
Homography estimation on the Special Linear Group based on direct
point correspondence

Tarek Hamel, Robert Mahony, Jochen Trumpf, Pascal Morin and Minh-Duc Hua

Abstract— This paper considers the question of obtaining
a high quality estimate of a time-varying sequence of image
homographies using point correspondences from an image se-
quence without requiring explicit computation of the individual
homographies between any two given images. The approach
uses the representation of a homography as an element of the
Special Linear group and defines a nonlinear observer directly
on this structure. We assume, either that the group velocity
of the homography sequence is known, or more realistically,
that the homographies are generated by rigid-body motion of a
camera viewing a planar surface, and that the angular velocity
of the camera is known.

I. INTRODUCTION
A homography is an invertible mapping relating two

images of the same planar scene. Homographies play a
key role in many computer vision and robotics problems,
especially those that involve manmade environments typically
constructed of planar surfaces, and those where the camera is
sufficiently far from the scene viewed that the relief of surface
features is negligible, such as the situation encountered in
vision sequences of the ground taken from a flying vehicle.
Computing homographies from point correspondences has
been extensively studied in the last fifteen years and different
techniques have been proposed in the literature that provide
an estimate of the homography matrix [5]. The quality of
the homography estimate depends strongly on the algorithm
used and the size of the set of points considered. For a well
textured scene, state of the art methods provide high quality
homography estimates but require significant computational
effort (see [17] and references therein). For a scene with
poor texture, the existing homography estimation algorithms
perform poorly. In a recent paper by the authors [13], [14] a
nonlinear observer for homography estimation was proposed
based on the group structure of the set of homographies, the
Special Linear group SL(3) [2]. This observer uses velocity
information to interpolate across a sequence of images and
to improve the overall homography estimate between any
two given images. Although this earlier approach addresses
the problem partly by using temporal information to improve
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instantaneous estimates, the observer still requires individual
image homographies to be computed for each image in the
sequence to compute the observer innovation.

In this paper, we consider the question of deriving an
observer for a sequence of image homographies that directly
takes point feature correspondences as input. The proposed
approach is only valid in the case where a sequence of images
used as data is associated with a continuous variation of
the reference image. The most common case encountered is
where the images are derived from a moving camera viewing
a planar scene. The nonlinear proposed observer is posed
on the Special Linear group SL(3) that is in one-to-one
correspondence with the group of homographies [2] and uses
velocity measurements to propagate the homography estimate
and fuse this with new data as it becomes available [13],
[14]. A key advance on prior work by the authors is the
formulation of a point feature innovation for the observer
that incorporates point correspondences directly in the ob-
server without requiring reconstruction of individual image
homographies. The proposed approach has a number of
advantages. Firstly, it avoids the computation associated with
the full homography construction. This saves considerable
computational resources and makes the proposed algorithm
suitable for embedded systems with simple point tracking
software. Secondly, the algorithm is well posed even when
there is insufficient data for a full reconstruction of a homog-
raphy. For example, if the number of corresponding points
between two images drops below four it is impossible to
algebraically reconstruct an image homography and the exist-
ing algorithms fail. In such situations, the proposed observer
will continue to operate, incorporating what information is
available and relying on propagation of prior estimates where
necessary. Finally, even if a homography can be reconstructed
from a small set of feature correspondences, the estimate
is often unreliable and the associated error is difficult to
characterize. The proposed algorithm integrates information
from a sequence of images, and noise in the individual
feature correspondences is filtered through the natural low-
pass response of the observer, resulting in a highly robust
estimate. As a result, the authors believe that the proposed
observer is ideally suited for poorly textured scenes and real-
time implementation. We initially consider the case where
the group velocity is known, a situation that is rarely true in
practice but provides considerable insight. The main result of
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the paper considers the case of a moving camera where the
angular velocity of the camera is measured. This is a practical
scenario where a camera is equipped with gyrometers. The
primary focus of the paper is on the presentation of the
observers and analysis of their stability properties, however,
we do provide simulations to indicate the performance of the
proposed scheme.

The paper is organized into five sections including the
introduction and the conclusion sections. Section II presents
a brief recap of the Lie group structure of the set of homo-
graphies and relates it to rigid-body motion of the camera.
Section III provides an initial lemma in the case where it is
assumed the group velocity is known and then considers the
case of a moving camera where the angular velocity of the
camera is known. Simulation results are provided in Section
IV to verify performance of the proposed algorithms.

II. PRELIMINARY MATERIAL

A. Projection

Visual data is obtained via a projection of observed
images onto the camera image surface. The projection is
parameterised by two sets of parameters: intrinsic (“internal”
parameters of the camera such as the focal length, the pixel
aspect ratio, etc.) and extrinsic (the pose, i.e. the position and
orientation of the camera). Let Å (resp. A) denote projective
coordinates for the image plane of a camera Å (resp. A),
and let {Å} (resp. {A}) denote its (right-hand) frame of
reference. Let ξ ∈ R3 denote the position of the frame {A}
with respect to {Å} expressed in {Å}. The orientation of the
frame {A} with respect to {Å}, is given by a rotation matrix,
element of the Special Orthogonal group, R ∈ SO(3) :
{A} → {Å}. The pose of the camera determines a rigid
body transformation from {A} to {Å} (and visa versa). One
has

P̊ = RP + ξ (1)

as a relation between the coordinates of the same point in
the reference frame (P̊ ∈ {Å}) and in the current frame
(P ∈ {A}). The camera internal parameters, in the commonly
used approximation, define a 3× 3 matrix K so that we can
write1:

p̊ ∼= KP̊ , p ∼= KP, (2)

where p ∈ A is the image of a point when the camera is
aligned with frame {A}, and can be written as (x, y, w)T

using the homogeneous coordinate representation for that 2D
image point. Likewise, p̊ ∈ Å is the image of the same point
viewed when the camera is aligned with frame {Å}.

If the camera is calibrated (the intrinsic parameters are
known), then all quantities can be appropriately scaled and

1Most statements in projective geometry involve equality up to a multi-
plicative constant denoted by ∼=.

the equation written in a simple form:

p̊ ∼= P̊ , p ∼= P. (3)

B. Homography

Assumption 2.1: Assume a calibrated camera and that
there is a planar surface π containing a set of n target points
(n ≥ 4) so that

π =
{
P̊ ∈ R3 : η̊T P̊ − d̊ = 0

}
,

where η̊ is the unit normal to the plane expressed in {Å} and
d̊ is the distance of the plane to the origin of {Å}.
From the rigid-body relationships (1), one has P = RT P̊ −
RT ξ. Define ζ = −RT ξ. Since all target points lie in a single
planar surface one has

Pi = RT P̊i +
ζη̊T

d̊
P̊i, i = {1, . . . , n}, (4)

and thus, using (3), the projected points obey

pi ∼=
(
RT +

ζη̊T

d̊

)
p̊i, i = {1, . . . , n}. (5)

The projective mapping H : A → Å, H :∼=
(
RT + ζη̊T

d̊

)−1

is termed a homography and it relates the images of points
on the plane π when viewed from two poses defined by the
coordinate systems A and Å. It is straightforward to verify
that the homography H can be written as follows:

H ∼=
(
R+

ξη>

d

)
(6)

where η is the normal to the observed planar surface ex-
pressed in the frame {A} and d is the orthogonal distance of
the plane to the origin of {A}. One can verify that [2]:

η = RT η̊ (7)

d = d̊− η̊T ξ = d̊+ ηT ζ. (8)

The homography matrix contains the pose information (R, ξ)
of the camera from the frame {A} (termed current frame) to
the frame {Å} (termed reference frame). However, since the
relationship between the image points and the homography
is a projective relationship, it is only possible to determine
H up to a scale factor (using the image points relationships
alone).

C. Homography versus element of the Special Linear Goup
SL(3)

Recall that the Special Linear Lie-group SL(3) is defined
as the set of all real valued 3 × 3 matrices with unit
determinant

SL(3) = {S ∈ R3 | detS = 1}.
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Since a homography matrix H is only defined up to scale then
any homography matrix is associated with a unique matrix
H̄ ∈ SL(3) by re-scaling

H̄ =
1

det(H)
1
3

H (9)

such that det(H̄) = 1. Moreover, the map

w : SL(3)× P2 −→ P2,

(H, p) 7→ w(H, p) ∼=
Hp

|Hp|
is a group action of SL(3) on the projective space P2 since

w(H1, w(H2, p)) = w(H1H2, p), w(I, p) = p

where H1, H2 and H1H2 ∈ SL(3) and I is the identity
matrix, the unit element of SL(3). The geometrical meaning
of the above property is that the 3D motion of the camera
between views A0 and A1, followed by the 3D motion
between views A1 and A2 is the same as the 3D motion
between views A0 and A2. As a consequence, we can think
of homographies as described by elements of SL(3).

The Lie-algebra sl(3) for SL(3) is the set of matrices with
trace equal to zero: sl(3) = {X ∈ R3×3 | tr(X) = 0}. The
adjoint operator is a mapping Ad : SL(3) × sl(3) → sl(3)
defined by

AdHX = HXH−1, H ∈ SL(3), X ∈ sl(3).

For any two matrices A,B ∈ R3×3 the Euclidean matrix
inner product and Frobenius norm are defined as

〈〈A,B〉〉 = tr(A>B) , ||A|| =
√
〈〈A,A〉〉

Let P denote the unique orthogonal projection of R3×3

onto sl(3) with respect to the inner product 〈〈·, ·〉〉. It is easily
verified that

P(H) :=

(
H − tr(H)

3
I

)
∈ sl(3). (10)

For any matrices G ∈ SL(3) and B ∈ sl(3) then 〈〈B,G〉〉 =
〈〈B,P(G)〉〉 and hence

tr(B>G) = tr(B>P(G)). (11)

Since any homography is defined up to a scale factor, we
assume from now that H ∈ SL(3):

H = γ

(
R+

ξη>

d

)
(12)

There are numerous approaches for determining H , up to this
scale factor, cf. for example [6]. Note that direct computation
of the determinant of H in combination with the expression
of d (8) and using the fact that det(H) = 1, shows that
γ = (d

d̊
)

1
3 .

Extracting R and ξ
d from H is in general quite complex

[2], [20], [19], [4] and is beyond the scope of this paper.

D. Homography kinematics from a camera moving with
rigid-body motion

Assume that a sequence of homographies is generated by
a moving camera viewing a stationary planar surface. Thus,
any group velocity (infinitesimal variation of the homogra-
phy) must be associated with an instantaneous variation in
measurement of the current image A and not with a variation
in the reference image Å. This imposes constraints on two
degrees of freedom in the homography velocity, namely those
associated with variation of the normal to the reference
image, and leaves the remaining six degrees of freedom in
the homography group velocity depending on the rigid-body
velocities of the camera.

Denote the rigid-body angular velocity and linear velocity
of {A} with respect to {Å} expressed in {A} by Ω and V ,
respectively. The rigid body kinematics of (R, ξ) are given
by

Ṙ = RΩ× (13)

ξ̇ = RV (14)

where Ω× is the skew symmetric matrix associated with the
vector cross-product, i.e. Ω×y = Ω× y, for all y.

Recalling (8), it is easily verified that

ḋ = −η>V, d

dt
d̊ = 0

This constraint on the variation of η and d̊ is precisely the
velocity constraint associated with the fact that the reference
image is stationary.

Lemma 2.2: Consider a camera attached to the moving
frame A moving with kinematics (13) and (14) viewing a
stationary planar scene. Let H : A → Å denote the calibrated
homography (12). The group velocity U ∈ sl(3) induced by
the rigid-body motion and such that

Ḣ = HU, (15)

is given by

U =

(
Ω× +

V η>

d
− η>V

3d
I

)
(16)

Proof: Consider the time derivative of (12). One has

Ḣ = γ

(
Ṙ+

ξ̇η> + ξη̇>

d
− ḋξη>

d2

)
+
γ̇

γ
H (17)

Recalling Equations (13) and (14) one has

Ḣ = γ

(
RΩ× +

RV η> + ξη>Ω×
d

+
η>V ξη>

d2

)
+
γ̇

γ
H

= γ

([
R+

ξη>

d

]
Ω× +

[
R+

ξη>

d

]
V η>

d

)
+
γ̇

γ
H

= H

(
Ω× +

V η>

d
+
γ̇

γ
I

)
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Applying the constraint that tr(U) = 0 for any element of
sl(3), one obtains

0 = tr
(

Ω× +
V η>

d
+
γ̇

γ
I

)
=
η>V

d
+

3γ̇

γ
.

The result follows by substitution.
Note that the group velocity U induced by camera motion

depends on the additional variables η and d that define the
scene geometry at time t as well as the scale factor γ. Since
these variables are unmeasurable and cannot be extracted
directly from the measurements, in the sequel, we rewrite:

U := (Ω× + Γ) , with Γ =

(
V η>

d
− η>V

3d
I

)
. (18)

Since {Å} is stationary by assumption, the vector Ω can
be directly obtained from the set of embedded gyros. The
term Γ is related to the translational motion expressed in the
current frame {A}. If we assume that ξ̇

d is constant (e.g. the
situation in which the camera moves with a constant velocity
parallel to the scene or converges exponentially toward it),
and using the fact that V = RT ξ̇, it is straightforward to
verify that

Γ̇ = [Γ,Ω×] (19)

where [Γ,Ω×] = ΓΩ× − Ω×Γ is the Lie bracket.
However, if we assume that V

d is constant (the situation
in which the camera follows a circular trajectory over the
scene or performs an exponential convergence towards it), it
follows that

Γ̇1 = Γ1Ω×, with Γ1 =
V

d
ηT . (20)

III. NONLINEAR OBSERVER ON SL(3) BASED ON DIRECT
MEASUREMENTS

The system considered is the kinematics of an element of
SL(3) given by (15) along with (18).

A general framework for non-linear filtering on the Special
Linear group is introduced for the case where the group
velocity is known. The theory is then extended to the situation
for which a part of the group velocity is not available. In
particular, we extend the result to the case where the camera
is attached to a current frame {A} while the reference frame
{Å} is assumed to be a Galilean frame such that Ω represents
the measurements of embarked gyrometers. In this case, it is
also assumed that the matrix Γ is slowly time varying in the
inertial frame and its time derivative obeys either (19) or (20).

A. Observer with known group velocity

The goal of the estimation of H(t) ∈ SL(3), is to provide
an estimate Ĥ ∈ SL(3) and to drive the error term H̃ =
ĤH−1 to the identity matrix I while assuming that U ∈ sl(3)
is known.

The estimator equation is posed directly as a kinematic
filter system on SL(3) with state Ĥ , based on a collection
of n measurements pi ∈ S2.

pi =
H−1p̊i
|H−1p̊i|

, i = {1 . . . n} (21)

The observer includes a correction term derived from the
measurements and depends implicitly on the error H̃ . The
general form of the estimator filter is

˙̂
H = ĤU + kPωĤ (22)

The innovation or correction term ω ∈ sl(3) is thought of as
an error function of the measurements pi and their estimates
p̂i (or as an error function of the measured points p̊i and their
estimates ei). It depends implicitly on H̃ . The estimates p̂i
of pi are defined as follows,

p̂i =
Ĥ−1p̊i

|Ĥ−1p̊i|
(23)

Equivalently, the estimates ei of p̊i are defined as follows,

ei =
Ĥpi

|Ĥpi|
=

H̃p̊i

|H̃p̊i|
, H̃ = ĤH−1 (24)

Definition 3.1: A set Mn of n ≥ 4 vector directions p̊i ∈
S2 (i = {1 . . . n}) is called consistent, if it contains a subset
M4 ⊂ Mn of 4 constant vector directions such that all its
vector triplets are linearly independent.
This definition implies that if the set Mn is consistent then,
for all p̊i ∈ M4 there exist a unique set of three non
vanishing scalars bj 6= 0 (j 6= i) such that

p̊i =
yi
|yi|

where yi =

4∑
j=1(j 6=i)

bj p̊j

Theorem 3.2: Let H : A → Å denote the calibrated
homography (12) and consider the kinematics (15) along with
(18). Assume that U ∈ {Å} is known. Consider the nonlinear
estimator filter defined by (22) along with the innovation
ω ∈ sl(3) given by

ω =

n∑
i=1

πei p̊ie
T
i (25)

where πx = (I − xxT ), for all x ∈ S2. Then, if the set Mn

of the measured directions p̊i is consistent, the equilibrium
H̃ = I is asymptotically stable.

Proof: Based on Eqn’s (15) and (22), it is straightfor-
ward to show that the derivatives of (21) and (23) fulfill

ṗi = −πpiUpi and ˙̂pi = −πp̂i(U + kPAdĤ−1ω)p̂i

Differentiating H̃ , it yields

˙̃H = Ĥ(U + kPAdĤ−1ω)H−1 − ĤUH−1 = kPωH̃

7905



Differentiating ei defined by (24), we get

ėi = kPπeiωei

Define the following candidate Lyapunov function.

L0 =

n∑
i=1

1

2
|ei − p̊i|2 (26)

Using the consistency of the setMn, one can ensure that L0

is locally a definite positive function of H̃ . Differentiating
L0, it yields:

L̇0 =

n∑
i=1

(ei − p̊i)T ėi

Introducing the above expression of ėi, it follows:

L̇0 =

n∑
i=1

kP (ei − p̊i)Tπeiωei = −kP tr

(
n∑
i=1

eip̊
T
i πeiω

)
Introducing the expression of ω (25), we get:

L̇0 = −kP

∥∥∥∥∥
n∑
i=1

eip̊
T
i πei

∥∥∥∥∥
2

The derivative of the Lyapunov function is negative and equal
to zero when ω = 0, and therefore one can ensure that H̃ is
locally bounded. From the definitions of ω (25) and ei (24),
one deduces that

ωH̃−> =

n∑
i=1

(
I3 −

H̃p̊ip̊
>
i H̃
>

|H̃p̊i|2

)
p̊ip̊
>
i

|H̃p̊i|

Computing the trace of ωH̃−>, it follows:

tr(ωH̃−>) =

n∑
i=1

1

|H̃p̊i|3
(
|H̃p̊i|2|p̊i|2 − ((H̃p̊i)

>p̊i)
2
)

Define Xi = H̃p̊i and Yi = p̊i, it is straightforward to verify
that

tr(ωH̃−>) =

n∑
i=1

1

|Xi|3
(
|Xi|2|Yi|2 − (XT

i Yi)
2
)
≥ 0

Using the fact that ω = 0 at the equilibrium and therefore
tr(ωH̃−>) = 0, as well as the Cauchy-Schwarz inequality, it
follows that XT

i Yi = ±|Xi||Yi| and consequently one has:

(H̃p̊i)
>p̊i = ±|H̃p̊i||p̊i|, ∀i = {1 . . . n},

which in turn implies the existence of some non-null con-
stants λi = ±|H̃p̊i| such that

H̃p̊i = λip̊i (27)

Note that the fact that λi 6= 0 can be easily verified. For
instance, if λi = 0, then p̊i = λiH̃

−1p̊i = 0 which
contradicts the fact that p̊i ∈ S2. Relation (27) indicates that
all λi are eigenvalues of H̃ and all p̊i ∈ S2 are the associated
eigenvectors of H̃ .

Since Mn is a consistent set, it follows at the limit
(and without loss of generality) that (p̊1, p̊2, p̊3) are three
independent vectors and therefore they represent three non
collinear eigenvectors of H̃ associated with the eigenvalues
λi for i = {1, 2, 3} such that H̃p̊i = λip̊i.

Exploiting again the consistency of the set Mn, it fol-
lows that there exists a constant direction p̊k from the set
{p̊4, . . . p̊n} such that:

p̊k =
yk
|yk|

where yk =

3∑
i=1

bip̊i, bi ∈ R/{0}, i = {1, 2, 3}

Since p̊k can be seen as a forth eigenvector for H̃ associated
to the eigenvalue λk = ±|H̃p̊k|, this yields

λkp̊k = H̃p̊k =
1

|yk|
H̃

3∑
i=1

bip̊i =
1

|yk|

3∑
i=1

biH̃p̊i

λk

3∑
i=1

bip̊i =

3∑
i=1

biλip̊i

Using the fact that the measured directions form a consistent
set, it follows that bi 6= 0, i = {1, 2, 3} and invoking the
fact that det(H̃) = 1, a straightforward identification shows
that λk = λ1 = λ2 = λ3 = 1. Consequently, H̃ converges
asymptotically to the identity I .

Remark 3.3: Note that the characterization of the stability
domain remains an open problem and not addressed in the
paper. Although, simulation results that we have performed
tend to indicate that the stability domain is sufficiently
large, this issue along with convergence property towards the
equilibrium should be thoroughly analysed. 4

B. Observer with partially known velocity of the rigid body

In this section we assume that U (18) is not available and
the goal consists in providing an estimate Ĥ(t) ∈ SL(3) to
drive the error term H̃ = ĤH−1 to the identity matrix I and
the error term Γ̃ = Γ − Γ̂ (resp. Γ̃1 = Γ1 − Γ̂1) to 0 if Γ
(resp. Γ1) is constant or slowly time varying. The observer
when Γ is constant in {Å}, is chosen as follows:

˙̂
H = Ĥ(Ω× + Γ̂) + kPωĤ, (28)
˙̂
Γ = [Γ̂,Ω×] + kIAdĤT ω (29)

The observer when V
d is constant in {A}, is defined as

follows,

˙̂
H = Ĥ(Ω× + Γ̂1 −

1

3
tr(Γ1)I) + kPωĤ, (30)

˙̂
Γ1 = Γ̂1Ω× + kIAdĤT ω (31)

Proposition 3.4: Consider a camera moving with kinemat-
ics (13) and (14) viewing a planar scene. Assume that Å
is stationary and that the orientation velocity Ω ∈ {A} is
measured and bounded. Let H : A → Å denote the calibrated
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homography (12) and consider the kinematics (15) along with
(18). Assume that H is bounded and Γ (resp. Γ1) is constant
in {Å} (resp. in {A}) such that it obeys (19) (resp. (20)).

Consider the nonlinear estimator filter defined by (28-29),
(resp. (30-31)) along with the innovation ω ∈ sl(3) given by
(25). Then, if the set Mn of the measured directions p̊i is
consistent, the equilibrium (H̃, Γ̃) = (I, 0) (resp. (H̃, Γ̃1) =
(I, 0)) is asymptotically stable.

Sketch of the Proof 3.5: We will consider only the situa-
tion where the estimate of Γ is used. The same arguments
are used for the case where the estimate of Γ1 is considered.
Differentiating ei (24) and using (28) yields

ėi = πei(kPω − AdĤ Γ̃)ei

Define the following candidate Lyapunov function

L =

n∑
i=1

1

2
|ei − p̊i|2 +

1

2kI
||Γ̃‖2 (32)

Differentiating L and using the fact that
tr
(

Γ̃T
([

Γ̃,Ω
]))

= 0, it follows that

L̇ =

n∑
i=1

(ei − p̊i)T ėi − tr
(

Γ̃TAdĤT ω
)

Introducing the above expression of ėi and using the fact that
tr(AB) = tr(BTAT ), it follows:

L̇ =

n∑
i=1

(ei − p̊i)Tπei(kPω − AdĤ Γ̃)ei − tr
(

AdĤ−1ω
T Γ̃
)

=−
n∑
i=1

p̊Ti πei(kPω − AdĤ Γ̃)ei − tr
(

AdĤ−1ω
T Γ̃
)

=− tr

(
n∑
i=1

eip̊
T
i πei(kPω − AdĤ Γ̃) + AdĤ−1ω

T Γ̃

)

=− tr

(
kP

n∑
i=1

eip̊
T
i πeiω

+

(
AdĤ−1(ωT −

n∑
i=1

eip̊
T
i πei)Γ̃

))
Finally, introducing the expression of ω (25), we get:

L̇ = −kP

∥∥∥∥∥
n∑
i=1

eip̊
T
i πei

∥∥∥∥∥
2

The derivative of the Lyapunov function is negative semi-
definite, and equal to zero when ω = 0. Given that Ω is
bounded, it is easily verified that L̇ is uniformly continuous
and Barbalat’s Lemma can be used to prove asymptotic
convergence of ω → 0. Using the same arguments used in
the proof of theorem 3.2, it is straightforward to verify that
H̃ → I . Consequently the left hand side of the Lyapunov

expression (32) converges to zero and ‖Γ̃‖2 converges to a
constant.

Computing the time derivative of H̃ and using the fact
that ω converges to zero and H̃ converges to I , it is
straightforward to show that:

lim
t→∞

˙̃H = −AdĤ Γ̃ = 0

Using boundedness of H , one can insure that limt→∞ Γ̃ = 0.

IV. SIMULATION RESULTS

In this section, we illustrate the performance and robust-
ness of the proposed observers through simulation results.
The camera is assumed to be attached to an aerial vehicle
moving in a circular trajectory which stays in a plane parallel
to the ground. The reference camera frame {Å} is chosen
as the NED (North-East-Down) frame situated above four
observed points on the ground. The four observed points form
a square whose center lies on the Z-axis of the NED frame
{Å}. The vehicle’s trajectory is chosen such that the term
Γ1 defined by (20) remains constant, and the observer (30-
31) is applied with the following gains: kP = 4, kI = 1.
Distributed noise of variance 0.01 is added on the measure-
ment of the angular velocity Ω. The chosen initial estimated
homography Ĥ(0) corresponds to i) an error of π/2 in both
pitch and yaw angles of the attitude, and ii) an estimated
translation equal to zero. The initial value of Γ̂1 is set to
zero. From 40s to 45s, we assumed that the measurements
of two observed points are lost. Then, from 45s we regain
the measurements of all four points as previously.

The results reported in Fig. 1 show a good convergence
rate of the estimated homography to the real homography (see
from 0 to 40s and from 45s). The loss of point measurements
marginally affects the global performance of the proposed
observed. Note that in this situation, no existing method for
extracting the homography from measurements of only two
points is available.

V. CONCLUDING REMARKS

In this paper we developed a nonlinear observer for a
sequence of homographies represented as elements of the
Special Linear group SL(3). More precisely, the observer
directly uses point correspondences from an image sequence
without requiring explicit computation of the individual ho-
mographies between any two given images. The stability of
the observer has been proved for both cases of known full
group velocity and known rigid-body velocities only. Even
if the characterization of the stability domain still remains
an open issue, simulation results have been provided as a
complement to the theoretical approach to demonstrate a
large domain of stability.
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Fig. 1. Estimated homography (solid line) and true homography (dashed
line) vs. time.
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