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Abstract— In magnetic drug targeting, where drugs are at-
tached to magnetic nanoparticles and external magnets are then
used to focus the therapy to, for example, solid tumors, there is
a need to better control and focus the distribution of particles
(the ferrofluid) to deep targets. This paper considers a key
next question: how to move a single spot of ferrofluid to a deep
target with minimal spreading. The problem is challenging since
the applied magnetic forces have a natural tendency to stretch
the ferrofluid spot. A control policy is designed and verified
by simulations to optimally control multiple electromagnets in
concert to move a single spot of ferrofluid from the edge of a
domain to a deep central target with minimal spreading.

I. INTRODUCTION

Magnetic targeting has the potential to enable physical

control of medicine to specific locations in the body. In

principle, it can enable focusing of chemotherapy to tumors,

anticoagulants to blood clots, and antibacterial drugs to infec-

tions. Magnetic targeting works by attaching therapy to mag-

netic nanoparticles, and then using magnets outside the body

to direct the therapeutic particles to disease locations [1]–[4].

In the past two decades, such particles have been safely used

and magnetic focusing has been demonstrated in animal and

phase I human clinical studies [4], [5].

One of the current major limitations in magnetic targeting

is design and control of the external magnets to focus

particles to deep targets. Prior studies, which used permanent

magnets held near surface tumors, have been restricted to

shallow targeting depths less than 5 cm [4], [5].

This paper is part of a broad and long term effort in

our group to improve the design and control of magnets

to better direct magnetized therapy to deep targets. It is

known that such deep targeting cannot be achieved without

dynamic control – Earnshaw’s classic 1842 theorem [6]

applies directly to nanoparticles actuated by magnetic fields

and proves that no static magnetic field can create an interior

stable energy trap. Instead, our group has been focusing

on using dynamic control of electromagnets to better drive

nanoparticles to deep internal targets. Real-time imaging of

magnetic nanoparticles based on fast-MRI technology [7],

positron emission tomography (PET) scanning [8], or fast

gamma imaging [9] provides a potential means for closed-

loop implementation of our control algorithms.
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We have developed experimentally validated simulations

of nanoparticle transport in-vivo [10], [11], have shown the

feasibility of electromagnet control to focus a distributed

ferrofluid of nanoparticles to deep targets on average [12],

and have demonstrated optimal control of a single drop of

ferrofluid in experiments [13]. Now we address the next key

question: we ask how to move a spot of ferrofluid from edge

to center with minimal spreading. This is still a long way

from control of a ferrofluid in animals, or patients, through

a vasculature network, under disturbing blood flows, and in

the face of large patient-to-patient uncertainty, but it is a sub-

stantial next step towards understanding how to effectively

control electromagnets to direct magnetic nanoparticles to

deep targets.

II. MODEL AND PROBLEM STATEMENT

Consider a flat container filled with a thin layer of a vis-

cous fluid and a distribution of magnetic nanoparticles. The

container cross section Ω is a bounded domain in R
2 with

the boundary ∂Ω which prevents the nanoparticles escaping

the domain. The concentration c (r, t) of the nanoparticles

at any point r = [r1 r2]
T ∈ Ω and any time t ∈ [0,∞)

is defined as the mass of nanoparticles per unit area and is

normalized so that
∫

Ω

c (r, t) dr = 1. (1)

The magnetic field inside the domain is generated by n
external controlled electromagnets. The resulting magnetic

field is described by Maxwell’s equations [14]. For an

electromagnet with a small time constant and operated in

its linear regime [13], [15], the generated magnetic field

is proportional to its applied voltage. Let uk (t) denote the

voltage of the kth electromagnet and assume that the vector

field hk (r) ∈ R
2 characterizes its magnetic field for a unit

voltage. The linearity of Maxwell’s equations implies that

the total magnetic field is given by

h (r, t) =
n

∑

k=1

uk (t)hk (r) .

This sum can be represented in a matrix form

h (r, t) = H (r) u (t) , (2)

where the n× 1 vector u (t) and the 2×n matrix H (r) are

defined as

u (t) =
[

u1 (t) u2 (t) · · · un (t)
]T

H (r) =
[

h1 (r) h2 (r) · · · hn (r)
]

.
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Throughout the paper, u (t) is regarded as a control vector.

The magnetic force applied to a ferromagnetic particle

from a magnetic field h (r, t) is given by

fm (r, t) = kf∇‖h (r, t)‖2
,

where ‖ · ‖ is the Euclidean norm, the operator ∇ denotes

the gradient with respect to r, and kf > 0 is a known

constant depending on the volume of the particle and its

permeability [1], [16]. Using the matrix representation (2),

the magnetic force can be expressed in terms of the control

vector u (t) as

fm (r, t) = kf∇‖H (r) u (t)‖2 .

Note that ∇‖H (r) u‖2
can be explicitly expressed as

∇‖H (r) u‖2
=

[

uT Q1 (r) u

uT Q2 (r) u

]

, (3)

where the n×n matrices Qi (r), i = 1, 2 are defined as

Qi (r) =
∂

(

HT (r) H (r)
)

∂ri

· (4)

Since the nanoparticles are surrounded by a viscous fluid,

they are subjected to an opposing fluid resistance (drag) in

addition to the applied magnetic force. Stokes’ drag law

states that such a drag force is linear in the velocity of the

nanoparticles and is expressed as

fd (r, t) = −µv (r, t) ,

where v (r, t) denotes the particle velocity vector at a point r
and µ > 0 is a known constant which depends linearly on the

diameter of a spherical nanoparticle and the viscosity of the

surrounding fluid [16], [17]. The nanoparticle acceleration is

negligible since the opposing drag force balances (with an

ignorable lag) the magnetic force applied to the particle [16].

Mathematically, this can be stated as fm (r, t)+fd (r, t) = 0
which is solved for v (r, t) to obtain

v (r, t) =
1

µ
fm (r, t) .

Defining α = kf/µ and using the matrix representation of

the magnetic force, the velocity vector per particle can be

expressed in terms of the control vector u (t) as

v (r, t) = α∇‖H (r) u (t)‖2 . (5)

The dynamics of many particles comprising a ferrofluid

is derived by considering the nanoparticle flux φ (r, t) at

location r and time t. This flux is comprised of a convection

term proportional to the velocity field v (r, t) and a diffusion

term proportional to the gradient of the concentration, and

is given by

φ (r, t) = −D∇c (r, t) + c (r, t) v (r, t) , (6)

where D is a 2× 2 matrix of the diffusion coefficients. The

concentration rate of change is obtained from the continuity

equation [18]

∂c (r, t)

∂t
= −∇ · φ (r, t) , (7)

where ∇· denotes the divergence operation. Upon substitut-

ing (5) and (6) into this equation, the temporal evolution

of the concentration can be described by the convection-

diffusion partial differential equation (PDE)

∂c (r, t)

∂t
= ∇ ·

(

D∇c (r, t) − α∇‖H (r)u (t)‖2 c (r, t)
)

.

(8)

The boundary condition for this equation must reflect the

fact that the nanoparticles cannot leave the domain Ω. To

maintain this condition, the flux vector must not have a

component perpendicular to the boundary, so the condition

iΩ (r) ·
(

D∇c (r, t) − α∇‖H (r) u (t)‖2 c (r, t)
)

= 0 (9)

must hold over ∂Ω. Here, iΩ (r) ∈ R
2×1 is the unit vector

perpendicular to the boundary at a point r and · denotes the

dot product operator.

The partial differential equation (8) describes an infinite-

dimensional dynamical system with the concentration c (r, t)
as its state and u (t) as its control vector. Although the PDE

itself is structurally linear, it represents a nonlinear system

due to the quadratic dependence of the magnetic force on the

control vector. Given the initial state c (r, 0) = c0 (r) and the

history of the control vector u (t), the state of the system can

be obtained for every arbitrary t > 0 by solving this PDE.

A. Problem Statement

Suppose that one of the external electromagnets has been

turned on for a long time before t = 0, so that at the initial

time t = 0, the nanoparticles are highly concentrated around

a point ri near the boundary. Denote the initial concentration

by c0 (r) and assume that the centroid of this distribution is

located at ri. Let C be a piecewise differentiable curve in Ω
which connects the initial point ri to a final target rf . The

goal of this paper is to determine a control trajectory u (t)
(voltages of the electromagnets) to drive the ferrofluid spot

with minimal spreading along C from ri to rf within an

unspecified period of time tf . This must be done despite the

natural tendency of magnetic forces to stretch the ferrofluid

spot, and it must be achieved in reasonable time and with

reasonable control effort.

To develop a mathematical statement for the control prob-

lem, we define the mean r̄ (t) ∈ R
2 (center of mass) and the

covariance matrix Σ (t) ∈ R
2×2 of the concentration as

r̄ (t) =

∫

Ω

rc (r, t) dr (10)

Σ (t) =

∫

Ω

(r − r̄ (t)) (r − r̄ (t))T c (r, t) dr. (11)

The trace of the covariance matrix is used as a measure for

the size of the ferrofluid spot. To penalize a large final time,

one can include a nonnegative increasing function of tf into

the cost function. Thus, the cost function which penalizes

both the spot size and the final time can be defined as

J = tr {Σ (tf )} + β (tf ) , (12)

where β (·) : [0,∞) → [0,∞) is a nonnegative, increasing,

and differentiable function satisfying β (0) = 0.

7951



Based on this cost function, the control problem is: for

every t ∈ [0, tf), determine a control vector u (t) satisfying

‖u (t)‖ 6 um < ∞ such that the center of mass r̄ (t) moves

along the piecewise differentiable curve C from the initial

point ri towards the final point rf , and under this control,

the cost function (12) attains its minimum.

III. EVOLUTION OF MEAN AND COVARIANCE MATRIX

This section provides the preliminary results required in

Section IV for the purpose of control design. The procedure

of control design is based on a set of equations which

determine the derivatives of the mean and the covariance

matrix in terms of the concentration c (r, t). These equations

are presented in Theorems 1 and 2 below. Lemma 1 provides

the necessary background for the proof of these theorems.

Lemma 1: Consider the mapping w (·) : R
2 → R and

assume that its partial derivatives exist up to the second order.

For every t > 0, define the scalar function ζ (t) as

ζ (t) =

∫

Ω

w (r) c (r, t) dr, (13)

where c (r, t) is the solution of the partial differential equa-

tion (8) with the boundary condition (9) and the initial

condition c (r, 0) = c0 (r). Then, the derivative of ζ (t) is

given by

ζ̇ (t) =

∫

Ω

∇w (r) · α∇‖H (r) u (t)‖2
c (r, t) dr

+

∫

Ω

∇ ·
(

DT∇w (r)
)

c (r, t) dr

−
∮

∂Ω

∇w (r) ·DiΩ (r) c (r, t) ds, (14)

where the last term on the right-hand side is a line integral

taken over the boundary ∂Ω.

Proof: Differentiating (13) with respect to t and sub-

stituting (7) into the resulting equation, ζ̇ (t) is obtained as

ζ̇ (t) =

∫

Ω

w (r)
∂c (r, t)

∂t
dr = −

∫

Ω

w (r)∇ · φ (r, t) dr.

Application of the identity

w (r)∇·φ (r, t) = ∇·(w (r) φ (r, t))−∇w (r)·φ (r, t) (15)

in the second integral leads to

ζ̇ (t) =

∫

Ω

∇w (r) · φ (r, t) dr −
∫

Ω

∇ · (w (r) φ (r, t)) dr.

(16)

Applying the divergence theorem [19] to the second integral

and using the boundary condition (9), one can obtain
∫

Ω

∇ · (w (r) φ (r, t)) dr =

∮

∂Ω

w (r) φ (r, t) ·iΩ (r) ds = 0.

Substituting (5) and (6) into (16), this equation can be

expressed as

ζ̇ (t) =

∫

Ω

∇w (r) · α∇‖H (r) u (t)‖2
c (r, t) dr

−
∫

Ω

∇w (r) · D∇c (r, t) dr.

Using an identity similar to (15), the second integral on the

right-hand side of this equation can be written as

−
∫

Ω

∇w (r) · D∇c (r, t) dr

=

∫

Ω

∇ ·
(

DT∇w (r)
)

c (r, t) dr

−
∫

Ω

∇ ·
(

DT∇w (r) c (r, t)
)

dr.

Finally, applying the divergence theorem to the second

integral on the right-hand side of this equality leads to the

third integral of (14) which completes the proof.

Theorem 1: For every t > 0, define the n×n symmetric

matrices Pm
i (t), i = 1, 2 (m stands for mean) and the 2× 1

vector b (t) as

Pm
i (t) =

∫

Ω

αQi (r) c (r, t) dr (17)

b (t) = −
∮

∂Ω

DiΩ (r) c (r, t) ds, (18)

where Qi (r) is given by (4) and c (r, t) is the solution

of the partial differential equation (8) with the boundary

condition (9) and the initial condition c (r, 0) = c0 (r). Then,

the derivative of the mean (10) is given by

˙̄r (t) = f (u (t) , t) + b (t) , (19)

where f (·) : R
n × R

+ → R
2×1 is defined as

f (u, t) =

[

uT Pm
1 (t)u

uT Pm
2 (t)u

]

.

Proof: In order to determine the ith element of ˙̄r (t),
define the mapping w (r) = ei · r, where ei denotes the ith

column of a 2× 2 identity matrix. It is easy to show for this

mapping that ∇w (r) = ei and ∇ ·
(

DT∇w (r)
)

= 0. Then

application of Lemma 1 leads to

ei · ˙̄r (t) =

∫

Ω

ei · α∇‖H (r)u (t)‖2
c (r, t) dr

−
∮

∂Ω

ei·DiΩ (r) c (r, t) ds.

Using (3) and considering the definitions (17) and (18), this

equation can be expressed as

ei · ˙̄r (t) = uT (t)Pm
i (t)u (t) + ei·b (t)

which is equation (19) written per element of ˙̄r (t).
Theorem 2: Let ei denote the ith column of a 2×2 identity

matrix and define the n×n matrices P̃ c
ij (t), i, j = 1, 2

(c stands for covariance matrix) and the 2×2 matrix B̃ (t) as

P̃ c
ij (t) =

∫

Ω

ei · (r − r̄ (t))αQj (r) c (r, t) dr (20)

B̃ (t) = D −
∮

∂Ω

(r − r̄ (t)) (DiΩ (r))
T

c (r, t) ds, (21)

where c (r, t) is the solution of the partial differential equa-

tion (8) with the boundary condition (9) and the initial
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condition c (r, 0) = c0 (r). In terms of these matrices, define

the symmetric matrices

P c
ij (t) = P̃ c

ij (t) + P̃ c
ji (t) (22)

B (t) = B̃ (t) + B̃T (t) .

Then, the derivative of the covariance matrix (11) is given by

Σ̇ (t) = F (u (t) , t) + B (t) , (23)

where F (·) : R
n × R

+ → R
2×2 is defined as

F (u, t) =

[

uT P c
11 (t)u uT P c

12 (t)u

uT P c
21 (t)u uT P c

22 (t)u

]

. (24)

Proof: Differentiating (11) with respect to t results in

Σ̇ (t) =
d

dt

[
∫

Ω

(r − r̄ (t0)) (r − r̄ (t0))
T

c (r, t) dr

]

t0=t

−
∫

Ω

˙̄r (t) (r − r̄ (t))
T

c (r, t) dr

−
∫

Ω

(r − r̄ (t)) ˙̄rT (t) c (r, t) dr.

The definition (10) of r̄ (t) and the normalizing condition (1)

imply that the last two integrals are identically zero. To

obtain the ij element of the remaining first integral substitute

w (r) = ei · (r − r̄ (t)) ej · (r − r̄ (t))

into (14) of Lemma 1 and note that

∇w (r) = ei · (r − r̄ (t)) ej + ej · (r − r̄ (t)) ei

∇ ·
(

DT∇w (r)
)

= eT
i

(

D + DT
)

ej .

By means of this substitution, application of (1) and (3), and

the definitions of P c
ij (t) and B (t), one can obtain

eT
i Σ̇ (t) ej = uT (t) P c

ij (t) u (t) + eT
i B (t) ej .

The matrix form of this equation is given by (23).

IV. CONTROL DESIGN

The phrased control problem does not constrain the final

time at which the ferrofluid spot reaches rf . Since the

final time is a variable and must be optimized in the cost

function (12), it is convenient to reformulate the problem in

terms of arc length, which has a fixed final value. To do

so, consider a piecewise differentiable curve C in Ω which

connects the initial point ri to the final point rf . Suppose r
is an arbitrary point on C and let s represent the length

of the curve segment connecting ri to r. Denote the total

arc length between ri and rf by sf . Assume that ρ (s)
is the parametric representation of C with respect to the

arc length s, so that it maps the interval [0, sf ] into the

segment of C between ri = ρ (0) and rf = ρ (sf ). As an

example, when C is a straight line extended from ri to rf ,

this representation is given by

ρ (s) = ri +
s (rf − ri)

‖rf − ri‖

with sf = ‖rf − ri‖. An important property of the parame-

trization ρ (s) is that its derivative ρ′ (s) = dρ (s) /ds has a

unit Euclidean norm, i.e., ‖ρ′ (s)‖ = 1.

The first objective of the control is to drive the center of

mass r̄ (t) along C from ri to rf . Since the speed of this point

along the curve is a free parameter, there are infinitely many

ways to perform this task, and all of them can be described

using the parametrization ρ (s). For this purpose, assume that

the center of mass departs ri at t = 0, moves along C with an

arbitrary speed θ (t) > 0, and eventually reaches rf at t = tf ,

where tf satisfies the algebraic equation
∫ tf

0

θ (τ) dτ = sf .

Define the strictly increasing map s (·) : [0, tf ] → [0, sf ] as

s (t) =

∫ t

0

θ (τ) dτ. (25)

Then, for some trajectory of θ (t) and for every t ∈ [0, tf ],
the mean r̄ (t) must satisfy

r̄ (t) = ρ (s (t)) , (26)

or equivalently its derivative must satisfy

˙̄r (t) = θ (t) ρ′ (s (t)) .

Substituting ˙̄r (t) from (19) into this equation leads to the

nonlinear algebraic equation

f (u (t) , t) + b (t) = θ (t) ρ′ (s (t)) , (27)

which must be satisfied by the the control vector u (t) and

the speed θ (t) for every t ∈ [0, tf ) in order to maintain (26).

The second objective of the control is to minimize the

spread and travel time contained in the cost function (12).

To that end, the following lemma expresses this cost function

in terms of an integral depending on the trajectories of u (t)
and θ (t) and taken with respect to arc length.

Lemma 2: Let θ (·) : [0,∞) → (0,∞) be an integrable

function and assume that s = s (t) is given by (25). Consider

the n×n matrices P c
ii (t), i = 1, 2 and the 2×2 matrix B (t)

defined in Theorem 2 and for every t ∈ [0,∞) define the

matrix-valued function

W (t) = P c
11 (t) + P c

22 (t)

and the scalar function

γ (t) = tr {B (t)} + β̇ (t) .

Then, the cost function (12) can be expressed as

J =

∫ sf

0

uT (t)W (t) u (t) + γ (t)

θ (t)
ds + tr {Σ (0)} , (28)

where sf = s (tf ) and u (t) ∈ R
n is the control vector in (8).

Proof: It is straightforward to show that the cost

function (12) can be expressed as

J =

∫ tf

0

(

tr
{

Σ̇ (t)
}

+ β̇ (t)
)

dt + tr {Σ (0)}

=

∫ sf

0

(

tr
{

Σ̇ (t)
}

+ β̇ (t)
) ds

(ds/dt)
+ tr {Σ (0)} .
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Next, substitute ds/dt = θ (t) from (25) and Σ̇ (t) from (23)

into the second integral to get

J =

∫ sf

0

tr {F (u (t) , t) + B (t)} + β̇ (t)

θ (t)
ds + tr {Σ (0)} .

Considering the quadratic structure of F (·) defined in (24),

this integral can be further simplified to (28).

To determine an optimal solution for the control problem,

one must perform an optimization over the entire trajectory

of the state, using either dynamic programming [20], [21]

or Pontryagin’s minimum principle [22], [23]. Application

of these methods to a general nonlinear problem is difficult,

and especially difficult for the present problem due to its

infinite-dimensional dynamics. As an alternative, we develop

a suboptimal solution for the control problem by a pointwise

optimization in the representation (28) of the cost function.

Our approach in resolving the control problem is to

minimize the integrand of (28) with respect to u (t) and θ (t)
for every t ∈ [0, tf ) subject to the equality constraint (27)

and the inequality constraints ‖u (t)‖ 6 um and θ (t) > 0.

Based on this method, the suboptimal control u∗ (t) and the

suboptimal speed θ∗ (t) are the solution of the constrained

optimization problem

minimize
u,θ

uT W (t) u + γ (t)

θ

subject to : f (u, t) + b (t) − θρ′ (s (t)) = 0, (29)

‖u‖ 6 um,

θ > 0.

Using the transformation u = z
√

θ, this optimization prob-

lem can be simplified to another optimization problem which

has an efficient solution method developed in [13], [15]. To

that end, notice that the constraint ‖u‖ 6 um holds with

equality under the optimal solution, so that θ = u2
m/ ‖z‖2

.

In addition, the approximation b (t) ≃ 0 holds for most of

the time during the course of control because the diffusion

matrix D is small and, further, the overlap of ferrofluid con-

centration with the domain boundary ∂Ω is only appreciable

at the very start of the trajectory. Incorporating these two

results and exploiting the quadratic structure of f (·), the

optimization problem (29) is converted to

minimize
z

zT
(

W (t) + u−2
m γ (t) I2×2

)

z

subject to : f (z, t) − ρ′ (s (t)) = 0,

(30)

where I2×2 denotes the 2×2 identity matrix. By solving this

problem, the optimal values of u and θ in (29) are obtained as

u∗ (t) = umz∗ (t) / ‖z∗ (t)‖
θ∗ (t) = u2

m/ ‖z∗ (t)‖2

in terms of the solution z∗ (t) of (30).

V. SIMULATION RESULTS

We have evaluated the performance of our proposed con-

trol policy by means of a number of computer simulations. In

this study, the numerical computations have been performed

by an interacting combination of COMSOL Multiphysicsr

and MATLABr. The former solves the partial differential

equation (8) with the boundary condition (9), and the latter

solves the optimization problem (30) using an algorithm

developed in [13], [15].

As shown in Fig. 1, the domain Ω in these simulations is

a unit circle and n = 8 identical electromagnets are equally

spaced around this circle. Each individual magnetic field is

determined from a model developed in [13] with a magnet

length of 4 and magnet diameter of 0.8 (normalized to the

radius of Ω). The magnetic fields are normalized such that a

unit voltage actuation results in a unit amplitude field at the

center of the magnet face.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1

2

3

4

5

6

7

8

r1

r
2

ri rfC

Fig. 1. The geometry used for the simulations. The small rectangles marked
with 1 through 8 represent the electromagnets. The straight line extended
from ri towards rf is the trajectory of the spot of ferrofluid. The initial
concentration of ferrofluid c0 (r) is shown in light gray.

The parameters used in the simulations are α = 1,

um = 1, and D = 10−5I2×2. The scalar function β (·)
in (12) is assumed to be β (t) = 9 × 10−5 t. The initial

concentration c0 (r) is uniform over a circle of radius 0.05
which is centered at the initial point ri = [−0.95 0]T , while

the final point rf is the origin of coordinate system. Finally,

the curve C is a straight line connecting ri to rf .

The simulation results are presented in Fig. 2 and Fig. 3.

Fig. 2 illustrates the concentration c (r, t) as the spot is

moved from left to right. In this figure, two control policies

are compared: the right column shows the concentration

under the proposed control, while the left column presents

the concentration under a trivial control in which electromag-

net 1 is energized with its maximum power and the rest of

electromagnets are turned off. Fig. 3 shows the trace of the

covariance matrix as the ferrofluid spot is controlled from

left to right by the optimal (solid line) and trivial (dashed)

electromagnet control. This plot indicates that the optimal

control confines the droplet 8 times better by the time it

reaches the central target point.

VI. CONCLUSION

The motion of a spot of distributed ferrofluid under a

controlled magnetic field has been described by a convection-

diffusion partial differential equation. Based on this model, a

control policy has been developed to steer the ferrofluid spot

along an arbitrary trajectory from an initial point towards a
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Fig. 2. Concentration profile at s = 0, 0.2, 0.45, 0.7, 0.95. The right
column shows the concentration under the proposed control, while the
left column presents the concentration under a trivial control in which
electromagnet 1 is energized with its maximum power and the rest of the
electromagnets are turned off.

desired final point. The control has been designed to maintain

the spot size at the final point as small as possible. Numerical

simulations have been performed to verify the performance

of the proposed control policy.
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