlling the spiking period of a neuron [5]

where the objective of minimum control power arises from

physiological considerations. In an experimental or clinical

setting, it is often desirable to synchronize the spiking period

T of a collection of neurons, each of which has a slightly

different PRC due to variation in the parameters α over

a given range. We formulate this as an optimal ensemble

control problem steering θ(0) = 0 to θ(T ) = 2π,

min η =

∫ T

0

I2(t) dt

s.t. θ̇ = ω(α) + Z(θ, α)I,

|I| ≤ A, ∀t ∈ [0, T ], α ∈ D ⊂ R
p (28)

where D is an interval containing a nominal parameter α0.
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Fig. 2. Solutions to the neuron phase model using a Fourier representation
of the PRC. The control inputs (top) were generated by considering the nom-
inal and ensemble cases individually. The corresponding state trajectories
(middle) of a 3-neuron ensemble show divergence and convergence of the
states following the nominal and ensemble control, respectively. The differ-
ence between the nominal trajectory following the nominal control and each
of the other state trajectories (bottom) shows the compensating behavior of
the ensemble input more clearly. (Parameters: gNa = 120 mS/cm2±10%)

Consider the Hodgkin-Huxley model, which describes the

propagation of action potentials in a squid axon, and is a

canonical example of neural oscillator dynamics [16], with a

nominal spiking period τ0 = 14.638. Suppose that we wish

to synchronize the spiking of neurons to period τ = 14 when

sodium conductance gNa varies on the interval [108, 132]
mS/cm2, with nominal value 120 mS/cm2. From the PRCs

for the nominal and extreme cases shown in Figure 3, we

see that the variation is significant, and indeed the spiking

period τ = 2π/ω(α) varies from 14.070 to 15.971. The

optimal ensemble control method is applied to solve (28)

for this example, where α = gNa is a scalar sampled at

LGL nodes, and the PRCs are represented using a Fourier

approximation for the computation. Figure 2 shows the

computed optimal control, the trajectories, and the difference

between the solutions and the nominal trajectory. When the

nominal control is applied, the phases of the neurons drift

apart, but when the optimal ensemble control is applied, the

phases cluster near θ = 2π at t = T = τ = 14, as desired.

VIII. CONCLUSION

The pseudospectral method and the more recent multi-

dimensional pseudospectral method are effective computa-

tional methods to solve challenging optimal control problems

on complex systems. Here we consolidate and extend the cur-

π π ππ

Fig. 3. The Fourier representation of the phase response curves corre-
sponding to the ensemble in Figure 2. Although the origin of the parameter
variation is small the PRC shifts dramatically.

rent results on the convergence of these methods. Character-

izing the conditions of convergence is key to understanding

the abilities and limitations of the approach as well as to

establish the credibility of the solutions generated with the

methods. We provide examples to illustrate the technique and

motivate the convergence results empirically.
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