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Abstract— In this work, we develop a geometric method for
solving the problem of H2-optimal rejection of disturbance
inputs in continuous-time linear systems without feedthrough
terms from the control input and the disturbance input to
the controlled output and the measured output. A necessary
and sufficient condition for the solvability of the problem is
expressed in terms of a pair of subspaces, a controlled-invariant
subspace and a conditioned-invariant subspace, derived from
the Hamiltonian systems associated with the problem. The
if-part of the proof shows how to synthesize the feedback
regulator, which is non-strictly-proper in general.

I. INTRODUCTION

The continuous-time H2-optimal control problem by mea-

surement feedback is completely solved and well-settled in

the regular case: i.e., when the linear map from the control

input to the controlled output is injective, the linear map from

the disturbance input to the measured output is surjective,

and the subsystems involved do not have invariant zeros on

the imaginary axis (see, e.g., [1], [2], [3] as recent refer-

ences). The treatment becomes much more intricate when the

singular problem is tackled: i.e., when the abovementioned

assumptions of injectivity and surjectivity are removed. As

was pointed out in [4], the separation principle, that, in the

regular case, allows us to reduce the original problem to an

optimal control problem by state feedback and an optimal

filtering problem, does not hold anymore, in general, and the

infimum of the performance index is not always attainable.

The singular H2-optimal control problem was often ap-

proached by considering two different solutions separately:

the solution where the dynamic feedback regulator is as-

sumed to be strictly-proper and that where the dynamic

feedback regulator is assumed to be non-strictly-proper (see,

e.g., [1], [4], [5], [6]). The methodologies developed in

the abovementioned works in order to prove necessary and

sufficient conditions for solvability of the H2-optimal control

problem by dynamic measurement feedback and the corre-

sponding procedures for synthesizing the dynamic feedback

controllers are based on the use of tools like linear matrix

inequalities and special coordinate basis (see, e.g., [1], but

also the more recent [7] and [8]).

In this work, we concentrate our attention on the

H2-optimal rejection problem in the special case where there

are no feedthrough terms from the control input and the

The authors are with the Department of Electronics, Computer Sci-
ence, and Systems, University of Bologna, 40136 Bologna, Italy. Email:
giovanni.marro@unibo.it, elena.zattoni@unibo.it

disturbance input to the controlled output and the measured

output and we propose a procedure that, by means of

the sole geometric tools (see, e.g., [9], [10]), provides the

feedback regulator on the more general assumption that

this be non-strictly-proper. Besides, the procedure retrieves

the strictly-proper feedback regulator when the separation

principle holds. The methodological approach is inspired

by that of [11] and [12], where the singular H2-optimal

control problem by state feedback and the finite-horizon

linear quadratic optimal control problem, respectively, were

solved by referring to the associated Hamiltonian systems. In

this work, the study of the geometric properties of the pair

of the Hamiltonian systems related to the original problem,

one connected with the optimal control problem by state

feedback and the other with the optimal filtering problem,

yields a pair of resolving subspaces for the original problem.

Then, the synthesis of the feedback regulator is based on the

computation of linear maps which are friends of the resolving

subspaces and on the application of suitable projections.

Notation: R stands for the set of real numbers and R
+

for the set of the nonnegative real numbers. C, C−, and C
0

respectively stand for the complex plane, the open left-half

complex plane, and the imaginary axis. Matrices and linear

maps are denoted by capital letters, like A. The spectrum,

the image, and the kernel of A are denoted by σ(A), imA,

and kerA, respectively. The trace, the transpose, the inverse,

and the Moore-Penrose inverse of A are denoted by tr (A),
A⊤, A−1, and A+, respectively. The restriction of a linear

map A to an A-invariant subspace J is denoted by A|J . The

quotient space of a vector space X over a subspace V ⊆ X
is denoted by X/V . The orthogonal complement of V is

denoted by V⊥. The direct sum of two subspaces V and

W is denoted by V ⊕W . The dimension of V is denoted

by dimV . The symbol ⊎ denotes union with multiplicity

count. The symbols I?n and Om×n are respectively used

for the identity matrix of dimension n and the m × n zero

matrix (subscripts are omitted when the dimensions are clear

from the context). The symbol ‖x‖ denotes the Euclidean

norm of the vector x∈R
n. The symbol E[·] stands for the

expectation operation. The symbol ‖v(t)‖ℓ2 denotes the ℓ2
norm of the signal v(t). The symbol ‖w(t)‖rms denotes the

root mean square norm of the signal w(t). Moreover, specific

geometric notions and properties extensively used in this

work are collected in Appendix.
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II. PROBLEM STATEMENT

Consider the continuous-time linear time-invariant system

ẋ(t) = Ax(t) +B u(t) +H h(t), (1)

y(t) = C x(t), (2)

e(t) = E x(t), (3)

where x∈X =R
n is the state, u∈R

p the control input,

h∈R
s the disturbance input, y ∈R

q the measured output,

e∈R
r the to-be-controlled output (with p, s, q, r≤n). The

set of the admissible control input signals is assumed to

be the set Uf of all piecewise-continuous functions defined

in R
+ and with finite values in R

p. A, B, H , C, E are

constant real matrices of appropriate dimensions. Without

loss of generality, B and H are assumed to be of full column

rank, C and E of full row rank.

Moreover, let the following assumptions hold:

A 1. the pair (A,B) be stabilizable, or, equivalently,

R=minJ (A,B) be externally stable;

A 2. the pair (A,C) be detectable, or, equivalently,

Q=maxJ (A, C) be internally stable.

In system (1)–(3), there are no feedthrough terms from the

inputs u and h to the outputs y and e. With a slight abuse of

terminology, we will characterize a system with this property

as a strictly-proper system.

Consider the dynamic feedback controller

ż(t) = N z(t) +M y(t), (4)

u(t) = Lz(t) +K y(t), (5)

where z ∈X =R
n is the state and N , M , L, K are constant

real matrices of appropriate dimensions.

Then, the closed-loop system is described by the state and

output equations

ẋc(t) = Ac xc(t) +Hc h(t), (6)

e(t) = Ec xc(t), (7)

where

Ac =

[

A+BKC BL
MC N

]

, Hc =

[

H
O

]

, (8)

Ec =
[

E O
]

, (9)

or by the transfer matrix

G(s) = Ec(sI −Ac)
−1Hc. (10)

The H2-optimal rejection problem by measurement feed-

back consists in finding a dynamic feedback controller like

(4), (5) such that the closed-loop system (6), (7), with (8),

(9), be asymptotically stable and the H2-norm of the transfer

matrix G(s), defined by (10), namely

‖G(s)‖2 =

(

1

2π

∫ ∞

−∞

tr[G∗(jω)G(jω)]dω

)1/2

, (11)

where G∗(jω) denotes the complex conjugate transpose of

G(jω), be minimal.
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Fig. 1. Block diagram for H2-optimal rejection by measurement dynamic
feedback in strictly-proper systems

III. SCHEME OF THE FEEDBACK CONTROLLER

In this section, we will go into the details of the design

of the dynamic feedback regulator. The peculiarity of the

solution that will be illustrated is that the information on

the state of the to-be-controlled system is derived as a linear

combination of the measured output of the system and the

state of the observer.

A similar scheme was formerly adopted to achieve exact

disturbance decoupling by dynamic measurement feedback

in [10]. However, in this work, the computation of the spe-

cific linear combination will be made in order to guarantee

the minimal H2-norm of the closed-loop system. Hence, it

will be based on the use of subspaces which are functional

to this objective and that will be determined in Section IV.

Moreover, as will be shown in Section V, our procedure

directly provides the strictly-proper feedback regulator when

this is able to attain the optimal solution.

A detailed block diagram of the dynamic feedback regu-

lator and its connections with the to-be-controlled system is

shown in Fig. 1. Consequently, the matrices in (4), (5) are

N = A+BFL2 +GC, M = BFL1 −G, (12)

L = FL2, K = FL1. (13)

Then, from now on, we will concentrate our attention on the

computation of the matrices F , G, L1, L2.

IV. HAMILTONIAN SYSTEMS AND RESOLVING

SUBSPACES

In this section, the H2-optimal control problem by state

feedback and the H2-optimal filtering problem respectively

associated with the H2-optimal rejection problem by mea-

surement feedback stated in Section II will be reconsidered

from a geometric approach perspective. The aim of this

discussion is to derive the subspaces needed to express the

main condition for solvability of the H2-optimal rejection

problem by measurement feedback and to synthesize the

feedback regulator.
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A. The H2-Optimal Control Problem by State Feedback

First, we will focus on the H2-optimal control problem by

state feedback and we will review the basics of the geometric

approach to its solution. This approach was first presented

for discrete-time systems in [11] and later transferred to

continuous-time systems (see, e.g., [13]).

As mentioned in Section II, the set of the admissibile

control input signals is the set Uf of all piecewise continuous

functions defined in R
+ and with finite values in R

p. In

particular, this means that distributions are not to be regarded

as admissible control inputs. In the light of this restraint, it is

convenient to replace the usual statement of the H2-optimal

control problem in the frequency domain with a modified

statement in the time domain, the solution of which consists

of a subspace of the state space and a state feedback.

Problem 1: Consider the system

ẋ(t) = Ax(t) +B u(t), (14)

e(t) = E x(t). (15)

Find the maximal subspace V∗
H2

⊆X and a state feedback

FH2
such that any state trajectory x(t), with t≥ 0, of

ẋ(t) = (A+BFH2
)x(t),

starting from x(0)=x0 ∈V∗
H2

, satisfies

(i) lim
t→∞

‖x(t)‖ = 0,

(ii)

∫ ∞

0

x⊤(t)E⊤E x(t)dt = min
F∈F

‖e(t)‖2ℓ2 ,

where F is the set of all F such that (i) holds.

The Hamiltonian function associated with Problem 1 is

H(x(t), λ(t), u(t)) =

x⊤(t)E⊤E x(t) + λ⊤(t) [Ax(t) +B u(t)] , (16)

where λ(t) is an undetermined multiplier also called the

costate. The state and costate equations and the stationarity

condition are

ẋ(t) =

(

∂H

∂λ

)⊤

= Ax(t) +B u(t), (17)

λ̇(t) = −

(

∂H

∂x

)⊤

= −2E⊤E x(t)−A⊤ λ(t), (18)

0 =

(

∂H

∂u

)⊤

= B⊤ λ(t), (19)

respectively. Let p(t) = 2λ(t). Then, the differential equa-

tions (17), (18), and the algebraic equation (19) can be

written as the system
[

ẋ(t)
ṗ(t)

]

=

[

A O
−E⊤E −A⊤

] [

x(t)
p(t)

]

+

[

B
O

]

u(t),

(20)

η(t) =
[

O B⊤
]

[

x(t)
p(t)

]

, (21)

where the output η(t) is required to be zero for all t≥ 0.

The system (20), (21) will henceforth be referred to as the

continuous-time Hamiltonian system associated with Prob-

lem 1. It can also be written in compact form as

˙̃x(t) = Ã x̃(t) + B̃ u(t), (22)

η(t) = Ẽ x̃(t), (23)

where

Ã =

[

A O
−E⊤E −A⊤

]

, B̃ =

[

B
O

]

, (24)

Ẽ =
[

O B⊤
]

. (25)

Problem 2: Consider system (22), (23), with (24), (25),

and let X̃ denote the corresponding state space. Find the

maximal subspace Ṽ∗
g ⊆X̃ and a linear map F̃ such that any

state trajectory x̃(t), with t≥ 0, of the autonomous system

˙̃x(t) = (Ã+ B̃F̃ ) x̃(t),

with initial state x̃(0)= x̃0 ∈ Ṽ∗
g , satisfies

(i) lim
t→∞

‖x̃(t)‖ = 0,

(ii) η(t) = 0 for all t ≥ 0.

Problem 2 is a variant of the classical disturbance de-

coupling problem with stability (see, e.g., [3], [9], [10]).

As can be proved by adapting the results of the geometric

approach to this slightly-different formulation, a solution

of Problem 2 is a pair (Ṽ∗
g , F̃ ), where Ṽ∗

g is the maximal

internally stabilizable (Ã, B̃)-controlled invariant subspace

contained in Ẽ (B̃ stands for im B̃ and Ẽ for ker Ẽ) and

F̃ is a linear map such that

(Ã+ B̃F̃ )Ṽ∗
g ⊆ Ṽ∗

g , (26)

σ((Ã+ B̃F̃ )|
Ṽ∗

g

) ⊂ C
−. (27)

Note that F̃ is nonunique, in general, due to assignability of

the spectra σ((Ã+ B̃F̃ )|R
Ṽ∗

) and σ((Ã+ B̃F̃ )|(Ṽ∗+R̃)/Ṽ∗),

where Ṽ∗ =maxV(Ã, B̃, Ẽ), R
Ṽ∗ = Ṽ∗ ∩minS(Ã, Ẽ , B̃),

and R̃=minJ (Ã, B̃) (see Appendix for references).

A pair (Ṽ∗
g , F̃ ) that solves Problem 2 is related to a pair

(V∗
H2

, FH2
) that solves Problem 1 as follows. Let

Ṽ∗
g = im Ṽ ∗

g = im

[

VX

VP

]

, (28)

where the matrix on the right-hand side of (28) is a basis

matrix of Ṽ∗
g partitioned according to Ã in (24). Let

F̃ =
[

FX FP

]

, (29)

be the matrix, partitioned according to Ã and B̃ in (24),

that represents the linear map F̃ with respect to the same

coordinates. Then, a pair (V∗
H2

, FH2
) consists of the subspace

V∗
H2

= imVX (30)

and the linear map represented by

FH2
= FX + FPVPV

+
X , (31)

with respect to the same coordinates.

Note that, while in the discrete-time case the matrix VX

is an n × n invertible matrix since the subspace of the
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admissible initial states is the whole state space of the

original system, in the continuous-time case the subspace

of the initial states that can be driven asymptotically to the

origin with an admissible state feedback control law does not

match the whole state space in general. Hence, in formula

(31), which is the continuous-time counterpart of that in [11,

Section IV], the Moore-Penrose inverse of VX replaces the

inverse. The use of the Moore-Penrose inverse is correct

since VX is a full column rank matrix.

In view of the approach to the solution of the H2-optimal

rejection problem by measurement feedback that will be

developed in Section V, it is worth pointing out the following

property of the pair (V∗
H2

, FH2
).

Property 1: The subspace V∗
H2

, defined by (30), is an

internally stable (A+BFH2
)-invariant subspace, where FH2

is defined by (31).

Proof: Since the subspace Ṽ∗
g is an internally stable

(Ã+ B̃F̃ )-invariant subspace with basis matrix Ṽ ∗
g , a matrix

X exists, such that

(Ã+ B̃F̃ ) Ṽ ∗
g = Ṽ ∗

g X, (32)

σ(X) = σ((Ã+ B̃F̃ )|
Ṽ∗

g

) ⊂ C
−. (33)

Equation (32) can also be written as
[

A+BFX BFP

E⊤E −A⊤

] [

VX

VP

]

=

[

VX

VP

]

X, (34)

where (24), (28) and (29) were taken into account. From the

first block of rows of (34) one gets

AVX +B(FXVX + FPVP ) = VXX. (35)

Since VX a full column rank matrix, V +
X VX = I . Hence,

FXVX + FPVP = FH2
VX , (36)

follows from (31). Finally, (35) and (36) imply

(A+BFH2
)VX = VXX, (37)

which, in light of (30) and (33), proves the thesis.

B. The H2-Optimal Filtering Problem

This section will be focused on the H2-optimal filtering

problem associated with the H2-optimal rejection problem by

measurement feedback. Similarly to the H2-optimal control

problem by state feedback, also the H2-optimal filtering

problem will have a slightly modified formulation with

respect to the usual one in the frequency domain. This is

exactly the dual counterpart of Problem 1.

Problem 3: Consider the system

ẋ(t) = Ax(t) +H h(t), (38)

y(t) = C x(t), (39)

where h(t), with t≥ 0, is a zero-mean wide-sense-stationary

white-noise stochastic process with unit intensity. Find the

minimal subspace S∗
H2

⊆X and an output injection GH2

such that any state trajectory ê(t), with t≥ 0, of

˙̂e(t) = (A+GH2
C) ê(t) +H h(t),

with initial state ê(0)=x0 �∈ S∗
H2

, satisfies

(i) lim
t→∞

‖ê(t)‖ = 0, with h(t)= 0 for all t≥ 0,

(ii) E[ê⊤(t) ê(t)] = min
G∈G

‖ê(t)‖
2
rms,

where G is the set of all G such that (i) holds.

The variable ê(t) is the error in the estimate of the

state x(t) of system (38), (39), with initial state x(0)=x0,

obtained with a full-order observer

ż(t) = (A+GH2
C) z(t)−GH2

y(t),

with initial state z(0)= 0.

The solution of Problem 3 will be derived from that

of Problem 1, where the triple (A,B,E) is replaced by

the triple (A⊤, C⊤, H⊤), by means of simple duality

arguments. Let (V∗
H2,(A⊤, C⊤, H⊤), FH2,(A⊤, C⊤, H⊤)) be a

solution of Problem 1 stated for the triple (A⊤, C⊤, H⊤).
Then, a pair (S∗

H2
, GH2

) that solves Problem 3 is defined by

S∗
H2

=
(

V∗
H2,(A⊤, C⊤, H⊤)

)⊥

, (40)

GH2
= F⊤

H2,(A⊤, C⊤, H⊤). (41)

Property 2: The subspace S∗
H2

, defined by (40), is an

externally stable (A+GH2
C)-invariant subspace, where GH2

is defined by (41).

Proof: It follows from (40), (41), and Property 1 by

duality arguments.

As mentioned at the beginning of Section IV, the sub-

spaces V∗
H2

and S∗
H2

, respectively defined by (30) and (40),

and the linear maps FH2
and GH2

, respectively defined by

(31) and (41), will play a crucial role in the synthesis of the

feedback regulator (4), (5).

V. MAIN RESULTS

In this section, we will present the main results on solv-

ability of the H2-optimal rejection problem by measurement

feedback, by exploiting the properties of the subspaces

introduced in Section IV. The proof of the main result is

constructive. Hence, it will directly show how to synthesize

the dynamic feedback regulator according to the scheme

described in Section III. The proofs of the lemmas and

properties, which are of a strictly technical nature, will be

omitted for the sake of brevity.

Lemma 1: The subspace V∗
H2

, defined by (30), is an

externally stabilizable (A,B)-controlled invariant subspace.

Property 3: Let (V∗
H2

, FH2
) be a pair that solves Prob-

lem 1. Then, a linear map F exists, such that

(A+BF )V∗
H2

⊆ V∗
H2

, (42)

σ((A+BF )|V∗

H2

) = σ((A+BFH2
)|V∗

H2

), (43)

σ((A+BF )|X/V∗

H2

) ⊂ C
−. (44)

Property 3 states that, on the assumption that the pair

(A,B) be stabilizable, the subspace V∗
H2

can be externally

stabilized without affecting its internal eigenvalues, which

are those determined by solving the H2-optimal control

problem. For reasons that will be clarified in the following,

any linear map F that satisfies conditions (42)–(44) of
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Property 3 can be assumed as the matrix F in the design

of the feedback regulator described in Section III.

Lemma 2: The subspace S∗
H2

, defined by (40), is an

internally stabilizable (A, C)-conditioned invariant subspace.

Property 4: Let (S∗
H2

, GH2
) be a pair that solves Prob-

lem 3. Then, a linear map G exists, such that

(A+GC)S∗
H2

⊆ S∗
H2

, (45)

σ((A+GC)|X/S∗

H2

) = σ((A+GH2
C)|X/S∗

H2

), (46)

σ((A+GC)|S∗

H2

) ⊂ C
−. (47)

Property 4 states that, on the assumption that the pair

(A,C) be detectable, the subspace S∗
H2

can be internally

stabilized without affecting its external eigenvalues, which

are those determined by solving the H2-optimal filtering

problem. For reasons that will be discussed later, any linear

map G that satisfies conditions (45)–(47) of Property 4 can

be assumed as the matrix G in the design of the feedback

regulator described in Section III.

According to the scheme depicted in Fig. 1, the informa-

tion on the state of the to-be-controlled system is obtained

as a linear combination of the measured output of the system

and the state of the observer. The matrices L1 and L2 that

define the specific linear combination will be derived through

the following property, by exploiting some features of the

subspace S∗
H2

.

Property 5: Consider system (38), (39) and the subspace

S∗
H2

defined by (40). Let L⊆X be a subspace such that

L⊕ (S∗
H2

∩C)=S∗
H2

. (48)

Then, linear maps L1 and L2 exist, such that

L1C +L2 = In, (49)

kerL2 = L. (50)

The following theorem states a necessary and sufficient

conditions for solvability of the H2-optimal rejection prob-

lem by measurement feedback.

Theorem 1: Consider system (1)–(3). Let assumptions A 1
and A 2 hold. The problem of finding a dynamic feedback

controller like (4), (5), with (12) and (13), such that the

closed-loop system (6), (7), with (8) and (9), be asymptot-

ically stable and the H2-norm of the transfer matrix G(s),
defined by (10), be minimal, is solvable if and only if

S∗
H2

⊆ V∗
H2

, (51)

where V∗
H2

and S∗
H2

are the resolving subspaces respectively

defined by (30) and (40).

Proof: If. Let the matrices F , G, L1, L2 in the regulator

equations (4), (5), with (12) and (13), be respectively defined

as in Property 3, Property 4, and Property 5. Consider the

closed-loop system (6), (7), with (8) and (9). The matrix Ac

can be explicited with respect to F , G, L1, L2 as

Ac =

[

A+BFL1C BFL2

BFL1C −GC A+BFL2 +GC

]

. (52)

Perform the similarity transformation

Tc =

[

I O
I −I

]

,

so that the overall system can be written as

ẋ′
c(t) = A′

c xc(t) +H ′
c h(t), (53)

e(t) = E′
c xc(t), (54)

where, also in the light of (49),

A′
c =

[

A+BF −BFL2

O A+GC

]

, H ′
c =

[

H
H

]

, (55)

E′
c = Ec. (56)

Consider the subspace W , defined by

W =

{[

x
ê

]

: x ∈ V∗
H2

, ê ∈ S∗
H2

}

, (57)

with respect to the new coordinates. We will show that

W is an internally and externally stable Ac-invariant

subspace. With F determined according to Property 3,

the subspace V∗
H2

is an internally and externally stable

(A+BF )-invariant subspace. With G determined according

to Property 4, the subspace S∗
H2

is an internally and exter-

nally stable (A+GC)-invariant subspace. Hence, showing

that the subspace W is an Ac-invariant subspace reduces to

showing that

BFL2 S
∗
H2

⊆ V∗
H2

. (58)

Equations (51) and (42) imply

(A+BF )S∗
H2

⊆ V∗
H2

.

Hence, all the more reasons for

(A+BF ) (S∗
H2

∩ C) ⊆ V∗
H2

. (59)

By virtue of (49), (59) can also be written as

(A+BFL1C +BFL2) (S
∗
H2

∩ C) ⊆ V∗
H2

. (60)

Since S∗
H2

is an (A, C)-conditioned invariant subspace,

A (S∗
H2

∩ C) ⊆ S∗
H2

. (61)

Since (S∗
H2

∩ C) ⊆ C,

BFL1C (S∗
H2

∩ C) = {0}. (62)

Therefore, in the light of (61) and (62), (60) implies

BFL2 (S
∗
H2

∩ C) ⊆ V∗
H2

, (63)

Finally, (63), (48), and (50) imply (58). Furthermore, W is an

internally and externally stable Ac-invariant subspace since

σ(Ac)⊂C
−. In fact, the upper block triangular structure

of A′
c shows that, with F and G respectively determined

according to Property 3 and Property 4, the overall system

is asymptotically stable, since

σ(A′
c) = σ(A+BF ) ⊎ σ(A+GC) =

σ((A+BF )|V∗

H2

) ⊎ σ((A+BF )|X/V∗

H2

) ⊎

σ((A+GC)|S∗

H2

) ⊎ σ((A+GC)|X/S∗

H2

),

and, with those particular F and G, the invariant subspaces

V∗
H2

and S∗
H2

are both internally and externally stable.
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Only if. It is direct consequence of minimality of S∗
H2

and maximality of V∗
H2

as resolving subspaces of the associ-

ated optimal filtering problem and optimal control problem,

respectively.

As was mentioned in Section III, the procedure described

provides a strictly-proper feedback controller when specific

conditions are satisfied. More precisely, if S∗
H2

⊆C, then

S∗
H2

∩C=S∗
H2

. Consequently, according to (48), L= {0}.

Furthermore, according to (49) and (50), L2 = I and L1 =0.

This means that, in this case, the direct feedthrough from

the measured output to the control input disappears and the

static feedback directly involves the whole state estimate. In

other words, this shows that, on the assumption S∗
H2

⊆C, the

separation principle holds.

VI. CONCLUSION

The H2-optimal rejection problem by measurement feed-

back in strictly-proper systems was solved by means of pure

geometric approach arguments applied to the Hamiltonian

systems associated with the original problem. In particular,

a necessary and sufficient condition for solvability of the

problem was stated in terms of a pair of resolving subspaces

directly derived from the Hamiltonian systems. The the proof

of the sufficiency of the condition, which is constructive,

has shown the procedure for the synthesis of the feedback

regulator.

APPENDIX

GEOMETRIC APPROACH NOTATION AND BACKGROUND

The aim of this section is to review and collect some

notions of the geometric approach extensively used in this

paper. The reader is referred to [10] for more details.

Consider the continuous-time linear time-invariant system

ẋ(t) = Ax(t) +B u(t), (64)

y(t) = C x(t), (65)

where A, B, C are constant real matrices of appropriate

dimensions. Let B be of full column rank and C of full row

rank.

Geometric objects widely employed in this work are the

following: X , the state space of (64), (65); B, the image

of B; C, the kernel of C; R=minJ (A,B), the minimal

A-invariant subspace containing B or, equivalently, the reach-

able subspace of (A,B); Q=maxJ (A, C), the maximal

A-invariant subspace contained in C or, equivalently, the

unobservable subspace of (A,C); V∗ =maxV(A,B, C), the

maximal (A,B)-controlled invariant subspace contained in C;

S∗ =minS(A, C,B), the minimal (A, C)-conditioned invari-

ant subspace containing B; RV∗ =V∗∩S∗, the controllability

subspace on V∗.

Some basic geometric definitions and properties exploited

in the work are reviewed below. A subspace J ⊆X , with

basis matrix J , is an A-invariant subspace if and only if

a matrix X exists such that AJ = J X . The matrix X
represents the linear map A |J with respect to the same

coordinates. An A-invariant subspace J ⊆X is said to

be internally stable if σ(A|J )⊂C
−. An A-invariant sub-

space J is said to be externally stable if σ(A|X/J )⊂C
−.

A subspace V ⊆X is an (A,B)-controlled invariant sub-

space if and only if a linear map F exists, such that

(A+BF )V ⊆V . An (A,B)-controlled invariant subspace

V ⊆X is said to be internally stabilizable if a linear map F
exists, such that (A+BF )V ⊆V and σ((A+BF )|V)⊂C

−.

An (A,B)-controlled invariant subspace V ⊆X is said to be

externally stabilizable if a linear map F exists, such that

(A+BF )V ⊆V and σ((A+BF )|X/V)⊂C
−. A subspace

S ⊆X is an (A, C)-conditioned invariant subspace if and

only if a linear map G exists, such that (A+GC)S ⊆S .

The relation maxV(A,B, C)=
(

minS(A⊤,B⊥, C⊥
)⊥

can

be proven by means of duality arguments. Let a linear map F
be such that (A+BF )V∗ ⊆V∗, then (A+BF )RV∗ ⊆RV∗

holds with the same F . The spectrum σ((A+BF )|RV∗ )
is assignable. The spectrum σ((A+BF )|V∗/RV∗ ) is fixed

and is also known as the set of the internal unassignable

eigenvalues of V∗ or, equivalently, as the set Z(A,B,C)
of the invariant zeros of system (64), (65). Moreover, the

spectrum σ((A+BF )|(V∗+R)/V∗) is assignable and the

spectrum σ((A+BF )|X/(V∗+R)) is fixed.
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