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Abstract—Computational savings in reachability set sub-
space computation are realized by carefully applying
transversality conditions to trajectory samplings of the full
reachability set. Differential constraints on the initial state
and initial constraint Lagrange multiplier are developed
that enforce the necessary conditions of optimality as
total trajectory duration increases. Results are validated
against known linear analytical results and an example is
given where a 1-dimensional subspace of a 6-dimensional
nonlinear problem is computed.

I. INTRODUCTION

Computation of reachability sets has attracted signif-
icant attention over the past decades. Reachability sets
have particular utility in capability and safety analyses.
While the mathematical descriptions and numerical com-
putation procedures for reachability sets for nonlinear
problems are well developed, it remains that funda-
mentally for general, nonlinear reachability problems
computation of reachability sets suffers from the curse
of dimensionality.

Sometimes, however, the end user of a reachability
analysis is not interested in the full reachability set,
but rather a subspace thereof. This paper explores an
approach in which a subspace of the reachability set may
be computed while only incurring a computation penalty
commensurate with the dimension of the subspace, rather
than the dimension of the full reachability set.

The theory supporting formalized reachability has
been extensively developed in the controls literature, and
may be directly derived from optimal control theory
[1], [2], [3], [4], [5]. Computing the reachability set
for a given system involves satisfying the dynamic pro-
gramming principle and/or solving the Hamilton Jacobi
Bellman partial differential equation (HJB PDE), which
has direct analogs in solving general optimal control
problems. Traditional applications of reachability theory
have focused on continuous differential systems, and
have since been further generalized to apply to a variety
of problems.

Direct analytical computation of reachable sets is
difficult, and has motivated significant research aimed
at determining which classes of systems may be analyt-
ically solved as well as various numerical techniques to
reduce the computation burden and generate over/under-
approximated reachability sets. Research into whether an
analytical solution exists for a given reachability problem
has demonstrated that some classes of dynamics may
be analytically computed, specifically linear integrator
or pure undamped oscillator systems [6]. Further, some
problems have been found to be reducible to geometric
problems based on insight into the propagation of the
dynamics [7]. For systems with polynomial equations of
motion it has been shown that reachability problems can
be re-cast as a sum of squares formulation using barrier
certificates and solved either directly or iteratively [8].

Over-approximations of reachable sets are desirable
as they are typically performed in the context of system
safety, where conservative reachability set computations
are useful for risk reduction. For multi-affine systems
it has been demonstrated that the state-space may be
partitioned iteratively using rectangles to effeciently gen-
erate overapproximations of the reachable state-space
[9]. Polytopic reachability sets, which have straight-
forward parameterization and computation, have been
shown to provide accurate conservative outer bounds for
linear and norm-bounded nonlinear systems [1], [10].
Vast improvement in over-approximated reachability set
computation efficiencies has been realized for linear
systems using zonotopes [11] and support functions
[12]. Similar work has computed reachability sets for
nonlinear systems by linearizing at each propagation
step and conservatively accounting for uncertainty, also
generating conservative over-approximations expressed
using zonotopes [13]. Ellipsoidal reach set over- and
under-approximations have been proposed for some time
and have been applied to several problems [1], [14].

To reduce the dimensional complexity of the reach-
ability set subspace computation, this paper demon-
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strates that careful application of the transversality con-
ditions on sampled individual trajectories allows reacha-
bility set subspace computation with significantly lower
dimensionality-driven costs. The approach is shown to
be valid for specific types of initial value functions and
continuous nonlinear systems.

The contributions of this paper are a) derivation of
solution dynamics along the constraint surface defined
by the necessary conditions of optimality, b) a short
discussion on admissible initial sets and dynamics, c)
a validation of the approach by comparing solutions
against known results for double-integrators with ellip-
soidal initial sets, and d) an example demonstrating the
successful computation of a 1-dimensional reachability
set subspace with 6-dimensional nonlinear state space
dynamics.

The Theory section (§II) describes the optimal control
problem under consideration, applies the transversality
conditions, and derives the equations of motion along the
constraint surface defined by the necessary conditions of
optimality. Further constraints on initial conditions are
developed and it is shown that a discrete sampling of
the reachability set subspace can be used to represent the
reachability set subspace at future times. Examples are
given in §III and conclusions / future work are discussed
in §IV.

II. THEORY

To properly cover the preliminaries necessary for this
paper a definition of general Optimal Control Problems
(OCPs) is first given, followed by a short definition of
minimum time reachable sets.

Definition II.1. General Bolza OCP
A general Bolza OCP may be written as

opt
u∈U

[∫

tf

t0
L(x(τ),u(τ), τ)dτ + V (xf , tf)]

ẋ = f(x,u, t)
h(x, t) ≤ 0

g(x0, t0,xf , tf) = 0

(1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
t ∈ [t0, tf ] is time, L ∶ Rn × Rm × R → R is the
trajectory Lagrangian, V ∶ Rn × R → R is the terminal
performance function, f ∶ Rn×Rm×R→ Rm captures the
system differential constraints, h ∶ Rn ×R → Rq defines
trajectory inequality constraints, g ∶ Rn×R×Rn×R→ Rv
expresses boundary conditions, and U ⊆ Rm defines the
set of feasible controls.

Definition II.2. Minimum Time Reachability Set

An optimal minimum time reachability set is defined as

R(tf ;U, f,h,g, t0)
≡ {xf ∣ xf is reachable at t = tf given U, f,h,g, t0}

(2)

For minimum time reachability sets, the general OCP in
Definition II.1 is modified such that L(⋅, ⋅, ⋅) = 0 and the
‘opt’ argument is considered a ‘sup’ argument.

Often minimum time reachability sets are determined
by specifying an initial condition on the value func-
tion V (x0, t0) and computing viscosity solutions of the
Hamilton Jacobi Bellman (HJB) PDE. The zero-level
sets at future times tf then represent the boundary of
the minimum time reachability set R [15], [16], [17],
[18], [19].

Because this paper is concerned with computing min-
imum time reachability sets over subspaces Rs of the
full state space Rn (Rs ⊆ Rn), an alternate approach
must be taken. The following Lemma demonstrates the
type of OCP whose solutions compose the surface of a
minimum time reachability set subspace.

Lemma II.1. Reachability Subspace OCP Without
Inequality Constraints
Each of the final states xf from individual trajectories

that together compose the optimal reachability set are
solutions to the following optimal control problem with-
out trajectory the inequality constraint h(x, t) ≤ 0.

sup
u∈U

1
2

xTf [
Gs×s 0s×r
0r×s 0r×r

]xf

ẋ = f(x,u, t)
g(x0, t0) = 0

(3)

where G ∈ Ss×s is positive definite (rank(G) = s), the
subspace dimension s satisfies the inequality 1 ≤ s ≤ n,
and g(x0, t0) = V (x0, t0) = 0, where V (x0, t0) is an
initial boundary condition defined by the problem.
Proof:
It is immediately clear that choosing g(x0, t0) =

V (x0, t0) = 0 causes the initial states of optimal trajec-
tories to lie on the surface of the initial reachability set
R(t0;U, f,h,g, t0). The final cost term defines the square
of a distance metric over the inner-product space of G
over final state arguments in the subpsace Rs. Maximiz-
ing the final distance subject to the OCP constraints is
equivalent to finding a trajectory to the final distance in
minimum time.
◻

It must be mentioned that the removal of trajectory
inequality constraints in Lemma II.1 is due largely to the
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difficulty of handling such constraints in the boundary-
condition manifold approach taken in remainder of this
section. The inclusion of inequality constraints to the
formulation is an avenue for additional work. Also,
because there exists an equivalence between trajec-
tory/Lagrangian costs L(⋅, ⋅, ⋅) and the final cost V (⋅, ⋅)
in Definition II.1, the choice of Gs×s must be carefully
considered given the objective function. For minimum
time problems, Gs×s → Is×s is appropriate.

From the form of the reachability subspace discussed
in Lemma II.1 it is clear that application of the transver-
sality conditions will fully define the initial and final
values of the adjoint variables in terms of the initial
state x0. The approach in this paper examines how
the optimal initial state x0 moves along the n + 1
dimensional constraint surface defined by g(x0, t0) and
the necessary conditions of optimality. Before applying
the transversality conditions, the following Lemma and
Corollary regarding dynamics along constraint surfaces
are introduced.

Lemma II.2. Constraint Satisfaction with Varying
Independent Parameters
Given an independent parameter s ∈ R, parameters
z(s) ∈ Rζ , and constraint κ(z(s), s) = 0, κ(z(s), s) ∈

Rk, as z(s) varies with s, to move along the constraint
surface it is necessary that

dκ

ds
=
∂κ

∂z
dz(s)

ds
+
∂κ

∂s
= 0 (4)

Proof:
Examining variations in the independent parameter s, a
Taylor Series expansion of the constraint κ(z(s)) may
be written as

κ(z(s + δs), s + δs) = κ(z(s), s) +
dκ

ds
δs +O(∥δs∥2

)

Requiring that κ(z(s + δs), s + δs) = 0, ignoring
O(∥δs∥2) and higher terms, and considering arbitrarily
small variations in δs, the claim in this Lemma is
obtained:

dκ

ds
=
∂κ

∂z
dz(s)

ds
+
∂κ

∂s
= 0

◻

Corollary II.1. Parameter Dynamics on a Constraint
Surface
Given an independent parameter s ∈ R, parameters
z(s) ∈ Rζ , and constraint κ(z(s), s) = 0, if ∂κ/∂z is
invertible, the parameter dynamics along the constraint
surface κ(z(s), s) as s changes are described by

dz(s)
ds

= − [
∂κ

∂z
]

−1

(
∂κ

∂s
) (5)

Proof:
This result is found by solving directly for dz(s)/ds in
(4).
◻.

The transversality constraints are now applied to de-
termine how a given optimal x0 progresses along the
necessary condition constraint surfaces as time increases.
After the dynamics of x0 are determined, a further
corollary is given discussing how the reachability set
subspace may be sampled and propagated as individ-
ual trajectories. Transversality conditions and dynamics
along optimal trajectories are discussed in detail in many
reference texts and papers [21], [22], [20].

Applying the transversality conditions to the subspace
OCP defined in Lemma II.1 the following boundary
conditions on the adjoints of a given optimal trajectory
are written as

p0 = −
∂Vs
∂x0

− λ
∂g

∂x0
= −λDg(x0) (6)

and

pf =
∂Vs
∂xf

+ λ
∂g

∂xf
= [

Gxs,f
0r×1

] (7)

where Dg(x0) is the differentiation operator with respect
to x0 and λ ∈ R is the Lagrange multiplier associated
with the initial condition constraint g(x0, t0). As the final
time tf = t0 +T is chosen, specific values of x0(T ) and
λ(T ) can be found that maximize Vs(xs,f , t0 + T ) =

(1/2)xs(t0 + T )TGxs(t0 + T ). The values of x(t0 + T )

and p(t0+T ) are functions of the initial time, state, and
adjoints given a trajectory duration T :

xf(T ) = x(t0 + T ) = φx(t0 + T ; x0(T ),p0(T ), t0) (8)

pf(T ) = p(t0 + T ) = φp(t0 + T ; x0(T ),p0(T ), t0) (9)

To apply results from Lemma II.2 and Corollary II.1
the transversality conditions, optimal trajectory dynam-
ics, and initial condition constraint are now formulated
as n + 1 equality constraints. If the initial time t0 is
arbitrarily allowed to be t0 = 0 and it is required that
x0(T ) and λ(T ) satisfy the initial condition constraint
g(x0(T ), t0), the transversality constraints (6) and (7),
and the state and adjoint dynamics (8) and (9), then the
following n + 1 constraints may be constructed

κ(x0(T ), λ(T )) = [
κ1(x0(T ), λ(T ))n×1

κ2(x0(T ))1×1
] = 0 (10)
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where the following definitions are made

κ1(x0(T ), λ(T ))

= [
G 0
0 0 ]φx(T ; x0(T ),−λ(T )Dg(x0(T )),0)

−φp(T ; x0(T ),−λ(T )Dg(x0(T )),0)

(11)

κ2(x0(T )) = g(x0(T ),0) (12)

Consequently, for a given trajectory duration T , initial
boundary condition x0(T ), and initial condition La-
grange multiplier λ(T ), the corresponding trajectory is
a trajectory that optimizes (3) in the subspace of interest
if and only if κ(x0(T ), λ(T )) = 0. This fact will be
leveraged in the following sections to derive differential
equations and initial condtions for x0(T ) and λ(T ).

Lemma II.2 motivates taking the total derivatives of
each constraint with respect to the trajectory duration T .
Beginning with the fist constraint generates

d
dT

κ1(x0(T ), λ(T )) = [
G 0
0 0 ]

⎛

⎝

∂φx
∂T

+
∂φx
∂x0

dx0

dT

+
∂φx
∂p0

(Dg(x(T ))
dλ
dT

− λ(T )D2g(x0(T ))
dx0

dT
)
⎞

⎠

−
⎛

⎝

∂φp

∂T
+
∂φp

∂x0

dx0

dT

+
∂φp

∂p0

(Dg(x(T ))
dλ
dT

− λ(T )D2g(x0(T ))
dx0

dT
)
⎞

⎠

The second constraint produces

d
dT

κ2(x0(T )) =Dg(x(T ))
dx0

dT

Where D2g(x0(T )) is shorthand notation for
∂2g(x0(T ))/∂x2

0. Re-writing these equations and
observing that ∂φx/∂T = dx/dT , ∂φp/∂T = dp/dT ,
∂φx/∂x0 = Φxx(T,0), ∂φx/∂p0 = Φxp(T,0),
∂φp/∂x0 = Φpx(T,0), and ∂φp/∂p0 = Φpp(T,0)
where

[
δxf(T )

δpf(T )
] = [

Φxx(T,0) Φxp(T,0)
Φpx(T,0) Φpp(T,0)

] [
δx0(T )

δp0(T )
]

These substitutions produce

[

∂κ1
∂x0

∂κ1
∂λ

∂κ2
∂x0

0
] [

dx0
dT
dλ
dT

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[
G 0
0 0 ] ẋ − ṗ

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(13)

where
∂κ1

∂x0

= [
G 0
0 0 ] (Φxx(T,0) − λ(T )Φxp(T,0)D2g(x0(T )))

− (Φpx(T,0) − λ(T )Φpp(T,0)D2g(x0(T )))

∂κ1

∂λ
= Φpp(T,0)Dg(x0(T ))

− [
G 0
0 0 ]Φxp(T,0)Dg(x0(T ))

∂κ2

∂x0
=Dg(x0(T ))

and
∂κ2

∂λ
= 0

As shown in Corollary II.1, because (13) is in a linear
equation of the form My = b where

M =
∂κ

∂z
= [

∂κ1
∂x0

∂κ1
∂λ

∂κ2
∂x0

0
]

and

b = −
∂κ

∂T
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[
G 0
0 0 ] ẋ − ṗ

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with respect to dx0/dT and dλ/dT , if the n + 1 × n + 1
matrix M is invertible, then there is a unique first order
differential equation that represents the motion of x0(T )

and λ(T ) along the optimal trajectory constraint surface:

[
dx0
dT
dλ
dT

] = [

∂κ1
∂x0

∂κ1
∂λ

∂κ2
∂x0

0
]

−1 ⎡⎢
⎢
⎢
⎢
⎢
⎣

[
G 0
0 0 ] ẋ − ṗ

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(14)

Because Φxx(T,0) and Φpp(T,0) are always full rank,
if D2g(x0(T )) is definite, and if λ(T ) ≠ 0 then it is
suspected that M−1 exists. However in general, depend-
ing on the scaling of the coordinates, as T increases
the numerical condition number of M may increase
arbitrarily, decreasing the accuracy of he approach. The
differential equation describing the motion of x0(T ) and
λ(T ) is written in shorthand as

dx0(T )

dT
= χ0(T,x0(T ), λ(T ), g(x0(T )),Φ(T,0), ẋ(T ), ṗ(T ))

(15)

and
dλ(T )

dT
= Λ(T,x0(T ), λ(T ), g(x0(T )),Φ(T,0), ẋ(T ), ṗ(T ))

(16)
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Depending on the form of M, there may not be closed
form equations for (15) and (16). Regardless, provided
that M is numerically invertible a numerical solution can
be found.

Corollary II.2. Initial Conditions
The initial conditions for xs,0(0), xr,0(0), and λ(0) must
satisfy

−λ(0)Dgs(xs,0(0),xr,0(0)) = Gxs,0(0)
−λ(0)Dgr(xs,0(0),xr,0(0)) = 0r×1

g(xs,0(0),xr,0(0)) = 0
(17)

where Dgs ∈ Rs is shorthand notation for ∂g/∂xs and
Dgr ≡ ∂g/∂xr, Dgr ∈ Rr.
Proof:
These initial condition requirements are found by directly
evaluating (11) and (12) with T = 0
◻

Two cases must briefly be discussed. If λ(0) ≠ 0, then
this constraint requires that Dgs(xs,0(0),xr,0(0),0) and
Gxs,0(0) must be parallel with λ(0) as their scaling
factor, and Dgr(xs,0(0),xr,0(0),0) = 0. The other case,
if λ(0) = 0, requires that xs,0(0) = 0, while xr,0(0)
remains free (but still subject to g(x0(0),0)). If x0(0)
is not a solution to g(x0(0)) = 0, then λ ≠ 0.

Several remarks regarding computational details are
now given, followed by a corollary detailing how the
reachability set subspace of interest may be sampled.

Remark II.1. Computing Φ(T,0) and xf(T )

Computing χ0 and Λ (analytically or numerically) re-
quires Φ(T,0) and xf(T ). While future work will ex-
amine methods to generate differential equations dΦ/dT
and dxf /dT , the quantities Φ(T,0) and xf(T ) can
be computed by implementing a nested numerical in-
tegration operation inside of the integration opera-
tion for dx0/dT and dλ/dT . This nested integration
is qualitatively similar to approaches used in solving
Model Predictive Control problems, and makes comput-
ing reachability subsets over large ranges of independent
parameters computationally burdensome, but does not
interfere with the proof of concept demonstrated in this
paper.

Remark II.2. Local Evaluation of the Initial Condition
Constraint
In the derivation of the optimal intial state dynamics (15)
and Lagrange multiplier dynamics (16), no particular
form of g(x0(0),0) = 0 was considered. The derivation
does impose that at the evaluation point x0(T ), both
Dg(x0(T ) and D2g(x0(T ) be well defined. This sug-
gests that a piecewise definition of g(x0, t0) = 0 may be

used to define initial reachability sets.

Corollary II.3. Sampling a Reachability Subspace
Given an OCP of the form shown in Lemma II.1,
equation (3), the surface of the initial reachability set
surface defined by g(x0(0), t0) = 0 may be represented
by computing points xs,f(T ) found by propagating a
sampling set of initial conditions x0(T ) subject to dy-
namics (15) and λ(T ) subject to dynamics (16), with
x0(0) and λ(0) satisfying Corollary II.2.
Proof:
Because V (x0, t0) = g(x0, t0) = 0, any feasible initial
x0 is on the boundary of the reachability set at time t0.
Initial optimal trajectories starting from x0(0) satisfying
(15) and associated Lagrange multipliers λ(0) satisfying
(16) necessarily define the maximum reachability surface
subspace as the necessary conditions are satisfied and
the optimal control maximizes the final value function.
◻

Remark II.3. Computational Effort
Computing a reachability subspace of dimension s as-
suming a full state-space dimension of n and N sam-
plings in each subspace dimension requires approxi-
mately Ns−1(n + 1)(n2 + n) computations. For each of
the Ns−1 samplings, n+1 states must be propagated, and
for each integration step a nested integration of n2 + n
states must be made.

Because each trajectory forming a point-wise reach-
ability surface approximation exactly satisfies the nec-
essary conditions of optimality (to within numerical
integration tolerances), the resulting reachability sub-
space surface is not guaranteed to be either a over- or
under-approximation. Locally, the transversality condi-
tions may be used to construct tangent planes to the true
reachability surface, defined by the tangent normal unit
vector p̂f(T ).

In general, as T is increased, a surface region in
a point-wise approximation of a reachability set may
experience increasing or decreasing sampling density.
To efficiently sample such regions, schemes in which
arbitrary distance metrics are used to identify densely
or sparsely populated regions may be used. In the event
that a region is deemed too sparse, additional samples
may be added to the region as desired.

It remains that it must be determined how Φ(T,0)
changes as xf(T ), x0(T ), and λ(T ) move along the con-
straint surface. To start, the total derivative of variations
in the final state and adjoint with respect to trajectory
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duration T is taken

d
dT

[
δx(T )

δp(T )
]

=
dΦ(T,0)

dT
[
δx0(T )

δp0(T )
] +Φ(T,0) [

dδx0(T )
dT

dδp0(T )
dT

]

The linearized time derivative of variations of the state
and adjoint are

d
dT

[
δx(T )

δp(T )
] = A(T ) [

δx(T )

δp(T )
]

Combining generates

A(T )Φ(T,0) [
δx0(T )

δp0(T )
]

=
dΦ(T,0)

dT
[
δx0(T )

δp0(T )
] +Φ(T,0) [

dδx0(T )
dT

dδp0(T )
dT

]

III. EXAMPLES

A. Subset Computation Validation

To validate the approach the first example chosen is
a linear double-integrator system. This system benefits
from known analytical solutions for maximum reachable
position given an ellipsoidal initial set. The dynamics
may be written as

ẋ = [
ḋ
v̇

] = [
0 1
0 0 ] [

d
v

] + [
0
1 ]u (18)

where d is the distance, v is the velocity, and u is
the acceleration input. The optimal control policy for
minimum time is u∗ = um sgn(pv), where for this
problem um = 1. The following problem parameters are
used:

g(x0) = xT0 x0 − 1 = 0

V (xf , tf) =
1
2

xTf [
1 0
0 0 ]xf → G = G = 1

Applying Corollary II.2, the initial state and Lagrange
multiplier are then

x0(0)T = [ 1 0 ]
T

, λ(0) = −
1
2

The total trajectory duration is chosen to be T = 1. The
differential equations for dx0(T )/dT and dλ(T )/dT are
propagated using Matlab’s ode45 routine with absolute
and relative tolerances of 1e−12 and 1e−9, respectively.
Figure 1 plots the constraint surface g(x0(T )) = 0,
the optimal initial states x∗0(T ), final states x∗f(T ), and
corresponding trajectories as a function of total trajectory
duration.

Figure 2 plots only the position subspace and associ-
ated optimal trajectories as a function of total trajectory
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duration T . The initial position, velocity, and optimal
Lagrange multiplier are plotted as a function of total
trajectory duration in Figure 3. For the entire duration
the constraint satisfaction residual remains below 3e−7.
Comparing with known analytical results, the error in the
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final position and velocity remain on the order of 1e−9

for the entire trajectory duration. Consistent with most
ode45 integration solutions, the solution accumulates
integration error, causing constraint satisfaction error to
increase over time. As can be seen, the approach outlined
in this paper agrees nicely with analytical results for the
double-integrator system.

B. Example 2: 3-DOF Coupled Duffing Oscillator

To demonstrate the utility of the subspace computation
approach for higher dimensional nonlinear problems, this
example examines the reachability set subspace of a 3-
DOF coupled Duffing oscillator. The nonlinear equations
of motion are

m1ẍ1 = −k1,1x1 − k1,3x
3
1 − f1ẋ1

+k2,1 (x2 − x1) + k2,3 (x2 − x1)
3
+ f2 (ẋ2 − ẋ1)

(19)

m2ẍ1 = −k2,1 (x2 − x1) − k2,3 (x2 − x1)
3
− f2 (ẋ2 − ẋ1)

+k3,1 (x3 − x2) + k3,3 (x3 − x2)
3
+ f3 (ẋ3 − ẋ2)

(20)

m3ẍ1 = −k3,1 (x3 − x2) − k3,3 (x3 − x2)
3
− f3 (ẋ3 − ẋ2)

+F
(21)

Here, for i = 1,2,3, mi represent the masses, xi repre-
sent the positions, ẋi are the velocities, ki,1 represent
the linear spring coefficients, ki,3 represent the cubic
spring coefficients, fi represent viscous friction coeffi-
cients, and F is forcing term acting only on m3 with a
maximum force of Fm. The state-space is defined as

xT = [ x1 x2 x3 ẋ1 ẋ2 ẋ3 ]
T

For this example the following parameters are chosen:

g(x0) = xT0 x0 − 1 = 0

V (xf , tf) =
1
2

xTf [diag ([ 0 0 1 0 0 0 ])]xf

m1 =m2 =m3 = 1 k1,1 = k2,1 = k3,1 = 1
k1,3 = k2,3 = k3,3 =

1
9

f1 = f2 = f3 = 1

um =
Fm
m3

= 1, t0 = 0, tf = 2π, T = 2π

x0(0)T = [ 0 0 1 0 0 0 ]
T

, λ(0) = −
1
2

Because this is a minimum time problem and the system
dynamics are affine with control, the optimal control
policy is u∗ = −um sgn(ṗ3). The differential equations
for dx0(T )/dT and dλ(T )/dT are propagated in Mat-
lab using ode45 with absolute and relative integration
tolerances of 1e−12 and 1e−9, respectively.

Fig. 4. Example 2: Full Position Subspace

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

Trajectory Duration

x
3
 R

e
a
c
h
a
b
le

 D
is

ta
n
c
e

 

 

Maximum Distance

Optimal Trajectory

Fig. 5. Example 2: Reachable Distance

Figure 4 plots the position subspace along with posi-
tion components of the optimal initial states x0(T ) and
final states xf(T ). The sphere plotted is the position
subspace of the hyper-sphere initial condition constraint
g(x0) = 0. The maximum reachable distance x3 over
trajectory duration T along with corresponding optimal
trajectories is plotted in Figure 5. Figure 6 plots the full
optimal initial state x0(T ) and Lagrange multiplier λ(T )

as a function of total trajectory duration T . Note that the
constraint satisfaction discrepancy remains below 1e−6

for T = 2π.
The total solution time for the results plotted in

Figures 4, 5, and 6 is 1999 seconds on a MacBook Pro
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Fig. 6. Example 2: x0(T ) and λ(T ) Solution

2.4GHz Intel Core 2 Duo processor with 4GB 667MHz
DDR2 SDRAM. The maximum constraint satisfaction
residual occurred at T = 2π and was 1.6e−6. Faster
solutions may be found using relaxed absolute and
relative integration tolerances. Computing the solution
with absolute and relative integration tolerances of 1e−6

and 1e−3 respectively yielded results with maximum
constraint satisfaction errors of 0.045 in approximately
20 seconds on a the same laptop.

IV. CONCLUSIONS AND FUTURE WORK

The transversality conditions are applied to the min-
imum time equivalent OCP generating a set of n + 1
necessary conditions on the optimal initial state x0(T )

and Lagrange multiplier λ(T ). Dynamics for x0(T ) and
λ(T ) are derived which move the optimal solution along
the constraint surface defined by the necessary conditions
of optimality. By sampling the initial reachability sub-
space, it is shown that the reachability subspace after
a trajectory duration of T may be found by numeri-
cally integrating the constraint surface dynamics. The
approach is validated for the double-integrator system,
and a nonlinear 6-dimensional example is given to
demonstrate the utility of the approach. Future work will
focus on exploring how best to sample g(x0, t0) = 0
to approximate V (xf , tf) = 0, decreasing computational
requirements by developing differential forms for the
final state xf(T ) and state transition matrix Φ(T,0)
dynamics.
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