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Abstract— This paper considers the problem of distributed
assignment of tasks to agents in the presence of task constraints,
where the agents use a known, but arbitrary communication
topology. The task assignment problem considered here requires
that all agents that perform tasks related by a task constraint
be able to communicate directly. The problem is motivated
by complex military missions where tasks are assigned to
various vehicles and tasks must be scheduled to meet constraints
between them. This requires communication between vehicles
responsible for tasks that are related by constraints. The
physically distributed and dynamic nature of such missions
combined with unreliable communication motivates algorithms
that can perform the required distributed planning. Toward
this goal, we introduce a method that assigns tasks under the
restrictions imposed by these mission constraints. The new
method presented here is a distributed search designed to
solve a nonlinear, distributed constrained assignment problem
for which a proof of correctness is presented. The method is
illustrated on an example involving two unmanned air vehicles
and two unmanned ground vehicles.

I. INTRODUCTION

Consider the following motivational example. Two un-

manned air vehicles (UAVs) and two unmanned ground

vehicles (UGVs) are tasked to prosecute two targets. Each

vehicle has only local knowledge of the structure of the

communication network. In this scenario, the communication

topology is limited as depicted in Figure 1. Actual causes of

such situations may include range limitations, terrain, and

heterogeneous communication protocols. These limitations

motivate the development of planning algorithms that can

operate in the presence of a arbitrary communication net-

works.

�����������	
	���

���������	���������
��

��	���


������
����������

��

�� ��

��

��	����

��	����

Fig. 1. UAV and UGV example.

The example mission in Figure 1 requires a plan where

both targets are prosecuted. To achieve this, a UGV must

track a target while a UAV attacks it. The tracking vehicle

must be in communication with the attacking vehicle so

that the attack can be coordinated. The vehicles must use

information related to vehicle capability, task constraints, and

the locally known communication topology to decide which

vehicles will perform each of these tasks on each of the tar-

gets while obeying the given restrictions. This is an example

of a distributed system, i.e., a system with one or both of the

following properties: 1) no agent has complete knowledge

of the full system, 2) no agent has complete control over

the actions of the other agents. This motivating example

was chosen because it features vehicles with heterogeneous

abilities, a connected communication topology, and several

heterogeneous tasks. In spite of its small size, it contains all

of the necessary ingredients to illustrate the concepts of this

paper. While this example is military in nature, our notions

of tasks, agents, communication, and clustering constraints

are general and are applicable to numerous other constrained

assignment applications such as those in [1], [2].

This paper introduces the Communication-Constrained

Distributed Assignment Problem (CDAP). The CDAP con-

cerns assigning tasks that are related by constraints, to agents

such that those assigned related tasks have the capability to

communicate. This ability to communicate ensures that the

constraints relating these tasks can be satisfied if possible.

The CDAP is a nonlinear distributed constrained assignment

problem that we solve using a stochastic bidding method.

The effect of this bidding method is that the global exchange

of tasks is done in a way reminiscent of optimization

by Simulated Annealing. The computation associated with

optimization by Simulated Annealing can be distributed (or

parallelized) [3], but our method distributes the information

associated with the representation of the solution. To the

authors’ knowledge, this aspect is previously unexplored.

A. Literature Review

Three core motivating problems in the scheduling and

planning literature are the Assignment Problem [4], the Job-

Shop Scheduling Problem (JSP) [5], and the Traveling Sales-

man Problem (TSP) [6]. Problems involving vehicle routing,

assignment, and scheduling necessarily contain elements of

all three. The TSP formulation has become a widely used

tool for solving vehicle routing problems (VRP) and many

other combinatorial problems [7]. The JSP concerns the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 570



scheduling of several jobs on a number of machines such

that the lateness of job completion is minimized [8].

Military mission planning problems are often formulated

as scheduling and assignment problems [9], [10]. Assign-

ment and scheduling problems have originated in operations

research where a large literature exists [8]. Modern practical

planning problems have motivated an expansion of this

literature into diverse areas including electrical engineering

[11], computer science [12], and aerospace engineering [13].

Distributed systems theory is often concerned with prob-

lems of efficient communication over networks, consensus

regarding data access and management, and fault-tolerance

or resilience to failure [14], [15]. Solution methods for

distributed constraint satisfaction problems (DCSP) were pi-

oneered by Yokoo [16] and include distributed backtracking

and asynchronous weak commitment search. These methods

can be used to solve problems involving setting the values

of several variables that are related by predicate constraints.

Auction methods are a reliable, low-complexity way to

find near-optimal [13] and in some cases, optimal solutions

[17] to assignment problems. Distributed assignment meth-

ods for UAVs include Capacitated Transhipment Assignment

formulations [18], which perform assignment in a greedy

way, but are effective and can be done in real-time. The

problem of information consensus becomes important to

distributed estimation and information fusion problems [19].

Consensus methods can be useful for determining continuous

quantities like the positions and velocities of vehicles [20].

Sophisticated methods such as distributed integer linear pro-

gramming (ILP) methods [21] have been designed to solve

linear, multi-vehicle assignment problems in the presence of

communication delays. In spite of these extensive tools, there

has been no previous work in distributed systems designed

to solve the nonlinear distributed constrained assignment

problem developed in this paper.

B. Original Contributions

The primary contributions of this work are as follows.

1) An introduction to the Communication-Constrained

Distributed Assignment Problem (CDAP) is given.

2) A distributed algorithm that solves this problem is

presented and its correctness is proven.

In contrast to other task assignment formulations, includ-

ing the methods discussed above, the CDAP incorporates the

constraints that require that those agents which are assigned

to tasks related by constraints be able to communicate with

each other. We also develop a unique formulation that con-

verts the distributed constrained assignment problem into a

distributed optimization problem. A new Stochastic Bidding

Algorithm (SBA) is designed and used to solve the resulting

distributed optimization problem. Unlike other auction meth-

ods, the SBA effectively incorporates randomness to find

a global minimum of the objective function. This method

requires only local information about the communication

network topology. The SBA terminates if and only if a

solution to the CDAP is found. The SBA has probabilistic

completeness properties, but this is beyond the scope of the

current paper. The novelty of this approach, as compared

to others in the literature, is to explicitly address the is-

sues of distributed data and authority in a communication-

constrained assignment problem. Other methods either solve

the problem in a centralized way [1], [2], [17], do not address

communication-constrained assignment [17], [13], [22], or

require that all agents be able to communicate directly [22].

All of these issues are addressed in the current paper.

II. OVERVIEW

This paper is organized as follows: Section III develops

the notion and conventions used throughout; Section IV

details the Communication-Constrained Distributed Assign-

ment Problem; Section V illustrates the approach used to

solve this problem; Section VI details the Stochastic Bid-

ding Algorithm; Section VII presents an exposition of the

execution of the SBA and demonstrates its effectiveness; and

Section VIII concludes the paper.

III. NOTATION AND PRELIMINARIES

This section details the concepts that are used to formulate

the problem of this paper. The set of tasks to be assigned is

T = {t1, . . . , tNt
}, (1)

where Nt > 0 is the number of tasks. In the mo-

tivating example Nt = 4 and t1 ≡ track target 1;

t2 ≡ attack target 1; t3 ≡ track target 2; and t4 ≡
attack target 2. The set of tasks is therefore T =
{t1, t2, t3, t4}.

Tasks are to be assigned to agents. The set of agents is

A = {a1, . . . , aNa
}, (2)

where Na > 0 is the number of agents. The agents in the

motivational example are a1 ≡ left UGV; a2 ≡ left UAV;

a3 ≡ right UAV; and a4 ≡ right UAV. The set of agents

is therefore A = {a1, a2, a3, a4}.
A task assignment is a mapping from tasks to agents. It

is defined formally as,

TA : T → A, (3)

and tells which agents will perform each of the tasks. A task

assignment is a mapping (as opposed to simply a relation).

Hence, we require that each task be assigned to one and only

one agent. This mapping need not be injective, i.e., an agent

may be assigned several tasks. This mapping need not be

surjective, i.e., an agent may not be assigned any task at all.

Note that there is no loss of generality in requiring that a task

assignment be a mapping: if a task requires several agents,

it should be split into subtasks requiring one agent each. An

example task assignment for the motivational example is

TA1 = {(t1, a4), (t2, a2), (t3, a4), (t4, a3)}. (4)

The first notion of feasibility used in this paper is feasibil-

ity with respect to capability and is described using a relation

from T to A, i.e., a subset of their Cartesian product:

Capability ⊆ T ×A. (5)
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A pair (t, a) ∈ T × A is in Capability iff task t can be

performed by agent a. This describes the physical capability

of the agents to perform the tasks. Without loss of generality,

we assume that the range of Capability is A. In other words,

we assume that each agent is capable of performing at

least one task. The relation Capability for the motivational

example is

Capability = {(t1, a1),(t1, a4), (t2, a2), (t2, a3),

(t3, a1), (t3, a4), (t4, a2), (t4, a3)}.
(6)

A task assignment is called feasible with respect to capability

iff TA ⊆ Capability, i.e.,

(ti, TA(ti)) ∈ Capability, i = 1, . . . , Nt. (7)

In practice, this means that each task is assigned to an

agent that is capable of performing it. For the motivating

example, the task assignment of (4) is feasible with respect

to capability whereas the task assignment,

TA2 = {(t1, a1), (t2, a1), (t3, a4), (t4, a4)}, (8)

is not. The task assignment TA2 is not feasible with respect

to capability because tasks t2 and t4, which are attacking

tasks, are not assigned to UAVs that are capable of perform-

ing them.

A central idea of this paper is that tasks are bound to

each other in the following sense. Tasks may be related

by operational constraints and the agents that are assigned

such related tasks must be able to communicate in order to

properly plan for and perform these tasks. In the motivating

example, tracking and attacking tasks for a single target

are related by the operational constraint that they must be

performed at the same time (i.e., when scheduled, these

tasks must be scheduled to occur at the same time). The

scheduling of these tasks is left for future work. The effect

of the constraints that bind tasks is described formally as

follows, consider Ncl > 0 task clusters,

T1, . . . , TNcl
⊆ T , (9)

each of which represents a particular constraint and con-

tains as elements, the tasks that are involved in each such

constraint. The task clusters for the motivating example are

T1 = {t1, t2} and T2 = {t3, t4}.
The concept of a cluster union is also used in this work.

Informally, a cluster union is defined for each task ti and is

the set of tasks with which task ti shares a cluster. Formally

a cluster union is,

Ci = {tk | ∃m ≤ Ncl : ti ∈ Tm and tk ∈ Tm}, i = 1, . . . , Nt.

(10)

The cluster unions for each of the tasks in the motivating

example are, C1 = {t2}; C2 = {t1}; C3 = {t4}; and C4 =
{t3}.

We use the following standard notions from graph theory.

An (undirected) graph is a pair (V, E) of vertices and edges

such that each edge is a couple of vertices [23]. A graph

is called complete iff every couple of vertices is an edge.

For the graph (V, E), if V ′ ⊆ V , the subgraph induced by

restriction to V ′, denoted (V, E) |V′ , is the graph (V ′, E ′),
where

E ′ = {{v1, v2} ∈ E | v1 ∈ V
′ and v2 ∈ V

′}. (11)

In other words, the induced subgraph is obtained by retaining

only vertices in V ′ and the edges connecting them. The

distance between two vertices v, w ∈ V is d(v, w) and

represents the number of edges that must be traversed to

move from v to w across the graph. The diameter of a graph

G = (V, E) is,

diam(G) = max
v,w∈V

d(v, w). (12)

The neighborhood of a vertex v ∈ V is the set Nv = {w ∈
V | e = {v, w} ∈ E}.

The agents in (2) have communication capability described

by an undirected, connected communication graph,

Gc = (A, Ec). (13)

There is an edge between two agents iff they are able to

communicate directly with each other. The type of com-

munication assumed here is acknowledgement-based, where

each agent knows when communication is established with

another agent. The edge set of the communication graph for

the motivating example is,

Ec = {{a1, a2}, {a2, a3}, {a3, a4}}. (14)

A task assignment is said to be feasible with respect to

clustering iff

(A, Ec) |TA(Ti) is complete, i = 1, . . . , Ncl. (15)

Requirement (15) means that the agents that are assigned

to the tasks belonging to a cluster must all be able to

communicate directly with each other. The task assignment

of (8) is feasible with respect to clustering, whereas the task

assignment of (4) is not. The infeasibility of the task assign-

ment TA1 with respect to clustering results because agent

TA(t1) cannot directly communicate with agent TA(t2)
although t1 and t2 belong to the same cluster T1.

Definition Feasible task assignment:

A task assignment that is feasible with respect to capability

and feasible with respect to task clustering is said to be a

feasible task assignment.

For the motivational example, the task assignment,

TA3 = {(t1, a1), (t2, a2), (t3, a1), (t4, a2)}, (16)

is feasible.

IV. PROBLEM DEFINITION

Each agent aj is assumed to have the know following data:

1) The tasks ti such that (ti, aj) ∈ Capability,

2) For all such ti, all clusters Tm such that ti ∈ Tm,

3) Its neighborhood Naj
on the communication graph,

4) The tasks tl such that (tl, ak) ∈ Capability and ak ∈
Naj

,
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where i, l = 1, . . . , Nt; j, k = 1, . . . , Na; and

m = 1, . . . , Ncl. The problem discussed here is for

the agents in A, to collectively find a feasible task

assignment TA, using only the available data together

with communication with neighbors by (13). This is

the Communication-Constrained Distributed Assignment

Problem (CDAP). Propositions 4.1 and 4.2 help to

underscore the difficulty of solving the CDAP. Proofs of

propositions are in the appendix.

Proposition 4.1: The number of possible task assignments

grows as O(NNt
a ).

For the motivating example there are 44 = 256 possible

assignments.

Proposition 4.2: Let X ∈ {0, 1}Nt×Na represent a task

assignment so that Xij = 1 if TA(ti) = aj and Xij = 0
otherwise. Then the CDAP problem can be formulated as a

system of nonlinear equations in X .

The difficulty of the problem is highlighted by Proposi-

tions 4.1 and 4.2 and the fact that the input data and com-

putational resources are distributed across a communication

network of arbitrary topology. The size of the problem is

polynomial in the number of agents and exponential in the

number of tasks. Exhaustive enumeration is infeasible due to

complexity and the distributed nature of the problem data.

V. TECHNICAL APPROACH

This section describes the approach used to solve the

CDAP problem and further develops the tools used in this

approach. Define a set of messages M, possibly infinite and

closed under union. The content that the agents communicate

to their neighbors originates in this set of messages. That

specific content is discussed later.

For every multi-index (i, j) such that (ti, aj) ∈
Capability, define a quadruple,

[ti, aj ] = (Statesij , startij , transij ,msgsij). (17)

This quadruple is called a process, where Statesij is the

state space of process [ti, aj ], i.e., a set of configuration

quantities that may be boolean, integer, or real valued that

describe the configuration of the process and represent its

memory; startij ∈ Statesij is the state at which process

[ti, aj ] begins operation;

transij : M× Statesij → Statesij , (18)

msgsij : M× Statesij →M. (19)

Processes advance this state appropriately through the func-

tion transij , which accepts incoming messages and produces

a new state from the current state. The function msgsij is

responsible for reading received messages, the new state,

and based on these, sending appropriate messages. Let

Processes be the set of processes defined in (17).

Define the undirected process graph Gp =
(Processes, Ep), where

Ep = {{[ti, aj ], [tk, al]} | {aj , al} ∈ Ec}. (20)

The process [ti, aj ] is connected to the process [tk, al] if and

only if agent aj is connected to agent al by a communication

link. The process graph for the motivating example is shown

in Figure 2.
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Fig. 2. Process graph for the example of Section I.

The vertex set of the process graph for the motivating

example is given by (6) and the edge set follows from (20)

and (14).

The processes [ti, aj ] ∈ Processes, form a distributed

system in the sense specified in Section I. This paper con-

siders this distributed system under synchronous operation.

That is, the processes each simultaneously update their state

and then simultaneously send messages to their neighbors.

Each iteration of computation and message transmission is

referred to as a round.

The algorithm developed in this work allows processes

to bid on behalf of their agents for the tasks that the

corresponding agent is capable of performing. Tasks are

bid on in numerical round-robin order, when the bidding

for one task is finished, bidding for the next one begins.

Algorithms 1 and 2 detail the operation of the transij and

msgsij functions respectively for the algorithm presented

in this paper. The bidding procedure is depicted graphically

in Figure 3. Note that the diagram in Figure 3 does not

terminate. Distributed algorithms often have an associated

termination condition that stops the algorithm from executing

when a solution is found [14]. This termination condition

is usually a function of the states of each process and thus

requires current knowledge of each process which in general,

no process will have. Rather than terminate, it is enough that

there exists a round at which the processes collectively output

a solution.

The idea of an assignable process informally means that if

a process has won the bidding for its task and its neighbors

have won theirs, that process will then satisfy all clustering

constraints associated with its task. Formally an assignable

process is defined as follows,

Definition Assignable Process:

process [ti, aj ] is assignable if ∀tk ∈ Ci, ∃[tk, al] ∈ N[i,j].

A process is unassignable if it is not assignable.

Unassignable processes are not able to satisfy clustering

constraints, these processes do not participate in the bidding
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Fig. 3. Bidding procedure diagram.

procedure. To illustrate this concept, consider the modifica-

tion of the example of Section I obtained by disabling the

right UGV (i.e. agent a4) as shown in Figure 4.
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Fig. 4. Modified UAV and UGV example.

The set of tasks remains the same, but the new set of agents

and the relation Capability are,

A = {a1, a2, a3}, (21)

and

Capability = {(t1, a1),(t2, a2), (t2, a3),

(t3, a1), (t4, a2), (t4, a3)}.
(22)

The resulting process graph is shown in Figure 5.
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Fig. 5. Process graph for the modified example.

Notice that in Figure 5, the processes [t4, a3] and [t2, a3]
do not share edges with any processes [t3, aj ] or [t1, al]
respectively. This results in processes [t4, a3] and [t2, a3]
being unable to satisfy clustering constraints, T2 and T1
respectively. These processes are therefore unassignable.

VI. SOLUTION PROCEDURE

The remainder of this paper details the bidding method

used for solving the Communication-Constrained Distributed

Assignment Problem. The approach is to restructure the

CDAP as a minimization problem, employ tools from dis-

tributed auctions to find minima of the resulting cost func-

tion, and use stochastic bidding to ensure a global minimum

is found. The uniqueness of the assignment for each task is

satisfied by a conflict resolution method [13].

Let TA be the current task assignment across the system,

not necessarily feasible with respect to clustering. Define for

each process [ti, aj ], a quantity that specifies whether or not

it has won the bidding for its task. This quantity, introduced

in Proposition 4.2, is

Xij =

{

1 if TA(ti) = aj
0 otherwise

. (23)

For the motivational example, consider process [t1, a1], pro-

cess [t1, a4], and the task assignment of (4). Here, X11 = 0
and X14 = 1.

The set of neighboring processes that allow process [ti, aj ]
to satisfy the clustering constraints associated with task ti is

defined as,

NCij = {[k, l] ∈ N[i,j] |Xkl = 1

and tk ∈ Ci},
(24)

and the cardinality of this set is,

ncij =| NCij | . (25)

If | NCij |=| Ci | and Xij = 1, then all required clustering

constraints for task ti are satisfied. For process [t1, a1] and

process [t1, a4] and the task assignment of (4), NC11 =
{[t2, a2]} and NC14 = ∅. Hence, nc11 = 1 and nc14 = 0.

Consider the set of all assignable processes that bid on a

task ti. This set is

Bi = {[ti, aj ] ∈ Processes | [ti, aj ] is assignable},

i = 1, . . . , Nt.
(26)

For the example of Section I and task t1, B1 =
{[t1, a1], [t1, a4]}.

The deficiency of a process (with respect to the connec-

tions it must make as required by clustering) is defined as:

ndij =| Ci | −ncij . (27)

The sum of this deficiency across the process graph is,

J(TA) =
∑

i,j:[ti,aj ]∈Processes

ndij ·Xij . (28)

Define the optimization problem,

min
TA∈AT

J(TA) (29)
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s.t. TA ⊆ Capability.

The minimum value of any process deficiency, ndij is zero

and corresponds to TA(ti) being in communication with all

agents TA(tk) where tk ∈ Ci, i = 1, . . . , Nt. Proposition

6.1 states the equivalence of solving this optimization

problem and the solution of the CDAP. The proof of this

proposition is in the appendix.

Proposition 6.1: J(TA) = 0 if and only if TA satisfies

(15).

Note that ndij is a function of Xkl, where [tk, al] ∈ N[ti,aj ],

this introduces a nonlinearity into the cost function (29). We

do not expect J(TA) to have unique minimizer, i.e., feasible

assignments may not be unique.

A. Stochastic Bidding Algorithm

The bidding algorithm presented below attempts to mini-

mize the cost function in (29) and thus find a task assignment

that satisfies (15). This bidding algorithm favors processes

that satisfy their respective clustering requirements dictated

by Tm,m = 1, . . . , Ncl. The SBA assumes, without loss of

generality, that all tasks are bid on in numerical round-robin

order and is informally described as follows. The bidding

begins with task t1. Bidding begins for ti ∈ T when a

process [ti, aj ] ∈ Bi, has received next messages from

every [t(i−1), aj ] ∈ Bi−1, where t0 is defined as tNt
by

round-robin. When a process bidding for ti has received bid

messages from every [ti, aj ] ∈ Bi, that process computes the

winning bidder and sends a next message.

These messages are relayed by each process across the

graph Gp. While a round refers to a process running trans

and msgs, a session refers to the completion of bidding for

each of the Nt tasks. This procedure can be thought of as a

distributed Simulated Annealing method.

Let the quantity NDij be a local estimate of the value

of J(TA). This value is updated every time next messages

are received by bidding processes where Xij = 1, where

i = 1, . . . , Nt and j = 1, . . . , Na. Let qij be a random

variable with probability density function (pdf ),

pdf(qij) =

{

exp[−
q2ij
σ2

ij

], qij > 0, for σij > 0,

0, for σ = 0
, (30)

with standard deviation,

σij =
NDij · c

T
, (31)

where the constant c is a tuning parameter used to control the

rate of collapse of the distribution and time T is a discrete

counter equal to the number of sessions. A large value of

c increases the probability of finding a solution. However, a

small value of c decreases the time needed to find a solution.

An in-depth discussion of choosing the value of c is beyond

the scope of the current paper. The bid values for each

assignable process [ti, aj ] are computed as,

bidij = ncij − qij . (32)

where i = 1, . . . , Nt and j = 1, . . . , Na.

For the motivational example, consider Table I and round

24 of the bidding procedure. The assignment at round 24

is that of (4), nc11 = 1, nc14 = 0, and ND11 = ND14,

resulting in the same distribution for q11 and q14. There is

a non-zero probability that [t1, a4] will outbid [t1, a1], but

this is unlikely and does not happen. This result is shown in

Table I.

The state stateij of process [ti, aj ] and the messages, M
are defined as follows,

stateij = (j, i, | Ci |, ncij ,

NDij , Nsentij , bidij , Xij ,

allBidRecvdij , allNextRecvdij ,

sendBidij , sendNextij),

(33)

and

Mbid = {(Nsentij , j, i,

bidij , | Ci |, ncij)},
(34)

Mnext = {(Nsentij , j, i,

Xij , | Ci |, ncij)},
(35)

M =Mbid ∪Mnext. (36)

where i, j is such that [ti, aj ] ∈ Processes. The quantities

|Ci|, ncij , NDij and bidij are computed per their definitions.

The quantity Nsentij is the number of messages sent by

process [ti, aj ]. The boolean quantities Xij , allBidRecvdij ,

sendNextij , and sendBidij are initialized as zero, and the

boolean quantity,

allNextRecvdij =

{

1 if i = 1
0 otherwise

. (37)

Define the function computeBid, which computes a bid

value from NDij , ncij , and T . Also define the function

computeX , which determines if process [ti, aj ] is the

winning bidder for task ti. This is done after all bids for

task ti are received by process [ti, aj ] ∈ Processes. The

function forwardNew sends all new incoming messages to

all neighbors except for the sending process, and sendMsg

sends a message M ∈ M to all neighbors. The termination

condition for this algorithm is specified as follows:

Termination condition:

∀[ti, aj ] ∈ Processes, NDij = 0.

Note that the bid values favor those processes [ti, aj ] ∈ Bi

that satisfy more of their connection requirements. There are

several properties of the SBA that are of note. Note that, as

J(TA) and similarly NDij decreases, the probability that

a process that satisfies a large number of its communication

requirements will have winning bids increases. This results

in the maximum bid that any process can place for its

task occurring when the standard deviation, σ = 0. This

corresponds to NDij = 0, which implies that every process

that has won the bidding for its task can communicate with

all processes that have won the bidding for the tasks in
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Data: M,Stateij
1 if allNextRecvd then

2 allNextRecvd = 0
3 computeBid(NDij , ncij)
4 sendBid = 1
5 end

6 if allBidRecvd then

7 allBidRecvd = 0
8 computeX()
9 sendNext = 1

10 end

Result: stateij ∈ statesij
Algorithm 1: transij

Data: stateij
1 forwardNew()
2 if sendBid then

3 sendBid = 0
4 M = Mbid

5 sendMsg(M)
6 end

7 if sendNext then

8 sendNext = 0
9 M = Mnext

10 sendMsg(M)
11 end

Result: M ∈M
Algorithm 2: msgsij

Ci. This implies that if process [ti, al] can match process

[ti, aj ]’s bid for task ti, then process [ti, al] can also meet

the same communication requirements. Lemma 6.2 states

the correctness of the SBA. The proof of Lemma 6.2 can

be found in the Appendix.

Lemma 6.2: Correctness:

If stochastic bidding terminates a feasible assignment, TA,

has been found.

VII. RESULTS

The following demonstrates the SBA applied to the mo-

tivating example. The example terminates with a feasible

assignment in thirty-eight rounds. This corresponds to two

complete bidding sessions. Table 1 shows the progression of

the bidding process including the values of the various bids.

The final assignment for this example is,

TA4 = {(t1, a1), (t2, a2), (t4, a3), (t3, a4)}. (38)

The processes begin by sharing messages for the purpose of

initialization, this lasts for seven rounds. Bidding begins at

the eighth round. Note the spacing of the rounds between the

bidding for each task, this spacing is related to diam(Gp).
The number of rounds required for the sharing of all bid

messages is upper bounded by diam(Gp). The number of

rounds required for all the processes bidding on the next

task to receive all next messages is also upper bounded

by diam(Gp). This results in a upper bound between the

beginning of bidding for ti and ti+1 of 2 · diam(Gp).
Processes only bid for their respective tasks in-turn, but

forward messages from other processes at each round. Only

the rounds where bid messages are sent are shown in Table

I.

TABLE I

EXAMPLE BIDDING PROGRESS.

Round Session [i, j] / bidij [i, l] / bidil Winner

8 (t1) 1 [1, 1] / -4.43 [1, 4] / -2.8 a4
13 (t2) [2, 2] / -0.14 [2, 3] / -1.22 a2
16 (t3) [3, 1] / -4.42 [3, 4] / -0.28 a4
21 (t4) [4, 2] / -2.23 [4, 3] / 0.58 a3
24 (t1) 2 [1, 1] / 0.62 [1, 4] / -0.19 a1
29 (t2) [2, 2] / 0.92 [2, 3] / -0.33 a2
32 (t3) [3, 1] / -0.04 [3, 4] / 1 a4
37 (t4) [4, 2] / 0 [4, 3] / 1 a3

Note that after round 21, the assignment TA is not

feasible. This can be seen in Figure 6.
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Fig. 6. Session 1 assignments.

The CDAP has been solved after the very next bid (Figure

7), at round 24, processes announce the satisfaction of their

local constraints when next messages are sent during the

second bidding session. Figure 7 shows the final bid winners.
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Fig. 7. Session 2 assignments.

VIII. CONCLUSIONS AND FUTURE WORK

This work introduced the Communication-Constrained

Distributed Assignment Problem that is important to dis-

tributed constrained scheduling applications. The problem

was solved using a stochastic bidding method. The algorithm

operates in a distributed environment and under the assump-

tion of synchronous communication. The algorithm is correct

in the sense that it terminates if and only if a feasible solution

to the CDAP is found. The authors are currently extending

this work to develop distributed planning algorithms that can

operate in the presence of dynamic and faulty communication

networks.
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X. APPENDIX

Proof: Proof of Proposition 4.1

When choosing which agent to assign to a task, there are

Na choices. There are Nt tasks. Hence there are O(NNt
a )

choices to for the assignments in the worst case.

Proof: Proof of Proposition 4.2:

Consider that the possible task assignments (ti, TA(ti)) can

be represented by a matrix X ∈ {0, 1}Nt×Na , where Xij = 1
if the task ti is assigned to agent aj and Xij = 0 otherwise.

Let the matrix Bc represent the adjacency matrix of the

graphs Gc. That is, Bcjl = 1 if {ai, al} ∈ Ec, Bcjl =
0 otherwise. Let the matrix Bcl represent the clustering

relationships between tasks. That is, Bclik = 1 if there exists

a cluster Tm such that ti ∈ Tm and tk ∈ Tm.

The matrix product XTBpX ∈ {0, 1}Na×Na has the

following meaning. The matrix (XTBclX)jl = 1 if the

agents aj and al are assigned tasks that share a cluster. The

matrix (XTBclX)jl = 0 otherwise.

Let the matrix AC represent the capability feasibility

constraints of Capability. Here, ACij = 0 if (ti, aj) ∈
Capability and 1 otherwise. The following constraints must

be satisfied in order for the task assignment of X to be

feasible.

BNil
− (XBpX

T )il ≥ 0,

∀i, l = 1, . . . , Na,
(39)

Nv
∑

j=1

ACijXij = 0,

∀i = 1, . . . , Na,

(40)

Na
∑

i=1

Xij = 1,

∀j = 1, . . . , Nv.

(41)

Equation 39 is nonlinear in the assignments. This proves

Proposition 4.2.

Proof: Proof of Proposition 6.1

“→” Assume (15) is satisfied. This implies that for all

{ti, tk} ∈ Tm,m = 1, . . . , Ncl, {TA(ti), TA(tk)} ∈ Ec.

Hence, for all pairs (ti, TA(ti)), i = 1, . . . , Nt, and for all

processes [ti, aj ] where Xij = 1, ncij =| Ci |. This implies

that J(TA) = 0.

“←” Assume J(TA) = 0, this implies that for all processes

[ti, aj ] where Xij = 1, ncij =| Ci |. Hence, for all {ti, tk} ∈
Tm,m = 1, . . . , Ncl, {TA(ti), TA(tk)} ∈ Ec. That is, (15)

is satisfied.

Proof: Proof of Lemma 6.2

Assume bidding has terminated, that is NDij = 0 for all

processes. NDij = 0 for all processes implies that for all

processes, ndij ·Xij = 0. By the definition of ndij and Xij ,

and Proposition 6.1, TA is feasible.
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