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Abstract— This paper develops a new set of necessary and
sufficient conditions for the stability of differential linear
repetitive processes, based on application of the Kalman-
Yakubovich-Popov lemma. These new conditions reduce
the problem of determining the stability of an example to
checking for the existence of a solution of a set of linear matrix
inequalities. A relatively easy extension to enable stabilizing
control law design, with additional perfromance specifications
if required, is established. The inclusion of extra design
specifications is developed for the case of regional constraints
on the eigenvalues of state matrix and a finite frequency range
design. Finally, a possible application in iterative learning
control is briefly discussed.

I. INTRODUCTION

Repetitive processes make a series of sweeps, termed
passes, through a set of dynamics defined over a finite
duration known as the pass length. On each pass an output,
termed the pass profile, is produced which as a forcing
function on, and hence contributes to, the dynamics of
the next pass profile.

Let α <∞ denote the pass length and denote the, vector
or scalar valued, pass profile by yk(t), 0 ≤ t ≤ α. Then in
a repetitive process the pass profile yk(t) acts as a forcing
function on, and hence contributes to, the dynamics of
the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0. This inter-
pass interaction is the source of the unique control problem
where the sequence of pass profiles {yk} generated can
contain oscillations that increase in amplitude in the pass-
to-pass (k) direction.

Repetitive processes have their origins in the coal mining
and metal rolling industries where references to the orig-
inal papers are given in [1]. In coal mining, the cutting
machine rests on the previous pass profile, the height of
the stone/coal interface above some datum line, during
the production of the current one and the basic geome-
try confirms that this industrial application is a repetitive
process in the sense defined above. The stability problem
for this repetitive process is caused, in the main, by the
machine’s weight and can result in undulations of a level
that require productive work is no longer possible without
their removal.
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Applications exist where adopting a repetitive process
setting for analysis has distinct advantages over alterna-
tives. Examples include classes of iterative learning con-
trol schemes [1], [2] and iterative algorithms for solv-
ing nonlinear dynamic optimal control problems based on
the maximum principle [3]. In the latter example, use
of the repetitive process setting provides the basis for
the development of highly reliable and efficient solution
algorithms that have advantages over alternatives in some
cases of practical interest.

Recently iterative learning control algorithms designed in
using a repetitive process setting have been experimentally
tested [4]. Also there has been work on the use of this
setting for the analysis of OL-Nash games with a gas
pipeline application [5].

This paper considers differential linear repetitive pro-
cesses where the dynamics along the pass are governed
by a matrix linear differential equation and the pass-to-
pass dynamics by a discrete linear matrix equation. It is
also possible to consider cases where the dynamics along
the pass are also governed by a discrete linear matrix
equation to form a discrete linear repetitive process.

Recognizing the unique control problem, the stability the-
ory [1] for linear repetitive processes is of the bounded-input
bounded-output (BIBO) type and is based on an abstract
model in a Banach space setting that includes a large range
of examples as special cases. In terms of their dynamics
it is the pass-to-pass coupling, noting again their unique
feature, which is critical and in physical terms a bounded
initial pass profile (k = 0) is required to produce a bounded
sequence of pass profiles. Two practically relevant forms
of stability are possible, termed asymptotic and along the
pass, respectively, where the former demands this property
over the finite and fixed pass length α for a given example
and the latter for all possible pass lengths. Also asymptotic
stability is a necessary condition for stability along the pass.

Application of the stability along the pass stability theory
to the processes considered in this paper produces three
conditions that can be tested by direct application of stan-
dard, or 1D, linear systems stability tests. Two of these tests
require that the eigenvalues of the matrices which describe
the previous pass profile contribution to the current pass
profile and the current pass state vector contribution to the
along the pass dynamics lie in the open unit circle and open
left-half of the complex plane, respectively. The third test
requires the computation of the eigenvalues of the transfer-
function matrix representation of the contribution of the
previous pass profile dynamics to current one for s =
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jω, ω ≥ 0, where s denotes the Laplace transform variable.
Assuming that the first two conditions hold, stability along
the pass requires that the loci generated by the eigenvalues
of this transfer-function matrix lie in the open unit circle in
the complex plane.

The last condition for stability along the pass of the three
discussed above can be computationally intensive and is,
in general, not suitable for the synthesis of control laws
for stability and performance. Furthermore, there is no link
between existing results and practical requirements for the
control of repetitive processes that are often described by
multiple Frequency Domain Inequalities (FDIs) in semi-
finite frequency ranges. To overcome these problems, this
paper makes extensive use of the Kalman-Yakubovich-
Popov (KYP) lemma to establish the equivalence between
FDIs for a transfer-function matrix and Linear Matrix
Inequalities (LMIs) defined in terms of its state-space
realization, as in [6] for 1D linear systems.

The new results in this paper start with the development
of LMI based tests for stability along the pass. This analysis
leads on to control law design algorithms procedure that
can include multiple design specifications, whereas the vast
majority of currently known designs ensure stability but
cannot impose many useful additional performance specifi-
cations [1]. These design algorithms are based on sufficient
but not necessary conditions and a possible application to
the design of ILC schemes is briefly discussed.

Throughout this paper, the null and identity matrices with
appropriate dimensions are denoted by 0 and I, respectively.
Moreover, sym(X) is used to denote X +XT and X⊥

denotes the orthogonal complement. The notation X � Y
(respectively X � Y ) means that the matrix X − Y is
symmetric and positive semi-definite (symmetric and posi-
tive definite, respectively). The symbol (?) denotes entries
in symmetric matrices, r(·) denotes the spectral radius and
C− the open left-half of the complex plane. Use will also
be made of the following results whose proofs can be found
in [7], [8], [9].

Lemma 1: For linear time-invariant systems with
transfer-function matrix G(s) and frequency response
matrix

G(jω)=C(jωI−A)−1B+D,
the following inequalities are equivalent
(i) the frequency domain inequality[

G(jω)
I

]T
Π

[
G(jω)
I

]
≺ 0, ∀ωl ≤ ω ≤ ωh,

where Π is a given real symmetric matrix
(ii) the LMI[

A B
I 0

]T
Ξ

[
A B
I 0

]
+

[
C D
0 I

]T
Π

[
C D
0 I

]
≺0, (1)

where Q � 0, P is a symmetric matrix and the matrix
Ξ is specified as follows

Ξ =

[
−Q P+jωcQ

P+jωcQ −ωlωhQ

]
,

where ωc=(ωl+ωh)/2 for a finite frequency range or

Ξ =

[
−Q P
P 0

]
,

for an entire frequency range, that is, ωl=0, ωh=∞.
Lemma 2: Given a symmetric matrix Ψ ∈ Rm×m and

two matrices Υ, Σ of column dimension m, there exists
a matrix W such that the following LMI holds

Ψ + ΥTWTΣ + ΣTWΥ ≺ 0

if and only if the following two inequalities with respect
to W are satisfied

Υ⊥ΨΥ⊥T ≺ 0,

Σ⊥ΨΣ⊥T ≺ 0.
(2)

II. DIFFERENTIAL LINEAR REPETITIVE PROCESSES

Following [1], the state-space model of a differential
linear repetitive process has the following form over 0 ≤
t ≤ α, k ≥ 0

ẋk+1(t) =Axk+1(t) +B0yk(t) +Buk+1(t)

yk+1(t) =Cxk+1(t) +D0yk(t) +Duk+1(t)
(3)

where α < +∞ denotes the pass length, and on pass k
xk(t) ∈ Rn is the state vector, yk(t) ∈ Rm is the pass
profile (output) vector and uk(t) ∈ Rr is the input vector.

To complete the process description, it is necessary
to specify the boundary conditions, that is, the state initial
vector on each pass and the initial pass profile, that is,
on pass 0. For the purposes of this paper, no loss of gen-
erality arises from assuming that xk+1(0) = 0, k ≥ 0,
and the initial pass profile y0(t) consists of entries that are
known functions of t over [0, α].

A. Stability Theory

As discussed in the previous section, the stability the-
ory [1] for linear repetitive processes is based on an abstract
model in a Banach space setting which includes a wide
range of such processes as special cases, including those
described by the state-space model and boundary conditions
considered in this paper. In terms of the process dynamics
it is the pass-to-pass coupling, noting again their unique
feature, which is critical and has the form yk+1 = Lαyk,
where yk ∈ Eα, Eα is a Banach space with norm || · || and
Lα is a bounded linear operator mapping Eα into itself.
In the special case of processes described by (3) with the
given boundary conditions Lα is a convolution operator.

Asymptotic stability demands that a bounded initial pro-
file produces a bounded sequence of pass profiles over
the finite and fixed pass length. It can be shown [1] that
this property is equivalent to the existence of real scalars
Mα > 0 and λα ∈ (0, 1) such that ||Lkα|| ≤Mαλ

k
α, k ≥ 0,

where || · || also denotes the induced norm. The necessary
and sufficient condition for this property is r(Lα) < 1 and
for processes described by (3) asymptotic stability holds if
and only if r(D0) < 1, that is, all eigenvalues of D0 must
lie in the open unit circle in the complex plane.
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Suppose that (3) is asymptotically stable and the input
sequence applied {uk+1}k converges strongly as k → ∞,
that is, in the sense of the norm on the underlying function
space, to u∞. Then the strong limit y∞ := lim

k→∞
yk is

termed the limit profile corresponding to this input sequence
and is described by a 1D linear systems state-space model
with state matrix Alp := A+B0(I −D0)−1C. Hence
under asymptotic stability the process dynamics can, after
a sufficiently large number of passes have elapsed, be
replaced by those of a 1D linear systems state-space model.

Asymptotic stability does not guarantee that the limit
profile is stable. A simple counter-example is the case when
A = −1, B = 1, B0 = 1+β, C = 1, D = 0, D0 = 0,
where β is a real scalar. This example is asymptotically
stable with resulting limit profile state matrix Alp = β and
hence is unstable for β ≥ 0.

To prevent cases such as the above example from arising,
stability along the pass demands the BIBO property for all
possible values of the pass length (mathematically this can
be analyzed by letting α→∞). Also it can be shown that
stability along the pass requires the existence of finite real
scalars M∞ > 0 and λ∞ ∈ (0, 1), which are independent
of α, such that ||Lkα|| ≤M∞λk∞, k ≥ 0.

Several sets of necessary and sufficient conditions for
stability along the pass of differential linear repetitive pro-
cesses described by (3) are known [1], such as the following.

Theorem 1: A differential linear repetitive process of the
form (3) is stable along the pass if and only if

i) r(D0) < 1,
ii) all eigenvalues of the matrix A lie in C−, and

iii) all eigenvalues of G(s) = C(sI −A)−1B0+D0

s = jω, ∀ω ≥ 0, have modulus strictly less than unity
The first two conditions of this theorem are the stability

condition for 1D discrete and differential linear systems, re-
spectively, and the third has a Nyquist based interpretation.
In the single-input single-output (SISO) case condition iii)
of Theorem 1 requires that the Nyquist plot generated by
G(s), lies inside the unit circle in the complex plane for
all s = jω, ∀ ω. In physical terms this condition requires
that each frequency component of the initial pass profile
is attenuated from pass-to-pass. For the remainder of this
paper attention is restricted to SISO examples as this case
arises most often in application areas such as ILC and also
extension to the multivariable case is straightforward.

Most applications will require control law design to
ensure stability along the pass and additional performance
objectives, where most of the currently available methods
do not allow these performance specifications to be imposed
as design constraints. This paper develops algorithms with
this property for stability along the pass in the presence of
design specifications on the locations of the eigenvalues of
the state matrix of the controlled process.

The starting point for analysis is condition iii) of Theo-
rem 1 expressed for SISO examples in the form

|G(jω)| < 1,∀ω ≥ 0, (4)

or, equivalently,[
G(jω)

1

]T[
1 0
0 −γ2

][
G(jω)

1

]
≺ 0, ∀ω ≥ 0, (5)

with γ = 1. Also choosing the matrix Π as

Π =

[
1 0
0 −γ2

]
(6)

and making use of Lemma 1 for the entire frequency
range, (5) is equivalent to[

A B0

I 0

]T
Ξ

[
A B0

I 0

]
+

[
C D0

0 1

]T
Π

[
C D0

0 1

]
≺0, (7)

where Q � 0, P is a symmetric matrix, and the matrix Ξ
is given by

Ξ =

[
−Q P
P 0

]
.

To be useful in control law design, (7) must be transformed
to an equivalent representation with no product terms in-
volving P , Q, and process state-space model matrices. The
following result establishes the required transformation.

Theorem 2: A SISO differential linear repetitive process
described by (3) is stable along the pass if and only if there
exist matrices W , Q � 0, R � 0, S � 0, and a symmetric
matrix P such that the following LMIs are feasible

DT
0 RD0 −R ≺ 0, (8)

ATS + SA ≺ 0, (9)
−Q P +WT 0 0

P +W −ATWT −WA −WB0 C
T

0 −BT0 WT −1 DT
0

0 C D0 −1

≺0. (10)

Proof: Two first LMIs follow immediately from
Lyapunov stability theory for 1D discrete and differential
linear systems applied to conditions i) and ii) in Theorem 1,
respectively. To establish the LMI (10), (7) can be rewritten
as [

AT I 0
BT0 0 1

]−Q P 0
P CTC CTD0

0 DT
0 C DT

0 D0−1

AB0

I 0
0 1

≺0, (11)

which is of form of the first inequality in (2) of Lemma 2
with

Υ⊥=

[
AT I 0
BT0 0 1

]
,Ψ=

−Q P 0
P CTC CTD0

0 DT
0 C DT

0 D0−1

 ,
and hence

ΥT =
[
−I A B0

]
.

Consequently for a matrix Σ that satisfies the second
inequality of (2), application of Lemma 2 gives that (11) is
feasible if−Q P 0

P CTC CTD0

0 DT
0 C DT

0 D0−1

−sym(ΥWTΣT )≺0, (12)
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which is satisfied for Σ = [0 I 0]
T .

Suppose that there exist matrices Q�0, W, and symmet-
ric P such that the LMIs (10) are feasible. Then on applying
the Schur’s complement formula it follows that (12) is
equivalent to the LMI of (10) and the proof is complete.

Remark 1: In the SISO case, the LMI (8) can be replaced
by the simple scalar inequality |D0| < 1.

III. CONTROL LAW DESIGN

The control law considered in this paper is of the form

uk+1 =
[
K1 K2

] [xk+1(t)
yk(t)

]
, (13)

where K1 and K2 are compatibly dimensioned matrices.
This control law is formed as a weighted sum of current pass
state feedback and feedforward of the previous pass profile,
see [1] for further background on this form of control action.

Application of the control law (13) to (3) gives the con-
trolled process state-space model[

ẋk+1(t)
yk+1(t)

]
=

[
A+BK1 B0+BK2

C+DK1 D0+DK2

] [
xk+1(t)
yk(t)

]
. (14)

The existence of stabilizing K1 and K2 can be characterized
in LMI terms as follows.

Theorem 3: Suppose that a control law of the form (13)
is applied to a SISO differential linear repetitive process
described by (3). Then the resulting controlled process is
stable along the pass if there exist matrices Y , X1, X2

Q � 0, S � 0, a symmetric matrix P, and scalars p, q such
that the following LMIs are feasible[

−1 D0 +DX2

XT
2 D

T +DT
0 −1

]
≺ 0, (15)

[
−pY −pY T S+pAY +pBX1−qY T

(?) sym(qAY + qBX1)

]
≺0, (16)


−Q̂ P̂+Y T 0 0

P̂+Y −sym(AY +BX1) −B0−BX2 Y CT +XT
1 DT

0 −BT
0 −XT

2 BT −1 DT
0 +XT

2 DT

0 CY +DX1 D0+DX2 −1

≺0,

(17)
where the scalars p and q are chosen to satisfy

qp+pq < 0. (18)

If the LMIs (15)–(17) are feasible, stabilizing control law
matrices K1 and K2 can be calculated using K1 =X1Y

−1,
K2 =X2.

Proof: Application of the result of Theorem 2 to the
controlled process state-space model shows that stability
along the pass holds if and only if

(D0+DK2)TR(D0+DK2)−R ≺ 0, (19)

(A+BK1)TS+S(A+BK1) ≺ 0, (20)


−Q P+WT

P+W −(A+BK1)
TWT −W (A+BK1)

0 −(B0 +BK2)
TWT

0 C +DK1

0 0
−W (B0+BK2) (C+DK1)

T

−1 (D0 +DK2)
T

D0 +DK2 −1

≺0.

(21)

Also in the SISO case D0 +DK2 and R � 0 in (19) are
scalars. Hence the LMI

(D0 +DK2)TR(D0 +DK2)−R ≺ 0,

for R � 0 is equivalent to

(D0+DK2)2−1 ≺ 0,

and application of the Schur’s complement formula to this
last inequality gives (15). Next, it follows immediately
from (20) that[

(A+BK1)T I
][ 0 S
S 0

][
A+BK1

I

]
≺0, (22)

and, since for arbitrary chosen real numbers p and q
satisfying (18) an annihilator of [−qI pI]T is [pI qI],[

pI qI
][ 0 S
S 0

][
pI
qI

]
≺0.

Introducing Ã = A+BK1, and noting that an annihilator
of [−I Ã]T is [ÃT I], application of Lemma 2 gives
that (22) is equivalent to[

0 S
S 0

]
≺ sym

([
−I
ÃT

]
Y
[
−qI pI

])
, (23)

which is just (16). The LMI (17) is directly obtained by pre-
and post-multiplying (21) by diag(W−1,W−1, 1, 1) and
setting Y = W−1, P̂ = W−1PW−1, Q̂ = W−1QW−1,
X1 = K1W

−1, X2 = K2, and the proof is complete.
The reason why this last result is sufficient but not

necessary, unlike Theorem 2 for stability along the pass in
the uncontrolled case, is due to the introduction of the same
matrix variable Y in the LMIs (16) and (17).

IV. CONTROL LAW DESIGN WITH FINITE FREQUENCY
RANGE ATTENUATION

By analogy with the 1D linear systems case, enforcing
the frequency attenuation as required by condition iii)
of Theorem 1 over the complete frequency range is either
unobtainable or very restrictive. Hence the subject of this
section is control law design where the attenuation is only
required over a finite frequency range ωl ≤ ω ≤ ωh, where
the lower and upper frequency values are selected based on
knowledge of the particular example considered. Moveover,
the eigenvalues of the state matrix (A and A+BK1 in the
uncontrolled and controlled cases, respectively) govern the
dynamics produced along any pass and it will be required
in some applications to place these in particular locations in
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the open left-half of the complex plane to meet performance
specifications. This section therefore considers control law
design in the SISO case where the control law is required to
a) ensure that r(D0 +DK2) < 1, b) place the eigenvalues
of Ã = A+BK1, inside a pre-specified region of the
open left-half of the complex plane and c) ensure that
|Gc(jω)| < 1 over a pre-specified finite frequency range
where

Gc(s)=(C+DK1)(sI−A−BK1)−1(B0+BK2)+D0+DK2.

The region of interest for the eigenvalues of A+BK1 is
the interior of the circle of radius r with center at c given
by

C(c, r) := {x+ jy ∈ C : |x+ jy − c| < r} . (24)

To guarantee that the interior of this circle is located in open
left-half complex plane requires c < 0 and |c| > r. Also by
choosing

Φ =

[
1 −c
−c |c|2 − r2

]
,

and using results in, for example, [7], the eigenvalues
of Ã = A+BK1 are located inside the disc C(c, r) if
there exists a matrix Y such that

Φ⊗ S ≺ sym

([
−I
ÃT

]
Y
[
−qI pI

])
,

where scalars p and q are real numbers satisfying

p2−2cpq+q2(c2−r2)<0 (25)

and ⊗ denotes the matrix Kronecker product.
The following result enables the control law to be de-

signed to satisfy the design constraints given above.
Theorem 4: Suppose that a control law of the form (13)

is applied to a SISO differential linear repetitive process
described by (3). Then the resulting controlled process is
stable along the pass over the finite frequency range ωl ≤
ω ≤ ωh with ωc=(ωl+ωh)/2 and eigenvalues of the state
matrix Ã = A+BK1 located inside the sector C(c, r) of
the open left-half of the complex plane defined by (24) if
there exist matrices Y , X1, X2, Q � 0, S � 0, a symmetric
matrix P, and scalars p, q such that the following LMIs are
feasible [

−1 D0 +DX2

XT
2 DT +DT

0 −1

]
≺ 0, (26)[

S − pY −pY T −cS+pAY +pBX1−qY T

(?) sym(qAY + qBX1)+(c2−r2)S

]
≺0, (27)

−Q̂ P̂+Y T +jωcQ

P̂+Y −jωcQ −ωlωhQ−sym(AY +BX1)
0 −BT

0 −XT
2 BT

0 CY +DX1

0 0
−B0−BX2 Y CT +XT

1 DT

−1 DT
0 +XT

2 DT

D0+DX2 −1

≺0,

(28)

where the scalars p and q are chosen to satisfy (25).
If LMIs (26)–(28) are feasible, control law matrices K1

and K2 can be calculated using K1 =X1Y
−1, K2 =X2.

Proof: The LMIs in this result are obtained by per-
forming similar transformations to those in the proofs of
Theorem 3 and 2, except for application the finite frequency
results of Lemma 1 and the regional eigenvalue location
constraints.

A. Numerical example

Consider the case of (3) when

A=

[
−0.6 1.0
0.1 −0.4

]
, B0 =

[
0.2
0.4

]
, B=

[
0.2
1.4

]
C=

[
−1.0 0.1

]
, D0 = 1.1, D = 1.4

and the frequency range over which attenuation is to be
achieved given as 0.0001 ≤ ω ≤ 20 [rad/sec]. Setting
p = 10, q = −1 and solving the set of LMIs (26)-(27)
for the regional constraint C(−10, 4) on the eigenvalues
matrix Ã = A+BK1 gives

K1 =
[
−46.5749 −5.6923

]
, K2 = −0.8589.

The Nyquist plots for the uncontrolled and controlled pro-
cesses are shown in Fig. 1 and confirm that for the chosen
frequency range the Nyquist plot of the controlled process is
inside the unit circle. Furthermore, the eigenvalues of Ã =

Nyquist Diagram
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Fig. 1. Nyquist plots for the uncontrolled and controlled processes.

A+BK1 are {−12.2424,−6.0418} and obviously lie inside
the specified region C(-10,4).

V. APPLICATION TO ILC
Iterative learning control (ILC) is a technique for control-

ling systems operating in a repetitive (or pass-to-pass) mode
with the requirement that a reference trajectory yref (t)
defined over a finite interval 0 ≤ t ≤ α is followed to a high
precision [10], [11]. Examples of such systems include
robotic manipulators that are required to repeat a given task
and chemical batch processes.

Consider an ILC application where there is a need to
regulate along the pass behavior in addition to forcing pass-
to-pass error convergence. Then for discrete dynamics one
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way to proceed is to design a feedback control loop for
the plant and then enforce pass-to-pass error convergence
based on the lifted model. The lifted model is a 1D linear
systems model of the dynamics which is static in the
pass number. This option is not available for differential
dynamics and by adopting a repetitive process setting for
analysis it is possible to consider control law for along
the pass performance and pass-to-pass error convergence
simultaneously.

Introduce for analysis purposes the following vector
defined in terms of the difference between the current and
previous pass state vector

ηk+1(t) =

∫ t

0

(xk+1(τ)− xk(τ)) dτ, (29)

and let ek(t) = yref (t) − yk(t) denote the current pass
error, where yref (t) is the pre-specified reference vector
for the ILC problem. Also let ∆uk+1(t) be the change in
the control signal between two successive passes. Then it
is possible to proceed as in, for example, [4] and use an
ILC law which requires the current trial state vector xk(t)
of the plant using ∆uk+1(t) =K1η̇k+1(t)+K2ėk(t). The
controlled system dynamics can be written in the form

η̇k+1(t) =(A+BK1)ηk+1(t)+(BK2)ek(t),

ek+1(t) =− C(A+BK1)ηk+1(t)+(I−CBK2)ek(t).
(30)

The following result now gives an ILC design procedure.
Theorem 5: The ILC scheme (30) is stable along the pass

over the finite frequency range ωl ≤ ω ≤ ωh with ωc =
(ωl+ωh)/2 and eigenvalues of the state matrix Ã = A+BK1
located inside the sector C(c, r) of the open left-half of the
complex plane defined by (24) if there exist matrices Y ,
X1, X2, Q � 0, S � 0, a symmetric matrix P and scalars
p and q such that the following LMIs are feasible[

−1 1− CBX2

1−XT
2 BTCT −1

]
≺ 0, (31)[

S − pY −pY T −cS+pAY +pBX1−qY T

(?) sym(qAY + qBX1)+(c2−r2)S

]
≺0, (32)

−Q̂ P̂+Y T +jωcQ

P̂+Y −jωcQ −ωlωhQ−sym(AY +BX1)
0 −BT

0 −XT
2 BT

0 −CAY −CBX1

0 0
−B0−BX2 −Y ATCT −XT

1 BTCT

−1 1−XT
2 BTCT

1−CBX2 −1

≺0,

(33)

where scalars p and q are chosen to satisfy (25). If
LMIs (31)–(33) are feasible, the ILC control law matrices
K1 and K2 can be calculated using K1 =X1Y

−1, K2 =X2.

VI. CONCLUSIONS

This paper has developed new LMI based conditions for
stability of differential linear repetitive processes, leading to
new control law design algorithms. These new algorithms
allow control law design in the presence of practically

motivated design specifications such as regional constraints
on the location of the eigenvalues of the state matrix of the
controlled process and finite frequency ranges.
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