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Abstract— In control of vibrations, diffusion and many other
problems governed by partial differential equations, there is
freedom in the choice of actuator location. The actuator location
should be chosen to optimize performance objectives. In this
paper, we consider H∞ performance with state-feedback. It is
shown that the corresponding optimal actuator problem is well-
posed. In practice, approximations are used to determine the
optimal actuator location. The optimal performance and the
corresponding actuator location of the approximating sequence
should converge to the exact optimal performance and location.
Conditions for this convergence in the case of H∞-control are
provided. The results are illustrated with an example.

I. INTRODUCTION

In many control systems governed by partial differential
equations, the location of actuators can be chosen. The
actuator locations should be selected in order to optimize
the performance criterion of interest. Since the 1980’s, many
cost functions for actuator placement have been used; see
for example the survey paper [4]. In this work we are
interested in finding locations that minimize the response of
the controlled system to disturbances, that is locations that
minimize the H∞- norm of the controlled system.

Although the state-space for the full partial differential
equation model is infinite-dimensional, approximations are
used in controller design and thus in selection of the actuator
location. The theory that guarantees optimality of the cost
and existence of the optimal actuator location for these
models has not been developed in its entirety. Furthermore,
the issues associated with the usage of approximations in
determining optimal actuator locations have not been exten-
sively investigated. In [5], it was shown that using the first n
modes to find the actuator location that maximizes the decay
rate of the solution to the wave equation yields the worst
location for the (n + 1)th mode. Conditions that guarantee
optimality of the actuator location with a linear quadratic
cost are developed in [10].

In this work the problem of using approximations to de-
termine optimal actuator location for H∞-control with state-
feedback is considered. Optimal disturbance attenuation as a
function of actuator location is used as the cost function. Cri-
terion for optimality using the original model are obtained.
Convergence of the cost obtained using approximations to
the exact cost for a fixed actuator location was proven in [6]
using conditions similar to those required for convergence of
linear quadratic controllers. Here, continuity of the optimal
attenuation with respect to actuator locations calculated using
approximations is proved. This leads to the main result of
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this paper: conditions under which H∞- optimal actuator
locations calculated using approximations converge to the
exact optimal locations. Conditions derived in this paper
are applicable towards calculation of H∞ optimal actuator
location in many problems modeled by diffusion, vibration
and noise control applications. Vibration control of a simply
supported beam is provided as an illustration.

II. FRAMEWORK

Consider the system described on a Hilbert space Z by

dz

dt
= Az(t) +Bu(t) +Dv(t), z(0) = z0 ∈ Z (II.1)

where A is a linear, closed and densely defined operator
with domain D(A) generating a C0 semigroup, S(t), on Z;
B ∈ L(U,Z), D ∈ L(W,Z). We assume that U and W are
separable Hilbert spaces. The signal u(·) ∈ L2(0,∞;U) is
the control input and v(·) ∈ L2(0,∞;W ) is the exogenous
disturbance. Write U = L2(0,∞;U) andW = L2(0,∞;W )
to denote the space of all admissible controls and distur-
bances respectively. For a separable Hilbert space Y , let
C ∈ L(Z, Y ) denote the measurement operator. With control
cost, R ∈ L(U,U), where R is coercive, define

y(t) =

[
Cz(t)

R
1
2u(t)

]
, (II.2)

and the index

ρ(u, v; z0) = ‖y‖2L2(0,∞;Y ) =

∫ ∞
0

‖Cz(t)‖2+‖R 1
2u(t)‖2dt.

(II.3)
Systems of the form (II.1)-(II.2) will often be abbreviated
(A, [B D], C). The system (II.1)-(II.2) is a special form
of the generalised plant configuration, known as the full
information problem.

Definition 2.1: The C0-semigroup S(t) is stable if there
exists constants M and α > 0 such that ‖S(t)‖ ≤ Me−αt

for all t ≥ 0.
Definition 2.2: The pair (A,B) is stabilizable if there

exists a bounded linear operator K : Z → U such that
A−BK generates a stable semigroup.

Definition 2.3: The pair (A,C) is detectable if there exists
a bounded linear operator F : Y → Z such that A − FC
generates a stable semigroup.
The notation H∞ indicates the Hardy space of functions
G(s) which are analytic in the right-half plane Re(s) > 0
and for which

sup
ω

lim
x↓0
|G(x+ jω)| <∞. (II.4)
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The norm of a function in H∞ is

‖G‖∞ = sup
ω

lim
x↓0
|G(x+ jω)|. (II.5)

For any operator-valued function G(s) ∈ L(H1, H2), where
H1 and H2 are Hilbert spaces, the space for which

‖G‖∞ = sup
ω

lim
x↓0
‖G(x+ jω)‖ <∞ (II.6)

is indicated by H∞(H1, H2). The norm of a function in
H∞(H1, H2) is given in (II.6) .By the Paley-Weiner Theo-
rem, a system with input in U and outputs in Y is L2-stable
if and only if the system transfer function G ∈ H∞(U, Y ).

Let G be the transfer function of the system (II.1)-(II.2):

G(s) :=

[
C
0

]
R(s;A)[B D] +

[
0 0

R
1
2 0

]
(II.7)

where R(s;A) is the resolvent operator of A. With state
feedback control u(t) = −Kz(t), the closed loop transfer
function from the disturbance v to the output y is

Gyv(K) =

[
C

R
1
2K

]
R(s;A−BK)D.

Definition 2.4: The H∞-control problem is to construct a
state feedback control u(t) = −Kz(t),K ∈ L(Z, U), for
the system (II.1) - (II.2) for a given γ > 0, such that the
closed loop transfer function Gyv(K) ∈ H∞(W,Y ) and

‖Gyv(K)‖∞ < γ. (II.8)
Definition 2.5: If there is a η > 0 such that for each

disturbance v ∈ W , there exists a control u ∈ U with

ρ(u, v; 0) ≤ (γ2 − η) ‖ v ‖2W , (II.9)

then the system (II.1) with (II.2) is said to be stabilizable
with attenuation γ.

Definition 2.6: The state feedback K ∈ L(Z, U) is said
to be γ - admissible if it is stabilizing and the linear feedback
u(t) = −Kz(t) is such that the attenuation bound (II.9) is
achieved.

Theorem 2.7: [1], [7] Assume that (A,B) is stabilizable
and (A,C) is detectable. For γ > 0 the following are
equivalent:
(1) there exists a γ-admissible state feedback;
(2) the system is stabilizable with disturbance attenuation γ;
(3) there exists a non-negative, self-adjoint operator Σ on Z
satisfying the H∞-Riccati operator equation,

(A∗Σ + ΣA− ΣBR−1B∗Σ +
1

γ2
ΣDD∗Σ + C∗C)z = 0

(II.10)
for all z ∈ D(A), and A − BR−1B∗Σ + 1

γ2DD
∗Σ gen-

erates an exponentially stable semigroup on Z . Moreover,
in this case a γ-admissible state feedback is given by K =
R−1B∗Σ.
In other words, if a system can be stabilized with disturbance
attenuation γ, the system can be stabilized with the same
attenuation using constant state feedback.

Definition 2.8: The optimal H∞-control problem is to
calculate

γ̂ = inf γ (II.11)

over all K ∈ L(Z, U) such that Gyv(K) ∈ H∞(W,Y )
and ‖Gyv(K)‖∞ < γ. The infimum γ̂ is called the optimal
disturbance attenuation for the system (II.1) with (II.2).

III. APPROXIMATION THEORY

In practice, the operator equation (II.10) cannot be solved
and the control is calculated using an approximation. Let
ZN be a family of finite-dimensional subspaces of Z and
PN the orthogonal projection of Z onto ZN . The space
ZN is equipped with the norm inherited from Z . Consider a
sequence of operators AN ∈ L(ZN ,ZN ), BN ∈ L(U,ZN ),
DN ∈ L(W,ZN ), and CN = C|ZN . We will make
the following standard assumptions on the approximation
scheme.

(A1) For all z ∈ Z ,

lim
N→∞

‖eA
N tPNz − S(t)z‖ = 0, (III.1)

lim
N→∞

‖(eA
N t)∗PNz − S(t)∗z‖ = 0. (III.2)

uniformly in t on bounded intervals.
(A2)(i) The family of pairs (AN , BN ) is uniformly ex-

ponentially stabilizable, that is, there exists a uniformly
bounded sequence of operators KN ∈ L(ZN , U) such that

‖e(AN−BNKN )tPN‖ ≤M1e
−α1t, (III.3)

for some positive constants M1 ≥ 1 and α1.
(A2)(ii) The family of pairs (AN , CN ) is uniformly expo-

nentially detectable, that is, there exists a uniformly bounded
sequence of operators FN ∈ L(Y,ZN ) such that

‖e(AN−FNCN )tPN‖ ≤M2e
−α2t, (III.4)

for some positive constants M2 ≥ 1 and α2.
(A3) The approximating sequence of input and disturbance

operators converge in norm

lim
N→∞

‖BN −B‖ = 0, (III.5)

lim
N→∞

‖DN −D‖ = 0. (III.6)

Remarks 3.1: (1) Assumption (A1) implies that PNz → z
for z ∈ Z . Assumption (A1)(i) is required for convergence of
initial conditions. Assumption (A1)(i) is often satisfied by en-
suring that the conditions of the Trotter-Kato Theorem hold,
see for instance [11, Chap. 3, Thm. 4.2]. The convergence
(A1)(ii) of the adjoint semigroup sequence is required for
the strong convergence of the approximating linear-quadratic
Riccati operators. A counter-example may be found in [2].
(2) If the original problem is exponentially stabiliz-
able(detectable) and the eigenfunctions of A form an or-
thonormal basis for Z , then an approximation scheme
formed using the first n eigenfunctions is uniformly sta-
bilizable(detectable); that is assumption (A2) is satisfied.
In practice, other approximation methods such as finite-
elements are typically used. Many such approximations, such

628



as linear splines for the diffusion equation and cubic splines
for damped beam vibrations are uniformly stabilizable (de-
tectable), provided that the original system is stabilizable
(detectable) [8, Thm. 5.2, Thm. 5.3], [9].
(3) Since the approximating spaces ZN are finite-
dimensional, BN and DN are finite rank operators. Thus,
assumption (A3) holds if and only if the operators B and D
are compact.

Theorem 3.2: Assume that (A,B) is stabilizable and
(A,C) is detectable, and (A1)-(A3) hold. If the original
system is stabilizable with attenuation γ, then so are the
approximating systems for sufficiently large N . For such N ,
the Riccati equation

(AN )∗ΣN+ΣNAN − ΣNBNR−1(BN )∗ΣN + ...

1

γ2
ΣNDN (DN )∗ΣN + (CN )∗CN = 0

has a non-negative, self-adjoint solution ΣN and ΣNPNz →
Σz strongly in Z as N → ∞. Moreover, KN =
R−1(BN )∗ΣN converges to K = R−1B∗Σ in norm. For
N sufficiently large, KN is γ-admissible for the original
system.

Proof: This follows from [6, Thm. 2.5, Cor. 2.6] with
the extension of BN = PNB and DN = PND to more
general approximations.

Let {γ̂N} indicate the optimal disturbance attenuation for
the approximating problems.

Theorem 3.3: Assume that (A1)-(A3) hold, (A,B) is sta-
bilizable, and (A,C) is detectable. Then

lim
N→∞

γ̂N = γ̂. (III.7)

Proof: This follows from Theorem 3.2 and [6, Thm.
2.8] with the extension of BN = PNB and DN = PND to
more general approximations.

IV. OPTIMAL ACTUATOR LOCATION

Consider a situation where there are m actuators whose
location could be varied over some compact set Ω ⊂ Rq .
Parametrize the actuator locations by r and denote the
dependence of the corresponding input operator with respect
to the actuator location by B(r). Note that r is a vector of
length m with components in Ω so that r varies over a space
denoted by Ωm. For each location r, we have an optimal
H∞ control problem. Let γ̂(r) denote the H∞ performance
of (II.1)-(II.2) with actuators at the location r.

Definition 4.1: The optimal performance µ is

µ = inf
r∈Ωm

γ̂(r). (IV.1)

We now show continuity of the H∞ performance γ̂(r)
with respect to actuator location under the following assump-
tions:

(C1) The family of input operators B(r) ∈ L(U,Z), r ∈
Ωm are continuous functions of r in the operator norm, that
is for any r0 ∈ Ωm,

lim
r→r0

‖ B(r)−B(r0) ‖= 0. (IV.2)

(C2) The family of pairs (A,B(r)), r ∈ Ωm are stabiliz-
able and the pair (A,C) is detectable.

(C3) The input operators B(r) and the disturbance oper-
ator D are compact.

Lemma 4.2: Let (A, [B(r) D], C) be a family of systems
such that assumptions (C1)-(C3) are satisfied. Assume that
the system at r0 is stabilizable with attenuation γ(r0) and
K(r0) ∈ L(Z, U) is γ(r0)-admissible. For every ε > 0
there is δ > 0 such that for all ‖r − r0‖ < δ the systems
(A, [B(r) D], C) are stabilizable with attenuation γ(r0) + ε.
Furthermore, a sequence of state feedback operators K(r) ∈
L(Z, U) can be chosen that are (γ(r0) + ε)-admissible at r
and also K(r) is continuous at r0.

Proof: Consider a sequence {r} that converges to
r0. Choose some K so that A − B(r0)K generates an
exponentially stable semigroup SK,r0(t) with bound Me−αt,
where α > 0. Let δ be such that A − B(r)K generates
an exponentially stable semigroup with bound Me−

α
2 t for

all ‖B(r) − B(r0)‖ < δ. There is ε > 0 such that for
all ‖r − r0‖ < ε , ‖B(r) − B(r0)‖ < δ. We thus have
a sequence of uniformly exponentially stabilizable systems
(A,B(r)). Now, the assumptions (A1)-(A3) are satisfied by
the sequence of systems (A, [B(r) D], C) where BN is
replaced by B(r). A proof similar to that of Theorem 2.5 in
[6] yields that the system at r is stabilizable with attenuation
γ(r0) + ε. Also, the H∞-Riccati operator Σ(r) converges
strongly to Σ(r0). Furthermore, a sequence K(r) ∈ L(Z, U)
can be chosen that are (γ(r0) + ε)-admissible at r and also
K(r) converges uniformly to K(r0) in norm.

Theorem 4.3: Consider a family of control systems
(A, [B(r) D], C) such that the assumptions (C1) - (C3) are
satisfied. Then

lim
r→r0

γ̂(r) = γ̂(r0), (IV.3)

where γ̂(r0) is the optimal disturbance attenuation at r0.
Proof: Consider any sequence {rn} that converges to

r0. Since the optimal disturbance attenuation at r0 is γ̂(r0),
for every ε > 0 the system at r0 is stabilizable with an
attenuation γ̂(r0) + ε with some state feedback K̂(r0) ∈
L(Z, U).

It follows from Lemma 4.2 that there exists N such that
for n > N the system at rn is stabilizable with attenuation
γ(rn) where

γ(rn) ≤ γ̂(r0) + 2ε,

Hence, the optimal disturbance attenuation at the location
rn, γ̂(rn), satisfies

γ̂(rn) ≤ γ̂(r0) + 2ε.

Since ε is arbitrary, it follows that

lim sup
n→∞

γ̂(rn) ≤ γ̂(r0). (IV.4)

Because of (IV.4), it is sufficient to show that

lim inf
n→∞

γ̂(rn) ≥ γ̂(r0). (IV.5)
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Assume that this statement is false. Then there is an δ > 0
such that for all n there is p > n with γ̂(rp) < γ̂(r0) − δ.
In this way we can construct a subsequence {rp} of the
sequence {rn} with γ̂(rp) < γ̂(r0)− δ Thus, the system at
rp is stabilizable with attenuation γ̂(r0)− δ

2 with some state
feedback K(rp) and

ρrp(−K(rp)z, v; 0) ≤ (γ̂(r0)− δ

2
)2‖v‖2W (IV.6)

for v ∈ W . Since rp converges to r0, a state feedback K(r0)
can be chosen such that ‖K(rp)−K(r0)‖ → 0 (Lemma 4.2).
Therefore, the problem at r0 is stabilizable with attenuation
γ̂(r0)− δ

2 . This contradicts the optimality of γ̂(r0) and thus
(IV.5) holds. Hence (IV.3) holds.

At each actuator location r, (II.11) is posed on a
infinite-dimensional space and in general can only be
solved by replacing the original system by a finite-
dimensional approximation that satisfies the assumptions dis-
cussed earlier. For the sequence of approximating problems
(AN , [BN (r) DN ], CN ), the optimal performance µN and
the optimal location r̂N are defined similarly as µ, r̂ for the
original problem.

Corollary 4.4: There exists an optimal actuator location r̂
such that

µ = inf
r∈Ωm

γ̂(r) = γ̂(r̂),

and similarly for each N there exists r̂N such that

µN = inf
r∈Ωm

γ̂N (r) = γ̂N (r̂N ).

Proof: From Theorem 4.3, γ̂(r) is a continuous func-
tion with respect to the actuator location r, and since r varies
over a compact set Ωm, inf

r∈Ωm
γ̂(r) exists and there exists

some location that satisfies the infimum. Call it r̂ ∈ Ωm. A
similar argument holds for the approximating problem.

V. COMPUTATION OF OPTIMAL ACTUATOR LOCATION

We now have the problem of determining the optimal H∞
performance, over all possible actuator locations.

Theorem 5.1: Let (A, [B(r) D], C) be a family of control
systems depending on actuator location such that assump-
tions (C1) - (C3) are satisfied. Choose some approximation
scheme such that assumptions (A1) - (A3) are satisfied for
each (AN , [BN (r) DN ], CN ) where BN = PNB. Letting
r̂ be an optimal actuator location for (A, [B(r) D], C) with
optimal cost µ and defining similarly r̂N , µN , it follows that

µ = lim
N→∞

µN ,

and there exists a subsequence {r̂M} of {r̂N} such that

µ = lim
M→∞

γ̂(r̂M ).

Proof: A similar proof for the convergence of linear
quadratic optimal actuator locations may be found in [10].

µN = inf
r∈Ωm

γ̂N (r)

≤ γ̂N (r̂)

= γ̂N (r̂)− γ̂(r̂) + γ̂(r̂)

= γ̂N (r̂)− γ̂(r̂) + µ.

Since lim
N→∞

γ̂N (r̂) = γ̂(r̂) (Theorem 3.3),

lim supµN ≤ µ. (V.1)

It remains only to show that

lim inf µN ≥ µ. (V.2)

To this end, choose a subsequence µM → lim inf µN , with
corresponding actuator locations r̂M . Since {r̂M} ⊂ Ωm,
it has a convergent subsequence, also denoted by r̂M , with
limit r. Now,

‖BM (r̂M )−B(r)‖
= ‖PMB(r̂M )−B(r)‖
≤ ‖PMB(r̂M )− PMB(r)‖+ ‖PMB(r)−B(r)‖
≤ ‖PM‖‖B(r̂M )−B(r)‖+ ‖PMB(r)−B(r)‖.

Thus, ‖ BM (r̂M )−B(r) ‖→ 0. By assumption (A2)(i), there
is a uniformly bounded sequence KM

r ∈ L(Z, U) such that
AM−BM (r)KM

r generate semigroups bounded by M1e
−ω1t

for some M1 ≥ 1, ω1 > 0. For some ε < ω1, choose N
large enough such that ‖ BM (r̂M ) − BM (r) ‖< ε

M1‖KM
r ‖

for M > N . Then for all M > N , AM − BM (r̂M )KM
r

generates an exponentially stable C0-semigroup with bound
M1e

(−ω1+ε)t. Applying then Theorem 3.3 to the sequence
(AM , [BM (r̂M ) DM ], CM ), it follows that γ̂M (r̂M ) →
γ̂(r). Thus,

lim inf µN = lim
M→∞

µM

= lim
M→∞

γ̂M (r̂M )

= γ̂(r)

≥ µ.

(V.3)

Thus, lim inf µN ≥ µ and so limµN = µ as required.
Since µ = limµN = lim inf µN , (V.3) implies that

µ = lim inf µN

= γ̂(r)

= lim
M→∞

γ̂(r̂M ).

(V.4)

where the latter equality follows from continuity of H∞
performance with respect to actuator location (Theorem 4.3).
Thus, as was to be shown, a sequence of approximating actu-
ator locations yield performance arbitrarily close to optimal.

Note that unlike the case of linear-quadratic optimal con-
trol where the actuator location is chosen to minimize ‖Π‖
or traceΠ where Π is the solution to the LQ algebraic Riccati
equation, it is not required that the measurement operator C
be compact. This is illustrated by the example below.
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VI. EXAMPLE
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Fig. 1. Performance γ̂ at optimal location for different approximations of
the viscously damped beam with C = I, R = 1, d = b0.7
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Fig. 2. Optimal actuator location for different approximations of the
viscously damped beam with C = I, R = 1, d = b0.7

Consider a simply supported Euler-Bernoulli beam and let
w(x, t) denote the deflection of the beam from its rigid body
motion at time t and position x. The deflection is controlled
by applying a force u(t) around the point r with width ∆.
The exogenous disturbance v(t) induces a distributed load
d(x)v(t) where d(x) ∈ C(0, 1). If we normalize the variables
and include viscous damping with parameter ξ, we obtain the
partial differential equation

∂2w

∂t2
+ξ

∂w

∂t
+
∂4w

∂x4
= br(x)u(t)+d(x)v(t), t ≥ 0, 0 < x < 1,

(VI.1)
where, letting ∆ indicate the width of the actuator and r its
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Fig. 3. Optimal performance γ̂(r̂) for different approximations of the
viscously damped beam with C = I, R = 1, D = I

location,

br(x) =

{
1
∆ , |r − x| <

∆
2

0, |r − x| ≥ ∆
2 .

The boundary conditions are

w(0, t) = 0, w′′(0, t) = 0,

w(1, t) = 0, w′′(1, t) = 0. (VI.2)

In the computer simulations, the parameters were set to ξ =
0.1,∆ = 0.001. Let

Hs(0, 1) = {w ∈ H2(0, 1), w(0) = 0, w(1) = 0} (VI.3)

and define the state-space Z = Hs(0, 1)×L2(0, 1) with state
z(t) = (w(·, t), ∂∂tw(·, t)). A state-space formulation of the
above partial differential equation problem is

d

dt
z(t) = Az(t) +B(r)u(t) +Dv(t), (VI.4)

where

A =

[
0 I

− d4

dx4 −ξI

]
, B(r) =

[
0

br(·)

]
, D =

[
0
d(·)

]
, (VI.5)

with domain

D(A) = {(φ, ψ) ∈ Hs(0, 1)×Hs(0, 1) with φ′′ ∈ Hs(0, 1)}.

It is well-known that A with domain D(A) generates an
exponentially stable semigroup on Z [3]. Since there is only
one control, choose control weight R = 1. An obvious choice
of measurement is C = I . Consider the disturbance d = b0.7
centered at r = 0.7 with width ∆ = 0.001. The operators
B(r) and D are finite rank. Therefore, the corresponding
H∞-control with full-information problem satisfies the as-
sumptions of Theorem 4.3. Hence, the cost γ̂(r) depends
continuously on the actuator location and there exists an
optimal actuator location. Since a closed form solution to
the partial differential equation problem is not available,
the optimal actuator location must be calculated using an
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approximation. Let φi(x) indicate the eigenfunctions of ∂4w
∂x4

with boundary conditions (VI.2). For any positive integer
N , define ZN to be the span of φi, i = 1...N . Choose
ZN = ZN × ZN and define PN to be the projection
onto ZN . Define AN to be the Galerkin approximation to
A, BN := PNB and DN := PND. This approximation
scheme satisfies all the assumptions of Theorem 5.1 [8] and
hence, we obtain convergence of the approximating optimal
performance and the actuator locations. This is illustrated in
Figures 1 and 2.

Consider the same example as before, except that now,
we minimize the effect of worst disturbance on the entire
state and choose D = I . Now D is not a compact operator.
As shown in Figures 3 and 4, neither optimal cost nor the
optimal actuator location converges.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Modes

Optimal actuator location with D = I

Fig. 4. Optimal actuator location for different approximations of the
viscously damped beam with C = I, R = 1, D = I
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Fig. 5. Performance γ̂ at actuator location r = 0.5 for different
approximations of the viscously damped beam with C = I, R = 1, D = I

In fact, the optimal attenuation does not converge even at
a fixed actuator location, say for example at r = 0.5, as the

approximation size increases. This is illustrated in Figure 5.
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