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Abstract—We study a simultaneous stabilization and syn-
chronization (SSS) problem for one class of linear multi-agent
systems with non-identical agents and a directed connection
graph. The agent dynamics can be different and the orders
of agents are not necessarily equal. We show that a single
control loop can be designed for each agent to enable some
agent states, named as internal states, to be stabilized while
some other states, named as external states, to be synchro-
nized. We design a distributed control law based on local
measurements and partial information (external states only)
exchanged from neighboring agents to enable SSS. To avoid
internal state coupling in the SSS control law, a low gain
approach is proposed for control law synthesis. Perturbation
analysis, decoupling coordinate transformation, and weighted
Laplacian are exploited for convergence and stability analysis.
The sufficient conditions to achieve SSS are obtained, followed
by specific approaches of designing the control gain matrices.

I. INTRODUCTION

Cooperative control of multi-agent systems has attracted
substantial attention over the past decade. One relevant topic
is the synchronization problem of dynamic systems (see,
e.g., [1]–[7], just name a few) where the agent trajectories
in a network converge to each other through distributed
local coupling. Specifically, for linear time invariant (LTI)
multi-agent systems, Tuna studied the output synchroniza-
tion problem of identical agents [1] and investigated the
synchronizability conditions for coupled linear systems [2]
where the number of inputs is equal to the number of states.
Scardovi and Sepulchre [3] investigated the synchronization
problem of a network of identical linear state-space models
using a dynamic output feedback coupling. Li et al. [4]
introduced a new framework to address the output feedback
synchronization problem of a group of LTI systems by
introducing the notion of consensus region. Seo et al. [5]
presented a low gain synchronization approach for design-
ing an output feedback compensator which only used the
local output information. Chopra and Spong [6] investigated
the output synchronization problem for a class of passive
nonlinear systems. Nair and Leonard [7] solved the stable
synchronization problem for a network of under-actuated
mechanical systems.
In multi-agent systems, the overall behavior of each agent

can be determined by its internal dynamics and external
dynamics. The internal dynamics govern the behavior of the
agent as an individual system while the external dynamics
are related to the coordination with the other agents. In
some systems (see, e.g., [8], [9]), the internal dynamics are
much faster than the external dynamics, so that the internal
dynamics can be ignored and the agents are modeled as
first-order integrators. For multi-agent systems that need to

be represented using more general models, one idea is to
use an inner control loop (see, e.g., [10], [11]). Specifically,
Fax and Murray [10] proposed an idea to stabilize each
agent by closing an inner control loop around its internal
dynamics and then closing an outer control loop to achieve
the desired formation performance. Arcak [11] assumed that
an inner control loop is designed so that the resulting system
becomes passive with respect to the external feedback and
then proposed a passivity-based method for the coordination
purpose. However, as shown in the motivating example in
[12], there exist cases where separate control loops are not
available for both stabilization of internal dynamics and
synchronization of external dynamics.
If no internal control loop is available and the agents have

unstable open-loop internal dynamics and/or dynamically
coupled internal and external states (see the motivating
example in [12]), then the decentralized controller of each
agent should perform two tasks simultaneously: 1) stabilize
the agent’s internal dynamics, and 2) coordinate with other
agents to achieve a group behavior. Nair and Leonard [7]
developed a new framework for stable synchronization of
under-actuated mechanical systems, distinguishing between
actuated and under-actuated states. They used an energy
shaping method to stabilize the under-actuated states while
rendering the actuated states synchronized. It looks en-
couraging to distinguish the states that are supposed to be
stabilized from those that are synchronized through dynamic
coupling. This distinction leads to generalizing the existing
results for identical LTI systems to non-identical ones in [12].
In our prior work [12], we considered a simultaneous

stabilization and synchronization (SSS) problem for a group
of non-identical linear agents with potentially unstable open-
loop dynamics. A single control loop was designed for
each agent to enable the internal states to be stabilized and
the external states to be synchronized. A distributed SSS
protocol was designed based on local measurements and
information exchanged from neighboring agents to enable
SSS. In [12], the coupling terms in the control law require
relative measurements of both the external states and the
internal states. It is of more interest to enable SSS using
only the external states since the relative measurements of
the required internal states from neighboring agents might
not be practically available.
In this paper, we revisit the SSS problem. A distributed

control law is designed based on local measurements and
partial information (external states only) exchanged from
neighboring agents to enable SSS. To avoid internal state
coupling in the SSS control law, a low gain approach is
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proposed for control law synthesis. Perturbation analysis, de-
coupling coordinate transformation, and weighted Laplacian
are exploited for control design and stability analysis. The
sufficient conditions to achieve SSS are obtained, followed
by specific approaches of designing the control gain matrices.

II. NOTATION AND PRELIMINARIES

Graph theory (see, e.g., [13] and [14]) is widely used
for investigating multi-agent systems. Let G = {V E}
represent a directed graph, and V = {1  } denote the
set of vertices. Every agent is represented by a vertex.
The set of edges is denoted as E ⊂ V × V . An edge is an
ordered pair ( ) ∈ E if agent  can be directly supplied
with information from agent . In this paper, we assume
that there is no self loop in the graph, that is, ( ) ∈ E .
N = { ∈ V |( ) ∈ E} denotes the neighborhood set of
vertex . Graph G is said to be undirected if for any edge
( ) ∈ E , edge ( ) ∈ E . Hence, an undirected graph is
a special case of a directed graph. A path is referred by
the sequence of its vertices. Path P between two vertices
0 and  is the sequence {0  } where (−1 ) ∈ E
for  = 1   and the vertices are distinct. The number
 is defined as the length of path P . Graph G is strongly
connected if any two vertices are linked with a path in G.
Graph G contains a directed spanning tree if there is a vertex
which can reach all the other vertices through a directed path.
A = [ ] ∈ R× denotes the adjacency matrix of G, where
  0 if and only if ( ) ∈ E else  = 0.  = −A is
called Laplacian matrix of G, where  = [] ∈ R× is
a diagonal matrix with  =

P
=1  .

Lemma 1: [13]–[16] Zero is an eigenvalue of  for both
directed and undirected graphs. Zero is a simple eigenvalue
of  and the associated eigenvector is 1 where 1 ∈ R is
a unitary column vector, if and only if the undirected graph
is connected or if the directed graph has a directed spanning
tree. All of the nonzero eigenvalues of  are positive for an
undirected graph or have positive real parts for a directed
graph.
Kronecker Product: Some properties of the Kronecker

product are recalled as below [17]

(⊗)( ⊗) =  ⊗ (1)

⊗ ( + ) = ⊗ +⊗ 

(⊗) =  ⊗

(⊗)−1 = −1 ⊗−1

Assume that 1  ∈ {1  1} are the eigenvalues of 1 ∈
R1×1 and 2   ∈ {1  2} are the eigenvalues of 2 ∈
R2×2 . Eigenvalues of 2 ⊗1+2⊗ 1 are 1+2 .
Vectorization: [18] The operator (·) transfers an

 ×  matrix  into an  dimensional column vector
[11 · · ·  1 12 · · ·  2 · · ·  1 · · ·  ]

 . This op-
erator has the following property:

(××) = ( ⊗)()

= ( ⊗ )()

Right Inverse: Matrix × is called the right inverse of
matrix × if  = . The necessary condition for the
existence of such a matrix  is that () = .
Lemma 2: [19] The algebraic matrix equation

 + =  (2)

where  ∈ R× and  ∈ R× are square matrices,
has a unique solution if and only if (iff)  and − don’t
have any common eigenvalues.
Remark 1: This algebraic matrix equation (2) is very

similar to the Sylvester equation. However, in the Sylvester
equation, the matrices  and  are square matrices of the
same order.

III. PROBLEM FORMULATION

Consider a multi-agent system of  agents with the
following agent dynamics:

̇ =  + (3)

̇ =  + 

where  ∈ R and  ∈ R are the states of agent ,  ∈
R is the control input of agent , and  ∈ R× ,  ∈
R× ,  ∈ R× , and  ∈ R× are constant matrices.
In (3), the matrices , , and  can be different for the
agents and even the dimensions  and  can be different.
However, the dimensions of the states   ∈ {1  } and
the matrix  are assumed to be the same for all the agents
since  will be synchronized, as will be discussed later.
Definition 1: (Simultaneous Stabilization and Synchro-

nization (SSS)) The objective of the SSS problem is to
design a control law  for (3) so that the states  are
stabilized while the states  are synchronized, i.e.,

 → 0 (stabilization) (4)

 =  −  → 0 (synchronization)

as →∞ for   ∈ {1 }.
We name the states for synchronization (i.e., ) as ex-

ternal states and the states for stabilization (i.e., ) as
internal states. In order to facilitate the subsequent analysis,
we use bold font to represent the block diagonal matrices
used in the collective forms. For example, A, defined as
A , {1 2 }, represents a block diagonal
matrix with   ∈ {1  } as the diagonal elements. The
concatenated vectors  and  are defined as

 , [1    ]   , [1    ] 
To facilitate the subsequent design and analysis, we make

the following assumptions.
Assumption 1: The connection network has a fixed di-

rected graph G that contains a directed spanning tree.
Assumption 2: The pair { }   ∈ {1  } is stabi-

lizable.
Lemma 3: Under Assumption 1, the states 1   ∈

R are synchronized in the sense that [20] 1 = · · · =  ,
if and only if ̄ = 0 where

̄ , (⊗ ). (5)
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Remark 2: Lemma 3 indicates that if ̄ is stabilized, then
1   are synchronized.

IV. SSS VIA FULL STATE COUPLING

A SSS control law of the following form was proposed in
[12]

 = − +

X
∈N

 [ + ( − )] (6)

In (6), ’s are the elements of the adjacency matrix of the
connection graph,  ∈ R× ,  ∈ R× , and  ∈
R× are constant gain matrices to be designed, and  ∈
R× determines the portion of the internal states that agent
 provides to the other agents. Under control law (6), the
closed-loop dynamics of system (3) are given by

̇ =  +

X
∈N

 [ + ( − )] (7)

̇ =  +  (8)

where  ,  − ∈ R× .
V. SSS VIA PARTIAL STATE COUPLING AND LOW GAIN

CONTROL

A. Design of SSS Control Law

In the previous section, the coupling term in the SSS con-
trol law requires relative measurements of both the external
state (i.e., ) and the internal state (i.e., −). It is
of more interest to enable SSS using only the external states
since the relative measurements of the required internal state
might not be practically available.
In this section, we will show that SSS can be enabled using

only the relative measurements of the external states via a
low gain approach. Specifically, the low gain SSS control
law is proposed as

 = − + 

X
∈N

  (9)

where  ∈ R is a positive scalar gain,  ∈ R× and
 ∈ R× are constant gain matrices to be designed,
and ’s are the elements of the adjacency matrix of the
connection graph.
As will be shown in Section V-D,  is designed for each

agent only based on the structure of the agent dynamics but
not on the connection graph topology. It will be shown later
in Section V-E that SSS can be enabled by selecting  less
than a threshold with properly designed  and .
Let  ∈ R be the maximum of the scalars , i.e.,  ≤

  ∈ {1  }. Then the new coupling strength can be
defined as 0 =



   ∈ {1  }  ∈ N. We use

0 as the new weighted Laplacian matrix corresponding to
the coupling strength 0 . Note that if  contains a directed
spanning tree, so does 0.
Based on 0 , the controller (9) can be rewritten as

 = − + 

X
∈N

0  (10)

The control law (10) will only be used for subsequent stabil-
ity analysis. The control law (9) will actually be implemented
to enable SSS.
The closed-loop system given by (3) and (10) can be

rewritten in the following collective form:

̇ = A + BG(0 ⊗ ) (11)

̇ = E + ( ⊗  ).

The bold font is used to represent block diagonal matrices
(see Section III).

B. Decoupling of Collective Agent Dynamics

To facilitate the design of control gains (, , and )
and the stability analysis, a new coordinate transformation
method is proposed to decouple the collective agent dynam-
ics (11).
Define a new state  ∈ RΣ=1 as

 ,  +  (0 ⊗ ) (12)

where  satisfies the following algebraic matrix equation:

−A +BG+  ( ⊗  )−  (0 ⊗ )E = 0 (13)

The solvability of (13) will be discussed in Section V-C.
According to (11), (12), and (13), the derivative of  is

given by

̇ = A( −  (0 ⊗ )) + BG(0 ⊗ )

+ (0 ⊗ )E( −  (0 ⊗ ))

+ (0 ⊗ )( ⊗  )

= [A +  (0 ⊗ )E] 

+ [−A +BG+  ( ⊗  )

− (0 ⊗ )E ] (
0 ⊗ )

= [A +  (0 ⊗ )E] 

Similarly, the derivative of  is given by

̇ = E( −  (0 ⊗ )) + ( ⊗  )

= ( ⊗  ) − E (0 ⊗ ) +E

Thus, the system dynamics (11) can be written in terms of
( ) as

̇ = [A +  (0 ⊗ )E]  (14)

̇ = ( ⊗  ) − E (0 ⊗ ) +E

Define another new state  ∈ R as

 , (0 ⊗ )( ⊗ −) −()

= (0 ⊗ −) −() (15)

where () is a solution of the following matrix differential
equation:

̇ = −(0 ⊗ −)E ( ⊗ ) (16)

+(0 ⊗ −)E− [A +  (0 ⊗ )E]
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with an initial condition satisfying

(0 ⊗ )(0) = 0 (17)

In (17), 0 is defined as the left eigenvector of 0 cor-
responding to the zero eigenvalue (i.e., 00 = 0 and
1 0 = 1). The solvability of (16) will be discussed in
Section V-C.
According to (14), (15), and (16), the derivative of  is

given by

̇ = −(0 ⊗ −) + (0 ⊗ −) ( ⊗  )

−(0 ⊗ −)E (0 ⊗ ) + (
0 ⊗ −)E

− [A +  (0 ⊗ )E]  − ̇

= −(0 ⊗ −)E ( ⊗ )( +)

+(0 ⊗ −)E − [A +  (0 ⊗ )E]  − ̇

= −(0 ⊗ −)E ( ⊗ )

+{−(0 ⊗ −)E ( ⊗ )+ (0 ⊗ −)E

− [A +  (0 ⊗ )E]− ̇}
= −(0 ⊗ )

£
( ⊗ −)E ( ⊗ )

¤


Thus, the dynamics (11) with coupling terms are decoupled
as

̇ = [A +  (0 ⊗ )E]  (18)

̇ = −(0 ⊗ )
£
( ⊗ −)E ( ⊗ )

¤
(19)

C. Solvability of (13) and (16) for the Decoupling Coordi-
nate Transformations

In this section, we will investigate whether the coordinate
transformations in (12) and (15) are feasible. This question
boils down to the solvability of 1) the algebraic matrix
equation (13) and 2) the matrix differential equation (16).
Lemma 4: Suppose that the matrices ’s have no com-

mon eigenvalue with  . Then, the unperturbed equation of
(13), presented as

−A +BG+  ( ⊗  ) = 0 (20)

has a solution of the form P0 = {0} where 0
satisfies

−0 + 0 + = 0 (21)
Proof: Based on Lemma 2, if the matrices ’s have

no common eigenvalue with  , then the equation −0+

0 + = 0 has a unique solution. Substituting P0 =
{0} into (13) with  = 0 gives

−A{0}+BG+ {0}( ⊗  )

= {−0 + 0 +} = 0
Therefore, P0 = {0} satisfies the unperturbed equa-
tion (20).
Theorem 2: There exists ∗1  0 such that for every  ∈

(0 ∗1) a solution exists for the equation (13) if the matrices
’s have no common eigenvalue with  . Furthermore, the
solution has the following form:

 = P0 +O() (22)

where O() represents a function of  satisfying O() → 0

as → 0.
Proof: Differentiating both sides of (13) with respect

to  and rearranging the terms gives

[−A −  (0 ⊗ )E]



(23)

+



[( ⊗  )− (0 ⊗ )E ]−  (0 ⊗ )E = 0

Denote 1 as the derivative of  with respect to  at  = 0,
i.e., 1 , 



¯̄
=0
. Set  = 0 in (23). Then, we have

−A1 + 1( ⊗  )−P0(0 ⊗ )EP0 = 0 (24)

If the matrices ’s have no common eigenvalue with  ,
then A has no common eigenvalue with  ⊗ . Based on
Lemma 2, this ensures that the equation (24) has a solution.
Thus, the derivative term 


at  = 0 exists. Hence, the

solution of  can locally be expressed as [21]  = P0 +

1 +O(2).
Since A has no common eigenvalue with  ⊗ , based

on the continuation of A+  (0⊗ )E with respect to ,
there exists an open set D × D with (P0 0) ∈ D ×D

so that A+  (0⊗ )E has no common eigenvalue with
( ⊗  ) − (0 ⊗ )E in this set. For every ( ) ∈
D ×D, the derivative term 


can be uniquely determined

in terms of  and  based on (23) and Lemma 2. Since
(P0 0) ∈ D × D, based on the Peano existence theorem
[22], there exists ∗1  0 such that differential equation (23)
with initial value  (0) = P0 has a solution for  ∈ (−∗1 ∗1).
Hence, a solution exists for algebraic equation (13) for every
 ∈ (−∗1 ∗1).
Remark 3: Theorem 2 indicates that the solution of (13)

exists and has the form of (22). However, the solution may
not be unique.
In the following theorem, the solvability of matrix differ-

ential equation (16) is investigated. In addition, a property
of the solution is presented, which will be used in the
subsequent stability analysis.
Theorem 3: The matrix differential equation (16) with

an initial condition satisfying (17) has a unique solution.
Moreover, the solution satisfies (0 ⊗ )() = 0.

Proof: By using the vectorization operator ()

described in Section II, (16) becomes




() = −{ ⊗ (0 ⊗ −)E ( ⊗ )

+ [A +  (0 ⊗ )E]
 ⊗ }()

+{(0 ⊗ −)E} (25)

System (25) is a first-order non-autonomous linear time-
varying ordinary differential equation of the form ̇ =

() + (), which is well-known to have a closed-loop
solution. Thus, a solution exists for (25) for  ∈ [0∞).
Define a new state () , (0 ⊗ )(). Multiplying

(0 ⊗ ) on both sides of (16) gives

̇() = −() [A +  (0 ⊗ )E]  (26)
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with the help of the fact that (0⊗)(0⊗−) = 00⊗
− = 0. Based on (17), the initial condition satisfies

(0) = (
0 ⊗ )(0) = 0 (27)

The only solution of (26) with initial condition (27) is
() ≡ 0 for  ∈ [0∞) Thus, (0 ⊗ )() = 0.

D. Design of Control Gain Matrices

According to Sections V-C and V-E,  will be designed
so that  =  −  is Hurwitz and has no common
eigenvalue with  , and  will be designed so that the
solution of (21), 0, satisfies 0 = . Based on
Assumption 2, it is not difficult to design desirable ’s.
The following lemma discusses the existence of desirable

gain matrices ’s and a strategy to design them.
Theorem 4: There exists a solution for 0 and  in the

following set of algebraic matrix equations:

−0 + 0 + = 0 (28)

0 = 

provided that:
1)  and  have no common eigenvalue, and
2) a solution () exists for

Ω() = (), where Ω ,£
( ⊗)( ⊗ −  ⊗ )

−1( ⊗)
¤
.

Proof: The method of vectorization is applied in solving
the algebraic matrix equations in (28). The equations in (28)
can be written in the vectorized form as

(− ⊗)(0) + (
 ⊗ )(0) (29)

+( ⊗)() = 0×1
( ⊗)(0) = () (30)

Provided that  and  have no common eigenvalue, the
matrix  ⊗  −  ⊗  has no zero eigenvalue. Thus,
it is invertible. Based on (29), we have

(0) = (⊗− ⊗)−1(⊗)() (31)

Plugging (31) into (30) gives

Ω() = () (32)

Provided that (32) is solvable,  can be determined.
Remark 4: Equation (32) has a solution if and only if

([Ω ()]) = (Ω) ≤ .

Since Ω ∈ R
2×, the above condition can only be

satisfied if  ≥ . This means the number of inputs must
be greater than or equal to the number of external states.
Remark 5: As a special case, if  = 0, then 0 =

−1  based on (28). The gain matrix  can be selected
as the right inverse of 

−1
 .

E. Stability Analysis

In this section, we will present several lemmas that will
be exploited in the subsequent closed-loop stability analysis.
Lemma 5: Under Assumption 1, suppose that  ∈

R1× is the normalized left eigenvector of  corresponding
to the zero eigenvalue (i.e.,  = 0 and 1  = 1). Then,
the system

̇ = −(⊗ ) (33)

is exponentially stable on the surface

( ⊗ ) ≡ 0. (34)
Proof: Equation (33) represents a first-order integrator

multi-agent system. It is well-known that if the directed con-
nection graph contains a directed spanning tree (Assumption
1), ( ⊗ )() is invariant and the states of each agent
will exponentially reach to ( ⊗)(0). Thus, if the initial
conditions are selected such that ( ⊗ )(0) = 0, system
(33) will exponentially reach zero and will always remain
on the manifold (34). That is, system (33) is exponentially
stable on manifold (34).
Lemma 6: Suppose thatA is Hurwitz. Then, there exists

a ∗2 satisfying 0  ∗2 ≤ ∗1 such that  in (18) is
exponentially stable for all  ∈ (−∗2 ∗2).

Proof: Since ∗2 ≤ ∗1, a solution  exists for the
equation (13). For small values of , the matrixA+ (

0⊗
)E is Hurwitz because A is Hurwitz. Therefore,  in (18)
is exponentially stable.
Lemma 7: Under Assumptions 1 and 2, suppose that 1)

the gain matrix  is designed so that  =  − is
Hurwitz and  doesn’t have a common eigenvalue with  ,
and 2) the gain matrix  is designed according to Theorem
4 so that EP0 = . Then, there exists a ∗3 satisfying 0 

∗3 ≤ ∗1 such that for every  ∈ (−∗3 ∗3) the state  defined
in (15) with the dynamics (19) is exponentially stable and
(), defined as

() , ()() (35)

is also exponentially stable.
Proof: Multiplying both sides of (15) by (

0 ⊗ )

gives

(
0 ⊗ ) = (

00 ⊗ −) − (0 ⊗ )()

According to the definition of 0 and Theorem 3, we have

(
0 ⊗ ) ≡ 0 (36)

Thus, the trajectory of (19) is restricted to the surface (36).
If the gain matrices ’s are designed according to The-

orem 4 so that EP0 = , then we can rewrite E as
E =  + 

³
1 +

O(2)


´
,  + . Therefore, the

differential equation (19) will become

̇ = −(0 ⊗ ) − 2(0 ⊗ )
0
() (37)

where 
0
() , ( ⊗ −)( ⊗ ).
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Scale the time variable  using  = . Then the differential
equation (37) can be expressed as a slowly time-varying
system [23] as




= −(0 ⊗ )( − 

0
) (38)

Thus, there exists ∗3  0 such that the system (38) is
exponentially stable for all  ∈ (−∗3 ∗3). This conclusion
is based on the fact that the unperturbed system of (37),
i.e., 


= −(0 ⊗ ), is exponentially stable according to

Lemma 5 because it is always on the manifold (36).
The time derivative of () defined in (35) is

̇ = ̇ +̇

= −(0 ⊗ −)E ( ⊗ )

+(0 ⊗ −)E − [A +  (0 ⊗ )E] 

+ [A +  (0 ⊗ )E] 

= −(0 ⊗ −)E ( ⊗ )+ (0 ⊗ −)E

Similarly, the unperturbed system ̇ = −(0 ⊗
−)E ( ⊗ ) can be proved to be exponentially
stable. Since () is exponentially stable according to Lemma
6, () is also exponentially stable.
Theorem 5: Consider a system of  non-identical agents

with dynamics (3). Under Assumptions 1 and 2, the control
law (10) enables SSS in the sense of (4) provided that the
control gains , , and  are designed as below.
1)  is designed so that  =  −  is Hurwitz

and  has no common eigenvalue with  .
2)  is designed so that the conditions in Theorem 4 are

satisfied.
3)  is selected so that  ≤ ∗, where ∗ =

min{∗1 ∗2 ∗3} and ∗1 
∗
2 
∗
3 are demonstrated in Theorem

2, Lemma 6, and Lemma 7, respectively.
Proof: Under Assumption 2, it is not difficult to design

desirable ’s so that  is Hurwitz and it has no common
eigenvalue with  using pole placement methods. Selecting
 ≤ ∗ ensures that  = max{} ≤ min{∗1 ∗2 ∗3}.
Provided that  is selected according to Theorem 4, then all
the conditions in Lemmas 6 and 7 are satisfied which indicate
that (), (), and ()() are exponentially stable.
Based on the transformation (15), (0⊗ )( ⊗ −)

is exponentially stable. According to Lemma 3, − and
consequently  are synchronized. Therefore, (0 ⊗ )

is also exponentially stable. Moreover, according to the
transformation (12),  is exponentially stable. Hence, SSS
is enabled in the sense of (4).

VI. CONCLUSIONS

In this paper, we studied the problem of simultaneous
stabilization and synchronization (SSS) for one class of
non-identical multi-agent systems with linear dynamics and
directed connection topology. The agent dynamics can be
different and the orders of agents are not necessarily equal.
We showed that a single control loop can be designed for
each agent to enable the internal states to be stabilized
and the external states to be simultaneously synchronized.

We proposed a distributed control law using a low gain
approach, which require only external states (internal states
are not required) exchanged from neighboring agents and
local measurements to enable SSS. Under mild stabilizability
and connectivity assumptions, we showed that SSS can be
enabled by properly designing the control gain matrices and
selecting a small enough low gain which ensures stability
and a fast enough convergence rate.
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