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Abstract— The study of cyclic pursuit as a means to collective
behavior in nature and in artificial multi-agent systems is
of current interest. Here we examine the nonlinear closed
loop dynamics of planar cyclic pursuit based on the constant
bearing (CB) strategy. We show that there exists a family of
rectilinear relative equilibria that admit nearby periodic orbits
in an appropriate low dimensional space found by methods of
symmetry, reduction and constraint. We also demonstrate the
existence of other families of rectilinear equilibria that exhibit
attractivity or instability.

I. INTRODUCTION

Prior work on planar cyclic pursuit as a building block for
collective behavior has yielded insights on relative equilibria,
and invariant manifolds with applications (see, for instance,
[1], [2], [3], [4], [5], and [6]). The present work focuses on
closed loop nonlinear dynamics. A surprising result is the
presence of previously unknown periodic orbits associated
to the CB strategy in the 3-agent planar problem. While
some of the techniques we employ in symmetry and re-
duction have parallels in recent work on periodic orbits in
the Newtonian 3-body problem [7], the present context of
gyroscopic interaction is very different from the setting of
celestial mechanics.

As exemplified by figure 2, the current work proceeds as
follows. In section II we describe the mathematical frame-
work for modeling the state (i.e. positions and orientations
with respect to a fixed coordinate frame) of a system of n
agents moving at unit speed, defining our 3n-dimensional
state space Mstate in (2). We then illustrate a reduction to
the (3n − 3)-dimensional quotient manifold Mstate/SE(2)
and prescribe an alternative parametrization to that described
in [1]. (See Proposition 1.) It should be noted that the
results of section II are applicable for any set of SE(2)-
invariant control laws ui. In section III we define a (2n−3)-
dimensional submanifold MCB(ααα) ⊂ Mstate/SE(2) which
is associated with the constant bearing (CB) pursuit strategy
in a cyclic pursuit framework (i.e. agent i pursues agent i+1
modulo n). In Proposition 2, it is demonstrated that the CB
pursuit law defined in [8] (as described in (11)) yields closed-
loop cyclic CB pursuit dynamics under which MCB(ααα) is
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invariant and attractive. Reduced dynamics on MCB(ααα) are
stated in (16), which are subject to the “closure” constraints
(17) and (18).

In section IV, we demonstrate how a scaling of the
time variable enables a further reduction to the (2n − 4)-
dimensional submanifold M̄CB(ααα) ⊂ MCB(ααα). Although the
reduction step is valid for arbitrary values of n, we describe
the process in the particular context of the n = 3 case,
yielding a two-dimensional reduced dynamics on M̄CB(ααα) in
(30)-(31). In terms of these reduced dynamics we are able
to analyze stability properties of a particular type of recti-
linear equilibrium for the three-particle case, as discussed
in section V. For a particular choice of parameters, phase
portrait analysis reveals the existence of periodic orbits in
the two-dimensional system leading to remarkable precessing
motions of the three-body system in the full physical space.
(See figure 7.) We conclude in section VI with a mention of
work in progress.

II. MODELING

As described in [1], we model our system of n agents as
unit-mass particles tracing out twice-differentiable curves in
the plane. The state of the ith particle (i.e. agent) with respect
to a fixed inertial frame can be described by a position vector
ri and the respective natural Frenet frame {xi,yi}, where xi

is the unit vector tangent to the curve at that point and yi

is the unit normal [1]. If we constrain each agent to move
at (constant) unit speed, then our system dynamics are given
by

ṙi = xi,

ẋi = yiui,

ẏi = −xiui, i = 1, 2, . . . , n, (1)

where ui is the signed curvature, viewed as a steering control.
Note that ui can be specified as a feedback law in terms
of the state variables. Defining the baseline vector ri,i+1 =
ri − ri+1 and imposing an additional constraint prohibiting
“sequential colocation” (i.e. we assume |ri,i+1| > 0 for all
t), our state space can then be described as

Mstate =
{

(r1,x1,y1, . . . , rn,xn,yn) |

ri,i+1 6= 0, i = 1, 2, . . . , n
}

, (2)

where it is understood that ri ∈ R2 and the pair of unit
vectors {xi,yi} comprise an orthonormal frame.

We note that each pair of frame vectors can be
parametrized by a single angle variable (i.e. [xi,yi] ∈
SO(2) ∼= S1) and therefore Mstate is 3n-dimensional.
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We are interested in steering laws ui which leave our
system dynamics (1) invariant under the action of the special
Euclidean group SE(2). (A particular pursuit law of this
form will be discussed in section III.) As in [1], steering
laws of this type (and the resultant closed-loop dynamics)
permit a reduction to the (3n − 3)-dimensional quotient
manifold Mstate/SE(2), the shape space, which describes
the relative positions and velocities of the agents. The
following proposition prescribes a system of shape variables1

for parametrization of Mstate/SE(2).

Proposition 1: Let R(·) ∈ SO(2) be the rotation matrix
defined by

R(β) =
[

cos(β) − sin(β)
sin(β) cos(β)

]
, (3)

and define κi, θi ∈ [0, 2π) and ρi ∈ R+ by

R(κi)xi ·
ri,i+1

|ri,i+1|
= −1, R(θi)xi ·

ri−1,i

|ri−1,i|
= 1,

ρi = |ri,i+1| , i = 1, 2, . . . , n. (4)

(See figure 1.) Then the shape space Mstate/SE(2) can
be parametrized by {(κi, θi, ρi), i = 1, 2, . . . , n}, subject to
ρi > 0, i = 1, 2, . . . , n and the constraint equations

R

(
n∑

i=1

(π + κi − θi)

)
= 1, the 2× 2 identity matrix,

(5)
n∑

i=1

ρiR

 i∑
j=1

(π + κj − θj)

 = 0. (6)

Proof: Omitted due to space constraints.

Remark: The stipulation that ρi > 0 follows from our
prohibition on sequential colocation in the definition of
Mstate. The “closure” constraints (5) and (6) constrain three
degrees of freedom and result from the fact that we have
parametrized a (3n−3)-dimensional space with 3n variables.
One can show that (5) and (6) are preserved under the shape
dynamics (as stated below) and can therefore be viewed as
a constraint on the initial conditions.

It is a relatively straightforward exercise to demonstrate
that in terms of the shape variables from Proposition 1, our
dynamics on Mstate/SE(2) are given by

κ̇i = −ui +
1
ρi

[sin(κi) + sin(θi+1)] ,

θ̇i = −ui +
1

ρi−1
[sin(κi−1) + sin(θi)] ,

ρ̇i = − cos(κi)− cos(θi+1), (7)

with initial conditions subject to the constraints (5) and (6).

1Note that the shape variables here give a parametrization equivalent to
that developed in [1].

Fig. 1. Illustration of the shape variables used to parametrize the shape
space Mstate/SE(2).

III. CONSTANT BEARING PURSUIT

The current work is focused on the particular context of n-
agent cyclic pursuit systems (i.e. agent i pursues agent i+1
modulo n) in which each agent employs a constant bearing
(CB) pursuit strategy. The CB pursuit strategy extends the
concept of classical pursuit (i.e. “always move directly
towards the current location of the target”) by prescribing
a fixed, possibly non-zero angle αi between the pursuer’s
heading and the current location of the target. Note that for
purposes of our analysis in this work, we do not constrain
αi to be acute but permit it to take the full range of values
αi ∈ [0, 2π).

In terms of our original state variables, if we define the
cost function

Λi , R(αi)xi ·
ri,i+1

|ri,i+1|
, (8)

then we say agent i has attained CB pursuit of agent i + 1
if and only if Λi = −1. In terms of our shape variables, the
cost function Λi is given by

Λi = − cos(κi − αi). (9)

For an n-agent cyclic pursuit system in which each agent i
employs the CB pursuit strategy with regard to agent i + 1
(modulo n), we define the (2n− 3)-dimensional CB Pursuit
Manifold MCB(ααα) ⊂ Mstate/SE(2) by

MCB(ααα) =
{

(κ1, θ1, ρ1, . . . , κn, θn, ρn) ∈ Mstate/SE(2) |

Λi = −1, i = 1, 2, . . . , n
}

, (10)

where ααα = (α1, α2, . . . , αn).
A feedback law designed to attain the CB pursuit strategy

was developed in [8], and it takes the form

uCB(αi) = −µi

(
R(αi)yi ·

ri,i+1

|ri,i+1|

)
− 1
|ri,i+1|

(
ri,i+1

|ri,i+1|
· ṙ⊥i,i+1

)
, (11)

where µi > 0 is a control gain, and b⊥ denotes R
(

π
2

)
b.

In terms of our shape variables, the pursuit law uCB(αi) is
given by

uCB(αi) = µi sin(κi − αi) +
1
ρi

[sin(κi) + sin(θi+1)] .

(12)
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If every agent uses a pursuit law of this form, then by
substitution into (7) we have the closed-loop cyclic CB
pursuit dynamics

κ̇i = −µi sin(κi − αi),

θ̇i = −µi sin(κi − αi) +
1

ρi−1
[sin(κi−1) + sin(θi)]

− 1
ρi

[sin(κi) + sin(θi+1)] ,

ρ̇i = − cos(κi)− cos(θi+1), i = 1, 2, . . . , n, (13)

with initial conditions subject to the constraint equations
given by (5) and (6). The following proposition describes
certain properties of the submanifold MCB(ααα) under the
shape dynamics (13).

Proposition 2: The submanifold MCB(ααα) ⊂ Mstate/SE(2)
is invariant under the dynamics (13), and any bounded
trajectory of (13) starting in the set

Ωε =
{

(κ1, θ1, ρ1, . . . , κn, θn, ρn) ∈ Mstate/SE(2)
∣∣

Λi ≤ 1− ε, i = 1, 2, . . . , n
}

(14)

(for 0 < ε ≤ 2) converges asymptotically to MCB(ααα).

Proof: By inspection of (9), we note that Λi = −1 ⇐⇒
κi = αi. From (13) we have κi = αi =⇒ κ̇i = 0, and
therefore we conclude that MCB(ααα) is invariant under (13).
Note that Ωε is closed (but not necessarily bounded) and
excludes states for which Λi = +1 for any i. Then defining
Λ =

∑n
i=1 Λi in terms of (9), we have

Λ̇ =
n∑

i=1

κ̇i sin(κi − αi) =
n∑

i=1

−µi

(
1− Λ2

i

)
, (15)

and therefore Λ̇ ≤ 0 on Ωε with Λ̇ = 0 on Ωε if and only if
Λi = −1, i = 1, 2, . . . , n. The hypothesis of boundedness of
the trajectory ensures by Birkhoff’s theorem the ω-limit set
is nonempty, compact and invariant. Asymptotic convergence
to MCB(ααα) follows as in the steps in the proof of LaSalle’s
Invariance Principle [9]. �

We can formulate reduced dynamics on MCB(ααα) by sub-
stituting κi ≡ αi into (13) to arrive at

θ̇i =
1

ρi−1
[sin(αi−1) + sin(θi)]−

1
ρi

[sin(αi) + sin(θi+1)] ,

ρ̇i = − [cos(αi) + cos(θi+1)] , i = 1, 2, . . . , n, (16)

with the initial conditions subject to the constraints

R

(
n∑

i=1

(π + αi − θi)

)
= 1, (17)

n∑
i=1

ρiR

 i∑
j=1

(π + αj − θj)

 = 0. (18)

Remark: The definition of MCB(ααα) and proof of invariance
under the dynamics given by (13) is analogous to that
presented in [1].

IV. REDUCTION TO PURE SHAPE DYNAMICS ON MCB(α)α)α)

In this section we illustrate a process for further reduction
to a (2n−4)-dimensional submanifold. Although this process
is applicable for arbitrary values of n, in the interest of
concreteness we will present the reduction process in the
context of the three-particle case. For n = 3, MCB(ααα) is
a three-dimensional submanifold parametrized by the shape
variables θ1, θ2, θ3, ρ1, ρ2, ρ3, subject to the constraint equa-
tions (17) and (18). As a first step, we eliminate θ1, θ3, and ρ3

by means of (17) and (18) so that we can explicitly describe
our shape dynamics in terms of only θ2, ρ1, and ρ2. We do
so by first noting that (17) implies

3∑
i=1

(π + αi − θi) = 0, (19)

and therefore θ1 = π + α1 + α2 + α3 − θ2 − θ3. Then
substitution into (18) yields

0 = ρ1R(π + α1 − θ1) + ρ2R(α1 + α2 − θ1 − θ2) + ρ31

= ρ1R(−α2 − α3 + θ2 + θ3) + ρ2R(π − α3 + θ3) + ρ31

= R(θ3)
[
ρ1R(θ2 − α2 − α3)

+ ρ2R(π − α3) + ρ3R(−θ3)
]
, (20)

and since elements of SO(2) are nonsingular (i.e. R(θ3) is
nonsingular), we have

ρ3 sin(θ3) = ρ1 sin(θ2 − α2 − α3) + ρ2 sin(α3),
ρ3 cos(θ3) = −ρ1 cos(θ2 − α2 − α3) + ρ2 cos(α3). (21)

By summing the square of each equation in (21), we have

ρ2
3 = ρ2

1 − 2ρ1ρ2 cos(θ2 − α2) + ρ2
2

= ρ2
1

[
1− 2

(
ρ2

ρ1

)
cos(θ2 − α2) +

(
ρ2

ρ1

)2
]

, (22)

which, by the strict positivity of ρ3, yields

ρ3 = ρ1P (ρ1, ρ2, θ2), (23)

where P (ρ1, ρ2, θ2) ,

√(
ρ2
ρ1

)2

− 2
(

ρ2
ρ1

)
cos(θ2 − α2) + 1.

We restrict our analysis to Mstate (i.e. no sequential
colocation), and thus we forbid ρ1 = ρ2 with θ2 = α2

which is the only condition under which P (ρ1, ρ2, θ2) = 0.
Then substituting (21) and (23) into (16), we have an
equivalent representation of our three-particle shape
dynamics on MCB(ααα), given by

θ̇2 =
1
ρ1

[sin(α1) + sin(θ2)]

− 1
ρ2

[
sin(α2) +

sin(θ2 − α2 − α3) + ρ2
ρ1

sin(α3)

P (ρ1, ρ2, θ2)

]
,

ρ̇1 = − cos(α1)− cos(θ2),

ρ̇2 = − cos(α2)−
− cos(θ2 − α2 − α3) + ρ2

ρ1
cos(α3)

P (ρ1, ρ2, θ2)
.

(24)
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These dynamics are subject only to the strict positivity
constraints on ρ1, ρ2, and P (ρ1, ρ2, θ2).

Letting

λ , ln (ρ2/ρ1) (25)

and denoting

P ,
√

e2λ − 2eλ cos(θ2 − α2) + 1, (26)

we have

λ̇ =
1

eλρ1P

{
P
[
eλ
(
cos(α1) + cos(θ2)

)
− cos(α2)

]
+ cos(θ2 − α2 − α3)− eλ cos(α3)

}
,

θ̇2 =
1

eλρ1P

{
P
[
eλ
(
sin(α1) + sin(θ2)

)
− sin(α2)

]
− sin(θ2 − α2 − α3)− eλ sin(α3)

}
, (27)

with ρ̇1 defined as in (24). We then introduce a scaling of
the time variable

τ ,
∫ t

0

1
eλ(σ)ρ1(σ)P (σ)

dσ, (28)

so that
dθ2

dτ
=

dθ2

dt

dt

dτ
= θ̇2e

λ(t)ρ1(t)P (t). (29)

(Note that an analogous statement holds for dλ
dτ and dρ1

dτ .)
Letting the prime superscript denote differentiation with
respect to the scaled time variable τ , we then have

θ
′

2 = P
[
eλ
(
sin(α1) + sin(θ2)

)
− sin(α2)

]
− sin(θ2 − α2 − α3)− eλ sin(α3), (30)

λ
′
= P

[
eλ
(
cos(α1) + cos(θ2)

)
− cos(α2)

]
+ cos(θ2 − α2 − α3)− eλ cos(α3), (31)

ρ
′

1 = −eλρ1P [cos(α1) + cos(θ2)] . (32)

As a result of the new time scale, (30) and (31) are a self-
contained system in {θ2, λ}, permitting further reduction to
the punctured cylinder

M̄CB(α1,α2,α3) = S1 ×R− {(α2, 0)} . (33)

(As discussed previously, the deletion of the point {(α2, 0)}
is necessary to maintain our prohibition on sequential colo-
cation, but it is not enforced by the dynamics (30) and (31).)
Note that {θ2, λ} describe the pure shape of the system, i.e.
a triangle up to similarity.

Figure 2 provides a summary of the reduction process
that we have described in the last two sections. While
we have demonstrated the specific steps in the context of
the three-particle case, it should be noted that the same
process is applicable for the n-particle case and results in

a reduction from a 3n-dimensional system to a (2n − 4)-
dimensional system. In the current context (i.e. n = 3),
this final reduction to a two-dimensional system greatly
facilitates an analysis of system stability properties, since it
permits techniques of phase plane analysis. In what follows,
we use the two-dimensional dynamics (30)-(31) to analyze
the stability properties of a particular family of rectilinear
equilibria.

V. STABILITY ANALYSIS FOR A PARTICULAR FAMILY OF
RECTILINEAR EQUILIBRIA

As discussed in [1], equilibria of the shape dynamics (13)
correspond to relative equilibria of the full system dynamics
(1). System dynamics of the form (1) permit rectilinear rela-
tive equilibria (i.e. all agents move along parallel rectilinear
trajectories) as well as circling relative equilibria (i.e. all
agents travel along a common closed circular trajectory of
fixed radius, separated by fixed chordal distances). If we
consider only the reduced system dynamics on MCB(ααα),
given by (16), then the discussion in [1] presents necessary
and sufficient conditions for existence of each type of relative
equilibria. Here we restate (without proof) the proposition
concerning existence of rectilinear equilibria:

Proposition 3 (from [1]): Given {α1, α2, . . . , αn}, a relative
equilibrium corresponding to rectilinear motion on MCB(ααα)

exists for system (1) under cyclic pursuit with CB control
law (11) if and only if there exists a set of constants
{σ1, σ2, . . . , σn} such that σi > 0, i = 1, 2, . . . , n and

n∑
i=1

σie
jαi = 0, (34)

where j =
√
−1.

For such a relative equilibrium, one can show from (16)
that the corresponding equilibrium angles θ̂i and equilibrium
side lengths ρ̂i are given by

θ̂i = π + αi−1, ρ̂i = σi, i = 1, 2, . . . , n. (35)

We now consider the special case for which α1 = α2 =
· · · = αn−1 = α = π + αn, for some α ∈ [0, 2π). In
this case, (34) is satisfied by setting σi = ρ̂i where ρ̂i are
side lengths and ρ̂n =

∑n−1
i=1 ρ̂i, and therefore a rectilinear

equilibrium exists. (A depiction of this type of rectilinear
equilibrium is displayed in figure 3.)

Once again focusing on the three-particle case, we in-
vestigate stability properties of rectilinear equilibria on
MCB(α,α,π+α) by considering their projections onto the
submanifold M̄CB(α,α,π+α) defined in (33). We start by
substituting α1 = α2 = α = π + α3 into (30)-(31) to arrive
at

θ
′

2 = P
[
eλ
(
sin(α) + sin(θ2)

)
− sin(α)

]
− sin(θ2 − 2α + π) + eλ sin(α),

λ
′
= P

[
eλ
(
cos(α) + cos(θ2)

)
− cos(α)

]
+ cos(θ2 − 2α + π) + eλ cos(α), (36)
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Fig. 2. This figure illustrates the process by which we reduce a 3n-dimensional system to a (2n−4)-dimensional system by means of symmetry, geometry,
and algebraic constraints. In each figure, the labeled variables are the quantities which are free to vary. Note that in the step from Mstate/SE(2) to
MCB(ααα) the dotted κi angles are replaced by solid black curves, indicating that κi ≡ αi on MCB(ααα) while θi angles remain free to vary.

where P =
√

e2λ − 2eλ cos(θ2 − α) + 1. We then define an
angular error variable

φ , θ2 − θ̂2 = θ2 − π − α, (37)

so that φ = 0 ⇐⇒ θ2 = θ̂2. Denoting

P ,
√

e2λ + 2eλ cos(φ) + 1, (38)

we can formulate {φ, λ} dynamics as

φ
′
= P

[
eλ
(
sin(α)− sin(φ + α)

)
− sin(α)

]
− sin(φ− α) + eλ sin(α),

λ
′
= P

[
eλ
(
cos(α)− cos(φ + α)

)
− cos(α)

]
+ cos(φ− α) + eλ cos(α). (39)

These dynamics evolve on a manifold (punctured cylinder)
which is diffeomorphic to M̄CB(α,α,π+α) as defined in (33),
and therefore we will consider the {φ, λ} dynamics as
evolving on M̄CB(α,α,π+α). (The excluded point in terms
of the {φ, λ} variables is given by φ = π, λ = 0.) Then the
set

M̄α =
{

(φ, λ) ∈ M̄CB(α,α,π+α)

∣∣∣ φ = 0
}

(40)

denotes a continuum of equilibria for the dynamics given
by (39), corresponding to a continuum of rectilinear equi-
libria for the full system. One can show that in fact M̄α

contains all the equilibria for the dynamics (39). This can
be demonstrated by first verifying that sin(α)λ

′−cos(α)φ
′
=

sin(φ)
(
1+Peλ

)
, from which it follows that φ

′
= 0 = λ

′
=⇒

sin(φ) = 0. The claim then follows by verifying that φ = π
can not correspond to an equilibrium for the dynamics.

Before proceeding with our stability analysis, we state the
following proposition regarding a particular property of the
vector field (39) in the vicinity of the set M̄α.

Fig. 3. Depiction of the type of rectilinear equilibrium which exists for
the case where α1 = α2 = · · · = αn−1 = α = π + αn, for some
α ∈ [0, 2π).

Proposition 4: Let φ ∈ (0, π) ∪ (π, 2π) so that

F (φ, λ) ,
∂φ

∂λ
(φ, λ) (41)

is well-defined. Then for any fixed λ0 ∈ R,

lim
φ→0

F (φ, λ0) = −cos(α)
sin(α)

. (42)

Proof: Omitted due to space constraints. Observe that
F (φ, λ) = φ

′
/λ

′
, with φ

′
and λ

′
as defined by (39). The

proof then follows by applying L’Hôpital’s rule to the limit
calculation in (42).

We proceed with our stability analysis by considering four
different cases corresponding to the possible values of α.

A. Analysis of the α = 0 case
For the α = 0 case, our dynamics (39) simplify to

φ
′
= − sin(φ)

(
Peλ + 1

)
,

λ
′
= P

[
eλ
(
1− cos(φ)

)
− 1
]

+ cos(φ) + eλ. (43)

Defining

H0(φ, λ) , −1− cos(φ), (44)

we have

H
′

0 = − sin2(φ)
(
Peλ + 1

)
= H0(H0 + 2)

(
Peλ + 1

)
,
(45)
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Fig. 4. Depiction of the {φ, λ} phase portrait for the α = 0 case, which
should be viewed as a (punctured) cylinder which has been cut along the
set M̄0 and unwrapped. Also depicted are representative particle formations
(from the full physical space) which correspond to each of the invariant
submanifolds M̄0 and ∆.

from which it is apparent that the submanifolds defined
respectively by H0 = 0 and H0 = −2 are both invariant
under the dynamics (43). Noting that H0 = −2 ⇐⇒ φ = 0,
we see that the latter invariant submanifold corresponds to
our set of rectilinear equilibria M̄0 from (40). We define the
other invariant submanifold as

∆ =
{

(φ, λ) ∈ M̄CB(0,0,π)

∣∣∣ H0 = 0
}

=
{

(φ, λ) ∈ M̄CB(0,0,π)

∣∣∣ φ = π
}

, (46)

noting that the one-dimensional reduced dynamics on ∆ are
characterized by λ

′
= 2eλ

(
eλ − 1

)
, i.e. all trajectories on

∆ move away from the point λ = 0. These two invariant
manifolds (and representative particle formations on Mstate)
are depicted in the phase portrait2 for the α = 0 case, in
figure 4. Since φ ∈ S1 and therefore φ = 0 is identified with
φ = 2π, the phase portrait should be viewed as a punctured
cylinder which has been cut along the set M̄0 and unwrapped.

The following proposition summarizes the stability analy-
sis for the α = 0 case, demonstrating that ∆ is unstable and
M̄0 is attractive on a large region of M̄CB(0,0,π).

Proposition 5: Let M̄CB(0,0,π), M̄0 and ∆ be defined as
in (33), (40) and (46) respectively. Any trajectory of (43)
starting in the set

M̄CB(0,0,π) −∆ (47)

converges asymptotically to M̄0.

Proof: Let H0 be defined as in (44), and define

Ωε
0 =

{
(φ, λ) ∈ M̄CB(0,0,π)

∣∣∣ H0 ≤ −ε
}

, (48)

where ε satisfies 0 < ε ≤ 2. Note that Ωε
0 is closed and

positively invariant under the dynamics (43). From (45), it
is clear that H

′

0 ≤ 0 on Ωε
0 with H

′

0 = 0 on Ωε
0 if and

only if H0 = −2, which corresponds to the invariant set
M̄0. Though Ωε

0 is not bounded as a set, we claim that every
trajectory of (43) which starts in Ωε

0 is bounded. To prove
this claim, we argue by contradiction. If such a trajectory

2All phase portraits were created with the pplane tool for MATLAB,
available at http://www.math.rice.edu/∼dfield/.

were unbounded, then it must become unbounded in λ (since
it cannot cross M̄0 or ∆). Since there are no equilibrium
points contained in Ωε

0 except for the set M̄0, and H
′

0 < 0
on Ωε

0 − M̄0, it must be that the trajectory asymptotically
approaches the set M̄0 while becoming unbounded in the
direction λ = +∞ or λ = −∞. However, by Proposition 4
it holds that limφ→0

∂φ
∂λ = −∞, and therefore M̄0 can not

serve as an asymptote for the trajectory. Hence, the trajectory
must be bounded, and therefore by Birkhoff’s theorem the
ω-limit set is nonempty, compact and invariant. Asymptotic
convergence to M̄0 follows as in the steps in the proof of
LaSalle’s Invariance Principle [9]. Finally, since ε can be
arbitrarily small, it follows that the region of convergence is
given by M̄CB(0,0,π) −∆. �

B. Analysis of the α ∈ (−π/2, 0) ∪ (0, π/2) case

For α ∈ (−π/2, 0)∪ (0, π/2), our dynamics are as stated
in (39). The phase portrait (as displayed in figure 5 for α =
π/3) suggests that most trajectories converge asymptotically
to the equilibrium set M̄α, a result which we can prove
analytically for trajectories which start in the shaded regions
Ω+

α and Ω−α (defined below).

Proposition 6: For any α ∈ (−π/2, 0)∪ (0, π/2), we define

Ωα =
{

(φ, λ) ∈ M̄CB(α,α,π+α)

∣∣∣
cos(φ) ≥ max [cos(α), |sin(α)|]

}
. (49)

Let M̄α be defined as in (40). Every trajectory of (43) starting
in Ωα converges asymptotically to M̄α.

Proof: Due to space constraints, we provide only a sketch
of the proof. As depicted in figure 5, if we define

Ω+
α =

{
(φ, λ) ∈ Ωα

∣∣∣ sin(φ) > 0
}

,

Ω−α =
{

(φ, λ) ∈ Ωα

∣∣∣ sin(φ) < 0
}

,

then the set Ωα can be decomposed as Ωα = Ω+
α ∪M̄α∪Ω−α .

By a rather lengthy analysis, one can demonstrate that φ
′
< 0

on Ω+
α and φ

′
> 0 on Ω−α , and therefore the quantity V =

− cos(φ) satisfies V
′ ≤ 0 on Ωα with V

′
= 0 only on the

set M̄α ⊂ Ωα. The proof then proceeds analogously to the
proof of Proposition 5, using a similar argument to prove
boundedness of trajectories and then applying the steps from
the proof of LaSalle’s Invariance Principle [9]. �

C. Analysis of the α = π/2 case

Substitution of α = π/2 into the dynamics (39) yields

φ
′
= P

[
eλ
(
1− cos(φ)

)
− 1
]

+ cos(φ) + eλ,

λ
′
= sin(φ)

(
Peλ + 1

)
. (50)

The phase portrait (displayed in figure 6) reveals some
remarkable properties of the trajectories of these dynamics.
Analogous to previous cases, the set M̄π/2 consists of
a continuum of equilibria which correspond to rectilinear
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Fig. 5. Depiction of the {φ, λ} phase portrait for α = π/3, representing
the α ∈

(
0, π

2

)
case. The dashed line is the set M̄α, a continuum of

equilibria for the dynamics (39) corresponding to rectilinear equilibria for
the full dynamics (1). As stated in Proposition 6, trajectories which start
in the shaded regions can be shown to converge asymptotically to M̄α.

Fig. 6. Depiction of the {φ, λ} phase portrait for the α = π/2 case.
Analogous to previous cases, the set M̄π/2 consists of a continuum of
rectilinear equilibria of the type shown. However, in this case the phase
portrait indicates that all trajectories not starting on M̄π/2 are in fact
periodic in the {φ, λ} space. Note that the solid black curve corresponds
to the nullcline (φ

′
= 0), and the dashed black line corresponds to the

nullcline (λ
′
= 0), which is also the fixed-point set ΣF for the reverser F

defined in Proposition 7.

equilibria (of the type shown) in the full state space, but
unlike the previous cases, there is no set on which trajectories
converge asymptotically to M̄π/2. Rather, all trajectories that
do not start on M̄π/2 exhibit periodic behavior in the {φ, λ}
space, depicted in the phase portrait as counter-clockwise
closed orbits. (Analogous clockwise orbits appear in the
α = 3π/2 case.) The corresponding particle trajectories in
the plane display precession, as illustrated in figure 7. We
proceed using the notion of reversible dynamics as in [10].

Definition 1 (Involution): A diffeomorphism F : M −→ M
from a manifold M to itself is said to be an involution if
F 6= idM , the identity diffeomorphism, and F 2 = idM , i.e.
F (F (m)) = m,∀m ∈ M .

Definition 2 (F-reversibility): A vector field X defined over
a manifold M is said to be F-reversible if there exists an
involution F such that F∗(X) = −X , i.e. F maps orbits of
X to orbits of X , reversing the time parametrization. Here
(F∗(X))(m) = (DF )F−1(m)X(F−1(m)) ∀m ∈ M is the
push-forward of F . We call F the reverser of X .

Fig. 7. These MATLAB plots illustrate 3-particle motions in the plane
for different initial conditions arising in the α = π/2 case. The associated
phase space i.e. (φ, λ) trajectories are periodic, and result in the precessing
behavior in physical space depicted here.

The following proposition establishes that the dynamics
(50) are in fact F-reversible.

Proposition 7: The vector field defined by (50) is F-
reversible, with reverser F (φ, λ) = (−φ, λ).

Proof: Identifying the vector field from (50) as X(φ, λ),
we have X1(φ, λ) = φ

′
and X2(φ, λ) = λ

′
. Observe from

(38) that P (−φ, λ) = P (φ, λ), and hence direct calculation
from (50) establishes that X1(−φ, λ) = X1(φ, λ) and
X2(−φ, λ) = −X2(φ, λ). Therefore,

(F∗(X))(φ, λ) = (DF )(−φ,λ)X(−φ, λ)

=
[
−1 0
0 1

] [
X1(φ, λ)
−X2(φ, λ)

]
= −X(φ, λ), (51)

which establishes the claim. �

Proposition 7 leads us to the following theorem of
Birkhoff [11].

Theorem (G.D. Birkhoff): Let X be an F-reversible vector
field on M and ΣF the fixed-point set of the reverser F . If
an orbit of X through a point of ΣF intersects ΣF in another
point, then it is periodic.

For the fixed point set ΣF = {(φ, λ) : φ = π} of our
reverser F (defined in Proposition 7), in order to employ
Birkhoff’s theorem to show all trajectories (not starting
on M̄π/2) are periodic, we must show that all trajectories
intersect ΣF twice. (Note that here ΣF is the nullcline
(λ

′
= 0).) Numerical computation of the nullcline (φ

′
= 0)

with the MATLAB tool pplane clearly shows that the phase
space is partitioned into four regions (see figure 6) with the
characterization

region I: φ
′
> 0, λ

′
< 0; region II: φ

′
< 0, λ

′
< 0;

region III: φ
′
< 0, λ

′
> 0; region IV: φ

′
> 0, λ

′
> 0.
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Then we proceed with the application of the Birkhoff theo-
rem by (a) first showing that the trajectories starting on the
portion of ΣF which serves as the boundary between regions
I and IV must reach the boundary between I and II, and (b)
showing that a trajectory starting on the boundary between I
and II must reach ΣF in the portion that serves as the bound-
ary between II and III. Then Birkhoff’s theorem implies that
in fact all orbits are periodic (except for equilibria on M̄π/2).

A purely analytical argument on the nature of the nullcline
(φ

′
= 0) is being worked out.

Remark: If we define γ , ln (ρ1), then for the α = π/2
case we derive from (32)

γ
′
= − sin(φ)Peλ. (52)

Having demonstrated that φ and λ are periodic with a
common period (which we denote as T ) and observing from
(50) and (52) that γ

′
= −λ

′
+ sin(φ), we have

γ(τ + T )− γ(τ) =
∫ τ+T

τ

[
−λ

′
(σ) + sin(φ(σ))

]
dσ

= − [λ(τ + T )− λ(τ)] +
∫ τ+T

τ

sin(φ(σ))dσ. (53)

By the periodicity of φ and λ and by the symmetry of
trajectories about the set ΣF (from Proposition 7 and
Birkhoff’s theorem) it holds that (53) is zero and hence γ
is also periodic with period T , i.e. the shape trajectories on
MCB( π

2 , π
2 , 3π

2 ) are periodic. Finally, we note from (12) that
the control inputs are also periodic.

D. Analysis of the α ∈ (π/2, 3π/2) case

For α ∈ (π/2, 3π/2), our dynamics are as stated in (39).
The phase portrait, displayed in figure 8, reveals that the
equilibria of M̄α are unstable in this case. Generic trajecto-
ries on M̄CB(α,α,π+α) tend to spiral in towards the excluded
point φ = π, λ = 0, which implies that ρ3/ρ1 −→ 0.
Instability of the equilibria in M̄α follows since linearization
of the dynamics (39) about an equilibrium point (0, λ0) ∈
M̄α yields the Jacobian matrix(

e2λ0 + eλ0 + 1
) [ − cos(α) 0

sin(α) 0

]
, (54)

which has an eigenvalue at −
(
e2λ0 + eλ0 + 1

)
cos(α) > 0

(for α ∈ (π/2, 3π/2)).

VI. CONCLUSION

In this work we have detailed a reduction of a 3n-
dimensional system to a (2n − 4) dimensional system (by
way of symmetry, geometry, and constraint) in the context
of multiple agents engaged in cyclic CB pursuit. For the
case of n = 3, this reduction enabled an analysis of stability
properties for a particular class of rectilinear equilibria by
way of phase portrait analysis. For a certain choice of
parameters, it was demonstrated that the 3-agent system
exhibits infinitely many periodic orbits in the CB Pursuit
Manifold MCB( π

2 , π
2 , 3π

2 ).

Fig. 8. Depiction of the {φ, λ} phase portrait for α = 2π/3, representing
the α ∈ (π/2, 3π/2) case. Here the equilibria of M̄α are unstable, and
trajectories asymptotically approach φ = π, λ = 0, i.e. ρ3/ρ1 −→ 0.

Ongoing work includes an analysis of stability properties
for three-particle circling equilibria (as well as spiraling tra-
jectories which preserve pure shape), and a characterization
of three-particle cyclic CB pursuit trajectories in the full
three-dimensional space.
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