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Abstract— This paper deals with convergence analysis for
power series solutions to a partial differential equation for
nonlinear observer design with linear observer error dynamics.
This power series solution is used to design the gain matrix for a
Luenberger-like observer for nonlinear systems. The conditions
are identified to guarantee the convergence of the series in l2.
The linearized model of the original system is assumed to be
anti-stable at the origin for the convenience of presentation.
The convergent conditions can provide a guideline for nonlinear
observer design with a truncated series for the observer gain.

I. INTRODUCTION

Results for observer design of nonlinear systems started

to appear in 1970 [1], [2], and observer design for nonlinear

systems continue to attract significant attention of control re-

search with many results appeared in literature (for example,

see [3], [4], [5], [6], [7] etc). One significant result was on

observer design for nonlinear systems with linear observer

error dynamics by introducing output injection [8]. A more

general formulation of observers with linear observer error

dynamics is reported in [9] based on Lyapunov’s auxiliary

theorem in which a Luenberger-like observer is presented

with the observer gain to be determined by a nonlinear

function of the system state. This nonlinear function is a

solution to a partial differential equation. This result has

attracted significant attend in nonlinear observer design, as

evidenced by some of the recent results [10], [11], [12], [13],

[14], [15].

The partial differential equation in [9] depends on the

dynamics of the original system and the chosen dynamics

of observer errors. Although conditions have been identified

for the existence of a solution, a general solution to the partial

differential equation is difficult to obtain in general. When a

closed form solution is not available, series solutions can

be considered, and an iterative method of obtaining high

order polynomials has been introduced [9]. This series can

be truncated to a certain order and the truncated series can

then be used for computing observer gain in the nonlinear

observer design. In this paper, we consider the convergence

issue of the power series to the partial differential equation

for a class of nonlinear systems with nonlinear functions

in polynomials, and identify conditions for the series to

converge in l2. The conditions depend on the higher order

terms in relative to the first order one, and on the radius of

the state variables with respect to the origin. In establishing

the convergence result, we formulate the individual terms

in the series as states of a discrete-time system through
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proper matrix manipulations, and obtain the convergence

result based the dynamic of the discrete time system. An

easy assumption is made for the linearized model at the

origin to be anti-stable for the convenience of presenting

the basic concepts. With the result of the convergence of the

series, users would be more confident in selecting the order

of approximation and identifying the domain for the observer

errors to converge. A example is included to demonstrate the

notations used in the paper and to reveal some issues in the

convergence of the power series in the observer design.

II. PROBLEM FORMULATION

Consider a nonlinear system

ẋ = f(x), (1)

y = h(x) (2)

where x ∈ R
n is the state vector, y ∈ R

m is the output,

f : R
n → R

n, and h : R
n → R

m are continuous nonlinear

functions with f(0) = 0, and h(0) = 0, and n > m.

As shown in [9], an observer can be designed if there

exists a nonlinear function p : R
n → R

n such that

∂p(x)

∂x
f(x) = Ap(x) + Bh(x) (3)

where A ∈ R
n×n and B ∈ R

n×m are constant matrices with

A Hurwitz and {A, B} controllable. Let ξ = p(x), and its

dynamics are then described by

ξ̇ = Aξ + By,

y = h(p−1(ξ)).

from which an observer is designed as

˙̂
ξ = Aξ̂ + By,

x̂ = p−1(ξ̂) (4)

It is easy to see that the observer error dynamics is linear

as

˙̃
ξ = Aξ̃.

The observer can also be implemented in the original state

as

˙̂x = f(x̂) +

(

∂p

∂x̂
(x̂)

)−1

B(y − h(x̂)). (5)

which is in the same structure as the standard Luengerger

observer for linear systems by viewing
(

∂p
∂x̂

(x̂)
)−1

B as the

observer gain.

The key step in designing this type of nonlinear observers

is to solve the nonlinear function p(x) in (3). Sufficient
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conditions for the existence of solution of (3) have been

given in [9]. In case that a close-form solution is difficult

to obtain, solutions in power series can then be obtained. In

this paper, we analyze the convergence of the series solutions

to the partial differential equation (3) for nonlinear observer

design.

For the convergence analysis, we assume that functions

f(x) and h(x) are polynomials of x with finite orders, and

we introduce an assumption on the eigenvalues of ∂f
∂x

(0) and

A.

Assumption 1. All the eigenvalues of ∂f
∂x

(0) are positive

real numbers and distinct, and all the eigenvalues of A are

negative real numbers and distinct.

Remark 1: Even though functions f(x) and h(x) are

polynomials are with finite orders, the power series solution

to (3) is not of finite order in general. When f(x) and

h(x) are other smooth nonlinear functions, they can be

approximated by polynomials.

Assumption 1 guarantees the existence of a solution to the

partial differential equation (3), following the result shown

in [9].

Based on Assumption 1, we can state, with loss of

generality, that both ∂f
∂x

(0) and A are diagonal.

Remark 2: When the eigenvalues of ∂f
∂x

(0) and A are dis-

tinct, we can introduce suitable state transforms such that the

transformed system and transformed A satisfy Assumption

1 with diagonal ∂f
∂x

(0) and A. Let ∂f
∂x

(0) = T−1
1 F̄1T1 where

F̄1 is a diagonal matrix. Let x̄ = T1x, and we have

˙̄x = f̄(x̄)

y = h̄(x̄)

where f̄(·) = T1f(T−1
1 (·)), and h̄(·) = h(T−1

1 (·)). It is easy

to verify that ∂f̄
∂x

(0) = F̄1 that is diagonal. For A, we can

choose a controllable pair {A, B} with A diagonal. If A is

not diagonal, but with distinct eigenvalues, a transform can

be introduced. If A = T−1
2 ĀT2 with Ā diagonal, multiplying

both sides of (3) by T2, we have

T2
∂p(x)

∂w
f(x) = ĀT2p(x) + T2By

which gives

∂(T2p(x))

∂x
f(x) = Ā(T2p(x)) + T2By.

This means that the convergence analysis can be carried out

with the diagonal Ā together with Tp(x).

III. SOLUTIONS IN POWER SERIES

Series solutions for (3) are discussed in [9]. In this

section, we introduce an set of iterative matrix equations,

by taking similar notations for series solutions for nonlinear

output regulation equations in [16] for the convenience of

convergence analysis.

Let us denote a solution p(x) by

p(x) =

∞
∑

i=1

pi(x) (6)

where pi : R
n → R

n denotes all the polynomial terms

with the order i, ie, all the terms of xa1

1 wa2

2 . . . xan
n with

∑n

k=1 ak = i and ak ∈ N. Similarly, we denote

f(x) =

nf
∑

i=1

fi(x), (7)

h(x) =

nh
∑

i=1

hi(x) (8)

with the notations fi = 0 for i > nf , and hi = 0 for i > nh.

Substituting the above expressions into (3), we have

∞
∑

i=1

∂pi(x)

∂x

nf
∑

i=1

fi(x) = A

∞
∑

i=1

p(x) + B

nh
∑

i=1

hi(x). (9)

Comparing the order of the polynomial terms in above

equation, we have

∂p1(x)

∂x
f1(x) = Ap1(x) + Bh1(x),

∂p2(x)

∂x
f1(x) +

∂p1(x)

∂w
f2(x) = Ap2(x) + Bh2(x)

. . .
i

∑

j=1

∂pi−j+1(x)

∂w
fj(x) = Api(x) + Bhi(x),

. . . (10)

Re-arranging them, we have

∂p1(x)

∂x
f1(x) − Ap1(x) = Bh1(x), (11)

∂p2(x)

∂x
f1(x) − Ap2(x) = −

∂p1(x)

∂x
f2(x) + Bh2(x)

. . .
∂pi(x)

∂w
f1(x) − Api(x) =

−

i
∑

j=2

∂pi−j+1(x)

∂x
fj(x) + Bhi(x), (12)

. . .

An iterative solution can start from (11) for p1(x) and then

follows (12) for pi(x) for i = 1, 2, 3 etc.

For the first order term, we have p1(x) = P1x and

f1(x) = F1x with P1, F1 ∈ R
n×n being constant matrices,

and h1(x) = H1x with H1 ∈ R
n×m being a constant matrix.

Hence the equation (11) can be written as

P1F1x − AP1x = BH1x

which leads to a matrix equation

P1F1 − AP1 = BH1.

The solution of this equation is guaranteed by the condition

specified in Assumption 1.

For the high order terms, we need to introduce a few

notations. Let us introduce a base function for polynomials

such that we can write

pi(x) = Pivi(x).
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where vi(x) contains all the unique polynomial terms of

order i.
Adopting some notations from [16], we define

v(1) = x = [x1, . . . xn]T ,

and

v(i) = v(i−1) ⊗ x, for i > 1,

where ⊗ denotes Kronecker product. For example, with n =
2, we have

v(3) = [x3
1, x

2
1x2, x

2
1x2, x1x

2
2, x

2
1x2, x1x

2
2, x1x

2
2, x

3
2]

T ,

v3 = [x3
1, x

2
1x2, x1x

2
2, x

3
2]

T .

Hence, vi can be formed by taking the unique elements from

v(i), and it can be denoted by

vi = Miv
(i).

Note that Mi has more columns than rows for i > 1,

and therefore it is not invertible. However, since the unique

entries in v(i) are contained in vi, we can write

v(i) = Nivi.

It can be seen that MiNi = I , from their definitions.

With the notations vi, we can write fi(x) := Fivi(x) and

hi(x) := Hivi(x) with Fi and Hi are constant matrices with

proper dimensions.

Furthermore, we denote matrix notations Σi and Qi,j for

partial differential operations by

∂vi(x)

∂x
F1x := Σivi(x), (13)

∂vi−j(x)

∂w
fj+1(x) := −Qi,jvi(x) (14)

for j = 1, . . . , nf − 1. From Lemma 4.6 of [16], we have

the explicit expressions of Σi and Qi as

Σi := MiΣ̄iNi, (15)

Qi,j := Mi−jQ̄i,jNi (16)

where

Σ̄i =

[

i
∑

k=1

I(k−1)
n ⊗ F1 ⊗ I(i−k)

n

]

, (17)

Q̄i,j = −

[

i−j
∑

k=1

I(k−1)
n ⊗ Fj ⊗ I(i−j−k)

n

]

, (18)

and the superscript (k) denotes k times Kronecker products,

ie, I
(3)
n = In ⊗ In ⊗ In.

With the notations introduced, we can re-write the equa-

tion (12) as

PiΣivi(x) − APivi(x) =

nf−1
∑

j=1

Pi−jQi,jvi(x) + BHivi(x),

and therefore

PiΣi − APi =

nf−1
∑

j=1

Pi−jQi,j + BHi. (19)

for i ∈ N. If we have solutions of Pi form (19), we will

then have a solution for the regulation equation (3). Based

on Assumption 1, the solution of Pi is guaranteed.

Theorem 1: There exists a unique solution for the matrix

equation (19) if Assumption 1 is satisfied.

Proof. The existence of unique solution can be established

based on the results shown [9], [16].

IV. CONVERGENCE ANALYSIS OF POWER SERIES

SOLUTIONS

In this section, we will analyze the convergence issue

of the power series solutions obtained form the iterative

polynomial method. As shown in the previous section that Pi

can be obtained from (19) iteratively for i = 1, . . . , N , with

N denoting any big positive integer. Hence we can write

p(x) =

∞
∑

i=1

Pivi(x).

We introduce a number of notations for the convergence

analysis. We use σ1 to denote the largest singular value and

σn for the smallest singular values, regardless the actual

dimension of the matrix, and similarly, λ1 and λn for the

eigenvalues of a matrix with largest and smallest modules.

The notation vec(A) is to denote the vector formed by

stacking all the vectors of A. We have used ‖ · ‖ to denote

2-norm for a vector or its induced norm for a matrix, and

‖ · ‖∞ for the infinity norm for a matrix A ∈ Rn×m as

‖A‖∞ = max
1≤i≤n

m
∑

j=1

|ai,j |.

We also define µn ∈ Rn with all the elements equal 1, ie,

µ3 = [1, 1, 1]T , and for a matrix A = {ai,j} ∈ Rn×m we

denote A+ = {|ai,j |}. Furthermore, for A, B ∈ Rn×m, we

define A ≤ B if ai,j ≤ bi,j for i = 1, . . . n and j = 1, . . .m.

For the convergence of this series, we have the following

theorem.

Theorem 2: The series {pi(x)} for i ∈ N converges in l2
for |xi| ≤ dx, i = 1, . . . , n, if

|λ1(S)| < 1, (20)

where S ∈ R
(nf−1)×(nf−1) and

S =













0 1 . . . 0
...

...
. . .

...

0 0
. . . 1

snf−1 snf−1 . . . s1













(21)

with

sj =
‖Fj+1‖∞
σn(F1)

dj
x

for j = 1, . . . , nf − 1.

We need a few technical results for the proof of this

theorem.

In the following lemma, we list a number of results on

matrices and singular values that are needed later on.
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Lemma 3: The following facts hold:

3.1 For A ∈ Rn×m, σ1(I ⊗ A) = σ1(A ⊗ I) = σ1(A) and

σn(I ⊗ A) = σn(A ⊗ I) = σn(A).
3.2 For A ∈ Rn×m, σn(A) = |λn(A)| if A is a normal

matrix.

3.3 For A, X and B in proper dimensions such that AXB
exists, vec(AXB) = (BT ⊗ A)vec(X).
3.4 For A ∈ Rn×m, ‖A ⊗ I‖∞ = ‖I ⊗ A‖∞ = ‖A‖∞.

3.5 A ∈ Rn×m, A+µm ≤ ‖A‖∞µn.

3.6 For A and B in proper dimensions such that AB
exists, (AB)+ ≤ A+B+, and if A is diagonal, (AB)+ ≤
σ1(A)B+.

Proof. The results 3.1 to 3.3 can be directly found or de-

rived from the results in the reference [17]. The result shown

in 3.1 follows Theorem 4.2.15, p.246 of [17]. 3.2 follows

a result shown on p.162 of [17]. 3.4 follows from Lemma

4.3.1, p.254 of [17]. 3.4 follows from direct evaluation of

Kronecker products. The results in 3.5 and 3.6 follows from

direct evaluation of matrix products.

Lemma 4: For the matrices Mi and Ni, the following facts

hold:

4.1 NiMiv̄
(i) = v̄(i) with v̄(i) := µni .

4.2 Let D be a diagonal matrix with proper dimensions such

that MiDNi, can be evaluated, and D invertible. The matrix

MiDNi is diagonal too, and (MiDNi)
−1 = MiD

−1Ni.

Proof. From the definitions, we have v(i) = Nivi =
NiMiv

i. Therefore, 4.1 can be obtained by setting xj = 1
for j = 1, . . . , n.

From the definition, Mi has one and only one no-zero

entry with value 1 in each row. Ni, too, has one and only

one no-zero entry with value 1 in each row, but it will have

at least one 1 in the entry of each column. The number of

“1”s depends on the combinations of xj to make up the

polynomial entry. From the definitions, we have MiNi = I ,

ie, the nonzero entry in the jth row of Mi matches with

a nonzero entry of 1 in the jth column. Hence with a

diagonal matrix D, MiDNi is a diagonal matrix with only

the possible entries from the diagonal elements of D. If we

denote D = diag{dj} for j ∈ J := {1, 2, . . . ni}, we have

MiDNi = diag{dj′} for j′ ∈ J ′ ⊂ J . Similarly, it can be

shown that MiD
−1Ni = diag{1/dj′} for j′ ∈ J ′. Therefore,

we conclude (MiDNi)
−1 = MiD

−1Ni.

We are ready to prove Theorem 2.

Proof of Theorem 2. We first establish a relationship

between Pi and Pj with j = i − 1, . . . , i − nf + 1. Let

us assume that i > nh which implies Hi = 0. From (19),

we then have

PiΣi − APi =

nf−1
∑

j=1

Pi−jQi,j . (22)

Using the notation of vec(·), and the result 3.3 in Lemma

3, we have

vec(Pi) = Ω−1
i

nf−1
∑

j=1

[QT
i,j ⊗ I]vec(Pi−j) (23)

where

Ωi = [ΣT
i ⊗ I − I ⊗ A].

From (17) and 4.2 of Lemma 4, we know that Σi is diagonal

and furthermore that Ωi is diagonal, as A is diagonal. From

3.2 of Lemma 3, we have

σn(Ωi) = |λn(Ωi)| ≥ iσn(F1) + σn(A). (24)

Notice that Ωi is a diagonal matrix with all its elements

positive, ie, Ω+
i = Ωi.

From (23), using the result 3.6, we have

vec(P+
i ) ≤ (Ω−1

i )+
nf−1
∑

j=1

[(QT
i,j)

+ ⊗ I]vec(P+
i−j)

≤ σ1(Ω
−1
i )

nf−1
∑

j=1

[(QT
i,j)

+ ⊗ I]vec(P+
i−j)

= σ−1
n (Ωi)

nf−1
∑

j=1

[(QT
i,j)

+ ⊗ I]vec(P+
i−j)

which implies, with the result 3.3 in Lemma 3, that

P+
i ≤ σ−1

n (Ωi)

nf−1
∑

j=1

P+
i−iQ

+
i,j

≤ σ−1
n (Ωi)

nf−1
∑

j=1

P+
i−1Mi−jQ̄

+
i,jNi (25)

Multiplying both sides of (25) by Miv̄
(i) and using the

results 4.1, 3.5 and 3.6, we have,

P+
i Miv̄

(i)

≤ σ−1
n (Ωi)

nf−1
∑

j=1

P+
i−jMi−jQ̄

+
i,jNiMiv̄

(i)

= σ−1
n (Ωi)

nf−1
∑

j=1

P+
i−jMi−jQ̄

+
i,j v̄

(i)

≤ σ−1
n (Ωi)

nf−1
∑

j=1

P+
i−jMi−j‖Q̄

+
i,j‖∞v̄(i−j)

From (18), it can be obtained that

‖Q̄+
i,j‖∞ = ‖

i−j
∑

k=1

I(i−1)
n ⊗ Fj+1 ⊗ I(i−1−k)

n ‖∞

≤

i−j
∑

k=1

‖I(i−1)
n ⊗ Fj+1 ⊗ I(i−1−k)

n ‖∞

≤

i−j
∑

k=1

‖Fj+1 ⊗ I(i−1−k)
n ‖∞

≤ (i − j)‖Fj+1‖∞.
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Therefore we have

P+
i Miv̄

(i)

≤

nf−1
∑

j=1

(i − j)‖Fj+1‖∞
iσn(F1) + σn(A)

P+
i−jMi−j v̄

(i−j)

<

nf−1
∑

j=1

‖Fj+1‖∞
σn(F1)

P+
i−jMi−j v̄

(i−j). (26)

With the result shown in (26), we can establish a bound of

pi(x) as

‖pi(x)‖

≤ ‖P+
i Mi(v

(i))+‖

≤ ‖P+
i Miv̄

(i)‖di
x

<

nf−1
∑

j=1

‖Fj+1‖∞
σn(F1)

‖P+
i−jMi−j v̄

(i−j)‖di
x

≤

nf−1
∑

j=1

‖Fj+1‖∞
σn(F1)

‖P+
i−jMi−j v̄

(i−j)di−j
x ‖dj

x

Define

p̄i = ‖P+
i Mi−1v̄

(i)‖di
x.

We then have that

p̄i <

nf−1
∑

j=1

‖Fj+1‖∞
σn(F1)

dj
xp̄i−j (27)

Let us define a discrete-time system with state variable z ∈
R

nf−1 with

z(i) = [p̄i−nf +1, . . . , p̄i−1, p̄i]
T

which implies that

z(i + 1) = [p̄i−nf+2, . . . , p̄i, p̄i+1]
T .

From (27), we have

p̄i+1 <

nf−1
∑

j=1

‖Fj+1‖∞
σn(F1)

dj
xp̄i−j+1

and therefore we obtain that

z(i + 1) ≤ Sz(i). (28)

From (28), there exist positive definite matrices U, W ∈
R

(nf−1)×(nf−1) such that

ST US − U = −W. (29)

Let

Jk =

∞
∑

i=k

zT (i)Wz(i)

for an integer k ≥ max{nf , nh}. From (28) and (29), we

have

Jk =

∞
∑

i=k

zT (i)(U − ST US)z(i)

≤

∞
∑

i=k

zT (k)(ST )i−k(U − ST US)Si−kz(k)

≤

∞
∑

i=k

zT (k)[(ST )i−kUSi−k

− (ST )i−k+1USi−k+1]z(k)

= zT (k)(ST )i−kUSi−kz(k).

With ‖hi(x)‖ < h̄i(x), we have

∞
∑

i=k

‖hi(x)‖2 <
1

wnf−1,nf−1
Jk

where wnf−1,nf−1 is the last diagonal element of W , and

therefore we can conclude hi(x) converges in l2.

V. AN EXAMPLE

Consider a nonlinear system

ẋ1 = 2.1x1 + x2 + 0.3x2
1 − 0.5x3

1,

ẋ2 = −x1,

y = x1. (30)

For this system, we have

F1 =

[

2.1 1
−1 0

]

, F2 =

[

0.3 0 0
0 0 0

]

F3 =

[

−0.5 0 0 0
0 0 0 0

]

.

With

A =

[

−3 1
−2 0

]

, B =

[

0
1

]

,

we obtain that

P1 =

[

0.1352 0.3104
0.3791 1.0665

]

,

P2 =

[

−0.0081 0.0032 −0.0042
−0.0212 0.0083 −0.0093

]

.

Note that even though the nonlinear functions in the dy-

namical system (30) are polynomials up to third order, the

solution p(x) to the equation (3) is not a polynomial with

finite order.

Observers in the form of (5) are implemented with p(x) =
P1v1 for the first order approximation of p(x) and with

p = P1v1 + P2v2 for the second order approximation. The

simulation results are shown in Figures 1 and 2. The second

order approximation shows improvements over the first order

approximation. A third order approximation was also studied,

but no improvements were observed, and this might be due

to the fact the x was outside the convergence region for

computation of p(x). Further study on this issue will be

carried out in future.
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Fig. 1. The unmeasured state variable and its estimates from observers
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Fig. 2. An enlargement of Figure 1

VI. CONCLUSION

In this paper, we have identified a set of conditions for the

convergence of a series solution to the observer gain design

for nonlinear dynamic systems. This result is obtained by

analyzing the relationship between the sizes of subsequent

terms and then establishing a dynamic model in discrete-

time. Assumption 1 is fairly restrictive, which requires the

linearized model to be anti-stable. This assumption is used

for the convenience of presentation of the basic concepts

shown in this paper. The study is underway to relax this

condition. Further studies are also needed on how this pre-

sented result can be used for determining the proper order of

approximation and on possible domain of attraction observer

errors. Note that the domain of attraction of the observer

errors are different from the domain of the convergence of

the power series for the observer gain design.
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