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Abstract— This paper investigates visual feedback pose syn-
chronization in leader-follower type visibility structures on the
Special Euclidean group SE(3). We first define visual robotic
networks with a generalized camera model. We then propose a
visual feedback pose synchronization law combining a vision-
based observer with the pose synchronization law presented in
our previous works. We then prove that for a static leader,
the network with the control law achieves visual feedback pose
synchronization. Moreover, for a moving leader, we evaluate the
tracking performance of the network. Finally, the validity of
the proposed control law and analysis is demonstrated through
experiments.

I. INTRODUCTION

Mobile sensor networks [1] are collections of intercon-

nected multiple mobile robots with sensing devices and

computing capability. Mobile sensor networks have potential

advantages in performances, robustness against sensor fail-

ures and various sensor-driven tasks especially in dynamical

environments. In operation, each sensor is required to act

cooperatively using only limited information so that the total

system attains specified behaviors. Cooperative control gives

methods for such distributed control [2], [3].

Cooperative control problems for mobile sensor networks

are formulated as pose (position and attitude) coordination

problems [1]. In this paper, we tackle pose synchronization as

one of such problems whose objective is to lead agents’ poses

to a desired one by utilizing distributed control strategies.

In the stage of implementation, it is unavoidable to con-

sider how to acquire neccesary information for cooperative

control laws. In multi-agent systems, agents might be capable

of communicating with neighboring agents, where measure-

ments on global information might be assumed, or measuring

relative information with respect to neighbors via relative

sensors without communication. In this paper, we address the

latter scenario for ease of implementation and cost reduction.

Among such relative measurements, a visual sensor brings

one rich information including three-dimensional pose of the

other agents compressed into two-dimensional image plane.

While numerous research works have been devoted to the

combination of control techniques with vision [4],[5], vision-

based cooperative control is also tackled [6]-[8]. In one of

our previous works [6], we presented a leader-following

visual feedback pose synchronization law. However, we have

proved only convergence with a not moving leader and
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Fig. 1: Rigid Body Motion

not analyzed the tracking performance of the network to a

moving leader. Moreover, since we have considered pinhole

cameras as vision sensors, a field of view may not be

sufficiently wide.

In this paper, we investigate a leader-following pose syn-

chronization problem for a network of rigid bodies with a

generalized camera model. We first introduce a notion of

visual robotic networks to be controlled. Here, we introduce

not only pinhole camera models [6] but also generalized

panoramic camera models consisting of a pinhole camera

and a hyperbolic mirror in order to get a wider field of

view. After defining visual feedback pose synchronization,

we present a synchronization law consisting of a vision-

based observer and synchronization law. We then prove

synchronization for a static leader. Furthermore, we analyze

the tracking performance of the network for a moving leader.

The effectiveness of the control scheme is demonstrated

through experiments on a planar testbed.

The main contributions of this paper are follows: (i)

We deal with a wider class of camera models than usual

pinhole camea models. (ii) We give the tracking performance

analysis of the network for a moving leader. (iii) We perform

the experiment in order to confirm the effectiveness of the

proposed control law.

II. VISUAL ROBOTIC NETWORK

A. Rigid Body Motion

In this paper, we consider a network of n rigid bodies in

three-dimensional space (see Fig. 1). Let Σw be an inertial

coordinate frame and Σi, i ∈ V := {1, · · · , n} body-fixed

coordinate frames. We denote the pose of body i in Σw by

(pwi, e
ξ̂wiθwi) ∈ SE (3) or homogeneous representation

gwi =

[

eξ̂wiθwi pwi

0 1

]

∈ SE (3), i ∈ V.

Here, ξwi ∈ R3 (ξT
wiξwi = 1) and θwi ∈ R specify the

direction and angle of rotation, respectively. For simplicity,

we use ξ̂θwi to denote ξ̂wiθwi.
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Fig. 2: Leader-follower Type Visibility Structure

Let us now introduce the velocity of each rigid body

to represent rigid body motion of Σi relative to Σw. We

define the body velocity of body i relative to Σw as V b
wi =

[(vb
wi)

T (ωb
wi)

T]T := (g−1
wi ġwi)

∨ ∈ R6, where vb
wi ∈ R3 and

ωb
wi ∈ R3 represent the linear and angular velocities. Then,

rigid body motion is represented by the kinematic model

ġwi = gwiV̂
b
wi, i ∈ V. (1)

We denote the pose of Σj relative to Σi as gij =

(pij , e
ξ̂θij ) := g−1

wi gwj ∈ SE(3). Then, differentiating gij

with respect to time yields relative rigid body motion

V b
ij := (g−1

ij ġij)
∨ = −Ad(g−1

ij
)V

b
wi + V b

wj , (2)

where Ad(gij) ∈ R6×6 is the adjoint transformation associ-

ated with gij [9].

B. Visibility Structure

We describe visibility structures among rigid bodies.

Throughout this paper, we assume each body has vision to

capture other visible bodies. A set E ⊂ V × V is defined so

that (j, i) ∈ E means body j is visible from body i. We next

define the set of visible bodies from body i as

Ni := {j ∈ V | (j, i) ∈ E}, i ∈ V. (3)

Let us now make the following assumptions on the visi-

bility structure.

Assumption 1: Visibility structures have leader-follower

structures (see Fig. 2 [6]).

C. Visual Measurement

Suppose that each rigid body j has s (s ≥ 4) feature

points, whose positions relative to Σj are denoted by pjjk
∈

R3, k ∈ {1, · · · , s}. A coordinate transformation yields the

positions of feature points relative to frame Σi as pijk
=

gijpjjk
, where pijk

and pjjk
should be regarded as [pT

ijk
1]T

and [pT
jjk

1]T, respectively [9].

Let us now define visual measurements of rigid bodies

with panoramic camera models. We first introduce feature

points obtained by pinhole camera models. We denote the

k-th feature point on the image plane as fijk
∈ R2. Then,

by perspective projection [9], fijk
is given by

fijk
=

λi

zijk

[

xijk

yijk

]

, (4)

where pijk
= [xijk

yijk
zijk

]T and λi ∈ R is a focal length.

We next define feature points obtained by panoramic

camera models [5]. A panoramic camera model consists of

the pinhole camera model and a hyperbolic mirror (see Fig.

3). We denote the pose of rigid body i’s mirror coordiate
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Fig. 3: Panoramic Camera Model

Σmi
relative to Σw by gwmi

= (pwmi
, eξ̂θwmi ) ∈ SE (3),

pose and position of k-th feature point of body j relative to

Σmi
by gmij = (pmij , e

ξ̂θmij ) ∈ SE (3) and pmijk
∈ R3,

respectively. Then, similarly to (2), relative rigid body motion

of body j relative to the mirror of body i is represented by

V b
mij

= −Ad(g−1

mij
)Ad(g−1

imi
)V

b
wi + V b

wj , (5)

where gimi
= (pimi

, eξ̂θimi ) ∈ SE (3) is the pose of Σmi

relative to Σi.

We denote the point on body i’s mirror by hik as shown

in Fig. 3 and the position of the point relative to Σmi
by

pmihik
:= [xmihik

ymihik
zmihik

]T ∈ R3. Then, body i
gets body j’s feature point fijk

on its image plane which is

pijk
projected onto the plane through hik.

Let ai, bi and ri :=
√

a2
i + b2

i be the hyperbolic mirror

parameters satisfying

(zmihik
+ ri)

2

a2
i

−
x2

mihik
+ y2

mihik

b2
i

= 1. (6)

We denote the position of point hik relative to Σi by pihik
:=

[xihik
yihiik zihik

]T ∈ R3. Then, by perspective projection

(4), fijk
= (λi/zihik

)[xihik
yihik

]T holds. We moreover set

pimi
= [0 0 2ri]

T, eξ̂θimi = I3 and pmihik
= cpmijk

(0 <
c < 1) (see Fig. 3). Then, the following equation holds by

substituting cpmijk
into (6).

c(pmijk
) =

b2
i (rizmijk

+ ai‖pmijk
‖2)

a2
i x

2
mijk

+ a2
i y

2
mijk

− b2
i z

2
mijk

.

Finally, since zihik
= 2ri + c(pmijk

)zmijk
holds,

fijk
=

λic(pmijk
)

2ri + c(pmijk
)zmijk

[

xmijk

ymijk

]

. (7)

If we select ai = 1 and bi =
√
−1, then the panoramic

camera’s feature point (7) is equivalent to the pinhole cam-

era’s one (4). Namely, a panoramic camera model includes

a pinhole comera model as a special case.

We assume each rigid body can extract the feature points

(7) of visible bodies from its image data. We thus define

visual measurements of body i as

fi := {fij}j∈Ni
, i ∈ V, fij := [fT

ij1
· · · fT

ijs
]T ∈ R2s. (8)
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Fig. 4: Pose Synchronization

Hereafter, the aggregate system consisting of n rigid

bodies with kinematic model (1), visibility structures (3)

satisfying Assumption 1 and visual measurements (8) is

called visual robotic network Σ.

III. VISUAL FEEDBACK POSE SYNCHRONIZATION

A. Definition of Visual Feedback Pose Synchronization

We first define the virtual relative pose g̃ij ∈ SE (3) as

g̃ij :=

[

eξ̂θij pij − dij

0 1

]

, i, j ∈ V,

where dij ∈ R3, i, j ∈ V are constant biases such that each

rigid body guarantees collision avoidance and visibility to

neighbors in the final configuration. We assume each body

has biases relative to its neighbors dij , j ∈ Ni (see Fig. 4).

Then, the goal of this paper is to design a body velocity

input V b
wi so that the visual robotic network Σ achieves visual

feedback pose synchronization defined below.

Definition 1: On the visual robotic network Σ, a control

input V b
wi is said to achieve visual feedback pose synchro-

nization if V b
wi depends only on visual measurement (8) and

lim
t→∞

Π(g̃ij) = 0 ∀i, j ∈ V. (9)

Here, Π(gwi) := (1/2)‖pwi‖2
2 + φ(eξ̂θwi) ≥ 0, φ(eξ̂θwi) :=

(1/2)tr(I3 − eξ̂θwi) ≥ 0 is the energy of pose errors. By the

definition, Π(gwi) = 0 if and only if gwi = I4.

Equation (9) means that relative positions among rigid

bodies converge to desired ones and orientations to a com-

mon value (see Fig. 4). Unlike [3] premising the measure-

ment of gij , the objective of this paper is to present a velocity

law using only visual measurements (8).

B. Visual Feedback Pose Synchronization Law

We introduce the structure of visual feedback pose syn-

chronization law. First of all, each rigid body has to estimate

relative pose gmij by a nonlinear observer since visual

measurements (8) are two-dimensional. Hereafter, we denote

the estimate of gmij by ḡmij = (p̄mij , e
ˆ̄ξθ̄mij ) ∈ SE (3).

We next define the desired relative pose gdij = (dij , I3) ∈
SE (3), control error gcij = (pcij , e

ξ̂θcij ) ∈ SE (3) and

control error vector ecij ∈ R6 as

gcij := g−1
dijgimi

ḡmij , ecij :=

[

pcij

sk(eξ̂θcij )∨

]

.

Here, sk(eξ̂θij ) ∈ R3×3 is the skew-symmetric part of matrix

eξ̂θij . Note that ecij = 0 if and only if gcij = I4 as long as

|θcij | < π and hence gimi
ḡmij = gdij .
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Relative Rigid 

Body Motion
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Vision
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Relative Rigid 
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Relative Rigid 
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Vision

Nonlinear 

ObserverControl Input of

Fig. 5: Total Control System

We also define the estimation error geij = (peij , e
ξ̂θeij ) ∈

SE (3) between the actual relative pose gmij and its estimate

ḡmij and its vector representation eeij ∈ R6 as

geij := ḡ−1
mij

gmij , eeij :=

[

peij

sk(eξ̂θeij )∨

]

.

Note that eeij = 0 if and only if geij = I4 as long as

|θeij | < π, and hence ḡmij = gmij . Therefore, both ecij = 0
and eeij = 0 mean gij = gdij as long as |θcij | < π, |θeij | <
π. Namely, equation (9) is achieved if and only if ecij =
0, eeij = 0, j ∈ Ni

∀i ∈ V .

By using above notations, we propose the following

control law.

Controller :

Observer











V b
wi = kijAd(gdij)ecij , (10a)

V̄ b
mij

= −Ad(ḡ−1

mij
)Ad(g−1

imi
)V

b
wi + uij (10b)

uij = keij

(

eeij − Ad
(e−ξ̂θcij )

ecij

)

, (10c)

j ∈ Ni, i ∈ V.

where kij , keij ∈ R are positive gains. The total control

system is shown in Fig. 5.

Velocity input (10a) is the same as that in [3] except for us-

ing gimi
ḡmij instead of gij . Equation (10b) simulates relative

rigid body motion (5) by using the estimate ḡmij as its state.

Here, uij ∈ R6 is an external input to be determined so that

the estimated values ḡmij and V̄ b
mij

:= (ḡ−1
mij

˙̄gmij)
∨ ∈ R6

are driven to their actual values. Differentiating geij with

respect to time and utilizing (5) and (10b), we get the

following estimation error system.

V b
eij := (g−1

eij ġeij)
∨ = −Ad(g−1

eij
)uij + V b

wj . (11)

In (10c), eeij can be reconstructed by visual measurements

fij [5]. This means that the present control law (10) can be

calculated only by visual measurements (8) in the absence

of communication or any measurements of own states. It is

thus sufficient for visual feedback pose synchronization to

prove (9).

C. Convergence Analysis

We prove that control law (10) on the visual robotic

network Σ achieves (9). Differentiating gcij with respect to
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time gives

V b
cij := (g−1

cij ġcij)
∨ = −Ad(g−1

cij
)Ad(g−1

dij
)V

b
wi + uij . (12)

This system is the same as (10b) and called control error

system.

We next consider the total system combining control error

system (12) with estimation error system (11) as

[

V b
cij

V b
eij

]

=

[

−Ad(g−1

cij
) I6

0 −Ad(g−1

eij
)

][

Ad(g−1

dij
)V

b
wi

uij

]

+

[

0
V b

wj

]

. (13)

In this paper, the collection of the combining system (13)

for j ∈ Ni, i ∈ V with control law (10) is called collective

error system Σcol, whose state, denoted by xe ∈ R12(n−1), is

given by the stuck vector of eij := [eT
cij eT

eij ]
T ∈ R12, j ∈

Ni, i ∈ V .

Let us now show that control law (10) on the visual robotic

network Σ achieves visual feedback pose synchronization.

Theorem 1: Suppose that the leader does not move

(V b
w1 = 0). Then, control law (10) on the visual robotic

network Σ achieves visual feedback pose synchronization at

least locally if


























I6 − Di1 > 0, i ∈ Vp

kjk <
2kijkeij

kij+keij
, k ∈ Nj , j ∈ Ni, i ∈ Vq

{

kjk < 2keij

kjk(keijI6 +kij(I6−Dij)) < 2kijkeij(I6−Dij)
,

k ∈ Nj , j ∈ Ni, i ∈ Vr

, (14)

where Dij := (1/2)AdT
(gdij)

Ad(gdij) (refer to [6] for the

definitions of V∗).

Proof: From the definition of xe, if the equilibrium

point xe = 0 is asymptotically stable, then local visual feed-

back pose synchronization is achieved. This can be proved

by differentiating the following Lyapunov function candidate

with respect to time and utilizing completing square.

U :=
n

∑

i=2

∑

j∈Ni

qi (Π(gcij) + Π(geij)) ≥ 0.

Here, qi ∈ {1, 2, 3, · · · } is corresponding natural numbers

[6]. Note that U = 0 if and only if gcij = I4, geij =
I4 (i.e. ecij = 0, eij = 0 as long as |θcij | < π, |θeij | <
π), j ∈ Ni

∀i ∈ V and otherwise U > 0.

Gain conditions (14) imply that if the backward rigid

bodies move fast, then visual feedback pose synchronization

is achieved. For example, if we set dij = 0 ∀i, j ∈ V ,

conditions (14) are represented by






kjk <
2kijkeij

kij+keij
, k ∈ Nj , j ∈ Ni, i ∈ Vq

kjk <
2kijkeij

kij+2keij
, k ∈ Nj , j ∈ Ni, i ∈ Vr

.

These conditions mean that the forward body moves more

slowly than the backward one [6]. This explains the intuition

that motion of forward bodies has large influences on group

motion while that of backward ones has small impact. It

is noted that conditions (14) are reduced to linear matrix

inequalities on control gains. Thus, we can find gains by

using existing solvers if it is feasible.

It should be noted that Theorem 1 proves synchronization

for the system integrating the observers instead employing

certainly equivalence principle. It is well known in robot

control that proving stability for the integrated system in

observer-based control strategies is much more difficult than

the individual control and estimation problems even for a

single passive system [10]. It should be also true or might

be much harder for synchronization since it is required to

estimate not their own but the other individuals’ information

only from relative measurements.

D. Pose Synchronization with Desired Velocities

In the previous subsection, we have presented a control

law to achieve visual feedback pose synchronization in the

sense of (9). Notice now that all rigid bodies would stop in

the final configuration though it is sometimes required for

bodies to move in the desired direction while achieving pose

synchronization. We thus add a common desired velocity to

all bodies in this subsection.

Suppose that all rigid bodies have a common desired

velocity Vd ∈ R6 and each body knows the velocity in its

own coordinate frame Ad
(e−ξ̂θwi )

Vd. Let us fix the form of

each body velocity as

V b
wi = Ṽ b

wi + Ad
(e−ξ̂θwi )

Vd

for some Ṽ b
wi. Then, relative rigid body motion (2) can be

represented by

V b
ij = −Ad(g−1

ij
)Ṽ

b
wi + Ṽ b

wj . (15)

Also, estimation error system (11) is derived as

V b
eij = −Ad(g−1

eij
)uij + Ṽ b

wj . (16)

Equations (15) and (16) mean that control and estimation

error systems do not change except for using Ṽ b
wi instead

of V b
wi. Therefore, we propose the following control law.

Controller :

Observer











V b
wi = kijAd(gdij)ecij + Ad

(e−ξ̂θwi )
Vd

V̄ b
mij

= −Ad(ḡ−1

mij
)Ad(g−1

imi
)Ṽ

b
wi + uij ,

uij = keij

(

eeij − Ad
(e−ξ̂θcij )

ecij

)

j ∈ Ni, i ∈ V. (17)

Then, we have the following corollary which can be proved

in the same way as Theorem 1.

Corollary 1: Suppose the leader’s body velocity is

Ad
(e−ξ̂θw1 )

Vd. Then, control law (17) on the visual robotic

network Σ achieves visual feedaback pose synchronization

at least locally if gain conditions (14) are satisfied.

We use the assumptions that all rigid bodies have a com-

mon velocity Vd in Corollary 1. However, even without such

common knowledge (the only leader has its own velocity), it

is expected for followers to track the leader within a bounded

error and achieve flocking-like behaviors. We thus analyze

the tracking performance in the presense of V b
w1 based on

the theory of L2-gain analysis in the following section.
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IV. TRACKING PERFORMANCE ANALYSIS

In this section, for the moving leader (V b
w1 6= 0), we

analyze the tracking performance of the other rigid bodies

based on the theory of L2-gain analysis by regarding the

leader’s velocity as an external disturbance.

Theorem 2: Suppose the leader has its own velocity

(V b
w1 6= 0). Then, for any positive scalars ǫ, γi, i ∈ Vq,

control law (10) on the visual robotic network Σ achieves

‖xe‖L2
≤ γ‖V b

w1‖L2
+ δ, γ :=

√

∑

i∈Vq

γi

2ǫ
(18)

with a nonnegative scalar δ if


































































{

kei1 − 1
2γi

− ǫ > 0
(

ki1 +kei1− ǫ− 2γik
2

ei1

2γi(kei1−ǫ)−1

)

I6−ki1Di1 > 0
,

i ∈ Vp
{

kjk < 2(keij − ǫ)

kjk <
2((kij−ǫ)(keij−ǫ)−keijǫ)

kij+keij−ǫ

,

k ∈ Nj , j ∈ Ni, i ∈ Vq
{

kjk < 2(keij − ǫ)
(

kij +keij − ǫ− 2k2

eij

2keij−kjk−2ǫ

)

I6−kijDij > 0
,

k ∈ Nj , j ∈ Ni, i ∈ Vr

. (19)

Proof: The time derivative of U is given by

U̇ =

n
∑

i=2

∑

j∈Ni

qi

(

−eT
ijQijeij + eT

eijAd
(eξ̂θeij )

V b
wj

)

. (20)

Here, Qij :=

[

(kij + keij)I6 −keijAd
(eξ̂θcij )

−keijAd
(e−ξ̂θcij )

keijI6

]

. Complet-

ing square for eT
ei1Ad

(eξ̂θei1 )
V b

w1, i ∈ Vp yields

eT
ei1Ad

(eξ̂θei1 )
V b

w1 = −γi

2

∥

∥

∥

∥

Ad
(eξ̂θei1 )

V b
w1 −

1

γi

eei1

∥

∥

∥

∥

2

2

+
γi

2
‖V b

w1‖2
2 +

1

2γi

‖eei1‖2
2

≤ γi

2
‖V b

w1‖2
2 +

1

2γi

‖eei1‖2
2

for any positive scalars γi, i ∈ Vp. Therefore, if gain

conditions (19) are satisfied, we get

U̇ ≤
∑

i∈Vp

γi

2
‖V b

w1‖2
2 − ǫ‖xe‖2

2.

Integrating the above inequality from 0 to T with respect to

time yields

U(T ) − U(0) ≤
∑

i∈Vq

γi

2

∫ T

0

‖V b
w1(t)‖2

2dt − ǫ

∫ T

0

‖xe(t)‖2
2dt.

Thus, the following inequality is derived.

‖xe‖L2
≤

√

∑

i∈Vq

γi

2ǫ
‖V b

w1‖L2
+

√

1

ǫ
U(0).

Then, by defining γ :=

√

∑

i∈Vq

γi

2ǫ
, δ :=

√

1

ǫ
U(0), we get

inequality (18).

Fig. 6: Experimental Environment
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in Experiment

Although γi appears in only conditions of rigid body i ∈
Vp, the arguments ki1 also appear in the other constraints.

This fact implicitly means that γ influences all bodies’ gains.

Theorem 2 means that if we regard V b
w1 as the disturbance

input and xe as the output of collective error system Σcol,

then Σcol has L2-gain less than or equal to γ. Since γ
evaluates the control and estimation errors for the leader’s

velocity, it can be regarded as an indication of the tracking

performance of the group. Therefore, by setting control gains

making γ small, we can achieve a high tracking performance.

V. EXPERIMENT

In this section, we demonstrate the effectiveness of the

proposed control laws through experiments on a planar

testbed.

We use three omnidirectional mobile robots with four

wheels as rigid bodies. Each robot has a pinhole camera

with a panoramic mirror. We attach a plate with four col-

ored circles to each robot in order to improve accuracy of

extracting feature points. We also use an overhead camera

attached above the robots to measure the actual pose of

robots. Transmitted video signals are loaded into PC and the

control law is calculated in real time. Then the control inputs

are sent to robots via an embedded wireless communication

device. The sampling period of the controller is 20 [ms].

This experimental schematic is shown in Fig. 6.

We use the visibility structure depicted in Fig. 7. We let

gains be

GainA :

{

k21 = 5.0, ke21 = 8.0
k32 = 5.7, ke32 = 9.3

, γ = 2.70,

GainB :

{

k21 = 0.37, ke21 = 3.0
k32 = 0.5, ke32 = 3.0

, γ = 18.1,
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where each gain setup satisfies conditions (14) and (19) (ǫ =
0.05). Position biases are d21 = d32 = [0 0.25 0]T [m] (Fig.

8). Initial conditions are set as

pw1(0) = [0.96 0.27 0]T, ξθw1(0) = [0 0 − 0.06]T,
pw2(0) = [0.53 0.41 0]T, ξθw2(0) = [0 0 − 0.72]T,
pw3(0) = [0.13 0.51 0]T, ξθw3(0) = [0 0 − 1.54]T.

Finally, we set the desired common velocity as 0 and the

leader’s body velocity V b
w1 as

V b
w1 =















[0.1 sin t 0.1 0 0 0 0]T t ∈ [0, 5)
[0.1 sin t 0.1 0 0 0 0.15]T t ∈ [5, 15)
[0.1 sin t 0.1 0 0 0 0]T t ∈ [15, 30)

0 t ∈ [30, 40]

.

The experimental results are shown in Figs. 9-12. Fig. 9 il-

lustrates the trajectories of the robots on 2-dimensional plane

for Gain A, Fig. 10 time resposes of relative positions and

Fig. 11 orientations in Σw. Figs. 12 shows

√

∫ t

0
‖xe(τ))‖2

2dτ
for Gain A and Gain B, respectively. We see from Figs. 9

and 10 that when the leader moves, the other robots track

it successfully, and the desired relative positions are almost

achieved at around 35 [s] when the leader is static. Moreover,

Fig. 11 shows that all orientations converge to almost a

common value (robot 1’s value) at that time. The results

mean that the proposed control law (10) achieves visual

feedback pose synchronization and thus the synchronization

law works successfully.

Figs. 12 shows that the tracking performance is improved

for the smaller values of γ. Therefore, γ is adequate for the

performance indicate of the visual feedback pose synchro-

nization.

VI. CONCLUSIONS

In this paper, we have investigated pose synchronization

by using visual information as measured output of each

0 5 10 15 20 25 30 35 40

-3

-2

-1

0

1

2

3

Time [s]

O
ri

e
n
ta

ti
o
n
 [

ra
d
]

Robot 1

Robot 2

Robot 3

Fig. 11: Rotation Angles in Σw

0 5 10 15 20 25 30 35 40
0

1

2

3

4

Time [s]

 
 

Gain A

Gain B

Fig. 12: Tracking Performance

rigid body. We have first introduced visual robotic networks.

Then after defining visual feedback pose synchronization, we

have proposed a visual feedback pose synchronization law

combining a vision-based observer with the pose synchro-

nization law. We have then proved that the network with the

control law achieves visual feedback pose synchronization in

the absence of communication or any other measurements

of the states. Moreover, we have analyzed the tracking

performance of the network for the moving leader. Finally,

the experimental results have demonstrated the validity of

our results.
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