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Abstract— This paper considers the problem of planning
for linear, Gaussian systems, and extends existing chance
constrained optimal control solutions. Due to the imperfect
knowledge of the system state caused by process uncertainty
and sensor noise, the system constraints cannot be guaranteed
to be satisfied and consequently must be considered probabilis-
tically. Therefore they are formulated as convex constraints on a
Gaussian random variable, with the violation probability of all
the constraints guaranteed to be below a threshold. Previous
work considered optimizing the feedback controller to shape
the uncertainty of the system to facilitate the satisfaction of the
stochastic constraints. The joint constraints were bounded using
an ellipsoidal relaxation technique which assigns uniform risk
to each constraint. However this results in a large amount of
conservatism degrading the performance of the overall system.
Instead of using the ellipsoidal relaxation technique, this work
bounds the joint constraints using Boole’s inequality which
results in a tighter approximation. The conservatism is further
reduced by optimizing the risk assigned to each constraint
along with the feedback controller. A two-stage optimization
algorithm is proposed that alternates between optimizing the
feedback controller and the risk allocation until convergence.
This solution methodology is shown to reduce the conservatism
in previous approaches and improve the performance of the
overall system.

I. INTRODUCTION

The primary motivating application for this work is in
stochastic motion planning for robotic systems. Robotic and
autonomous systems are becoming increasingly prevalent in
everyday life; there are robots which clean floors, telepres-
cence robots that can buy and deliver breakfast, personal
robots for cleaning a room or emptying a dishwasher, robotic
surgeons, driver assistance systems for automatic parking
and adaptive cruise control, and even fully autonomous
cars. A critical challenge for planning in these systems
is the presence of uncertainty. Other planning applications
that share this challenge include air traffic control around
weather, chemical process control, energy efficient control
of buildings and electric cars, and financial engineering. For
all of these examples, there is a pressing need to develop
robust and safe algorithms in the presence of uncertainty.

Uncertainty in stochastic systems arises from three dif-
ferent sources: (i) process uncertainty, (ii) sensing noise
and (iii) environment uncertainty. The presence of these
uncertainties means that the exact system state is never truly
known. Consequently, in order to maximize the probability
of success, the problem must be solved in the space of
probability distributions of the system state, defined as the
belief space. For a stochastic system, however, planning in
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the belief space does not guarantee success because there is
always a small probability that a large disturbance will occur.
Therefore, there is a trade-off between the conservativeness
of the plan and the performance of the system.

One way of planning in the belief space is using model
predictive control (MPC). In robust MPC [1], the worst-
case objective function, which corresponds to the worst
possible realization of the uncertainty, is minimized. Tube-
based MPC [2] is another approach that tightens the con-
straints to guarantee the system evolves in a “tube” of
trajectories around the predicted nominal trajectory. Through
this tightening the system is guaranteed to satisfy the original
constraints under any realization of the uncertainty.

Planning under uncertainty can alternatively be handled
by chance constrained programming introduced by Charnes
and Cooper [3]. This formulation allows constraints with
non-deterministic constraint parameters, named chance con-
straints, while only guaranteeing constraint satisfaction up to
a specified limit. A thorough account of existing literature
employing this problem formulation is given in [4].

The work by van Hessem et al. [5] used chance constrained
programming to model process control as a stochastic control
problem. They optimized over the feedback control laws and
open-loop inputs while ensuring that the chance constraints
were satisfied. They used an ellipsoidal relaxation technique
to convert the stochastic problem into a deterministic one but
this leads to a conservative solution. Blackmore [6] extended
van Hessem’s work to handle non-convex environments but
still used the same conservative approximation.

Blackmore et al. used the chance constrained program-
ming framework to solve the problem of motion planning
in the presence of uncertainty. In [7], they extended their
previous work to handle non-Gaussian belief distributions
by approximating them using a finite number of particles.
This transforms the original stochastic control problem into
a deterministic one that can be efficiently solved. This sam-
pling approach, however, becomes intractable as the number
of samples needed to fully represent the true belief state
increases. The work by Blackmore et al. [8] uses the work
presented in [9] to approximate the chance constraints using
Boole’s inequality which typically leads to a very small
amount of over-conservativeness. They also used the idea
of risk allocation introduced by [9] to distribute the risk
of violating each chance constraint while still guaranteeing
the specified level of safety. By using the risk allocation
technique instead of assuming a constant amount of risk for
each constraint, the performance of the overall system can
be significantly increased.
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This work extends [5] which studied the problem of feed-
back design for stochastic systems formulated as a chance
constrained program. The problem consists of two parts:
optimizing over the feedback gains to shape the covariance
of the system and satisfying the joint chance constraints.
In previous work, an ellipsoidal relaxation technique was
used to assign a static, uniform allocation of risk to each
constraint. This transformed the problem into a deterministic
program for optimizing the feedback parameters. This work
investigates optimizing over both the feedback controller and
the risk allocation of the joint chance constraints. Instead of
using the ellipsoidal relaxation technique, the joint chance
constraints are bounded using Boole’s inequality, as in [8],
which results in a tighter approximation. To reduce the con-
servatism even further, the risk allocation for each constraint
is optimized as well as the feedback controller. A two-stage
optimization algorithm is proposed that alternates between
optimizing the feedback controller and the risk allocation
until convergence. The algorithm is shown to significantly
outperform previous approaches.

The paper proceeds as follows. Section II describes the
stochastic problem formulation. Then, the explicit controller
used in the closed-loop system is defined and a technique
to convert the problem into a convex optimization program
is presented in Section III. In Section IV, several techniques
for evaluating the chance constraints are derived. The final
solution methodology is presented in Section V, and an
example is presented in Section VI which characterizes the
performance of the algorithm.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

xk+1 = Axk +Buk + wk, ∀k ∈ [0, N − 1], (1)

where xk ∈ Rn is the system state, wk ∈ Rn is the process
noise and N is the time horizon. The initial state, x0, is
assumed to be a Gaussian random variable with mean x̄0

and covariance Σ0 i.e., x0 ∼ N (x̄0,Σ0). At each time step,
a noisy measurement of the state is taken, defined by

yk = Cxk + vk, ∀k ∈ [0, N − 1], (2)

where yk ∈ Rp and vk ∈ Rp are the measurement out-
put and noise of the sensor at time k, respectively. The
process and measurement noise have zero mean Gaussian
distributions, wk ∼ N (0,Σw) and vk ∼ N (0,Σv).
The process noise, measurement noise and initial state
are assumed to be mutually independent. For notational
convenience, the state, control inputs, measurements, and
noise parameters for all time-steps are concatenated to form,
X =

[
xT

0 . . . xT
N

]T
, U =

[
uT

0 . . . uT
N−1

]T
,

Y =
[
yT

0 . . . yT
N−1

]T
, W =

[
wT

0 . . . wT
N−1

]T
,

and V =
[
vT

0 . . . vT
N−1

]T
. Using this compact

notation, the system equations can be written as,

X = T0x0 +HU +GW (3)

Y = CX + V (4)

where in an abuse of notation C = [diag (C, . . . , C) 0] ∈
RpN×n(N+1) with diag(·) forming a block diagonal matrix
from its arguments,

T0 =


I
A
A2

...
AN

 , H=



0
B 0
AB B 0

...
. . .

... 0
AN−1B AN−2B . . . . . . B


,

G =



0
I 0
A I 0
...

. . .
... 0

AN−1 AN−2 . . . . . . I


.

(5)
The system state is restricted to be in a feasible region
denoted by FX . For simplicity, the feasible region FX is
assumed to be convex. Nonconvex regions can still be han-
dled, however, either by (i) performing branch and bound on
the set of conjunction and disjunction linear state constraints
directly [10], or by (ii) decomposing the space into convex
regions and using branch and bound to determine when to
enter/exit each convex subregion [11]. Given that the feasible
region is convex, it can be defined by a conjunction of NFX

linear inequality constraints,

FX ,

NFX⋂
i=1

{
X : aT

iX ≤ bi
}

(6)

where ai ∈ RnN and bi ∈ R. In this work, the environment
parameters, ai and bi, are assumed to be deterministic. The
expected value of the control inputs are also constrained to
be in a feasible region FU ; the control inputs could also be
constrained probabilistically.

Finally, the stochastic control problem can be stated as a
chance constrained optimization problem in Program P2.1.

Chance Constrained Problem

minimize E (f(X,U))
subject to

X = T0x0 +HU +GW
Y = CX + V
W ∼ N (0,Σw)
V ∼ N (0,Σv)
E (U) ∈ FU
P(X /∈ FX) ≤ δ

(P2.1)

In the current problem formulation there are two compli-
cations that prevent solving the optimization program P2.1
directly: (i) optimizing the controller that is used in the
closed-loop system, and (ii) evaluating and satisfying the
chance constraints P(X /∈ FX) ≤ δ. The next section
addresses this first issue by developing the controller that
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is used to provide recourse into the system to reduce the
uncertainty of the system state.

III. CLOSED-LOOP SYSTEM

A feedback controller can be used to shape the uncertainty
of the system state, facilitating the satisfaction of the chance
constraints and improving the objective function cost. As has
been considered in the past [5], [12], only the set of affine
causal output feedback controllers will be considered, i.e.,

uk = ūk +

k∑
τ=0

Fk,τyτ ,∀k = 0, . . . , N − 1. (7)

The control law could have also been defined in terms of a
reference output, yrτ , i.e. uk = ūk +

∑k
τ=0 Fk,τ (yτ − yrτ ).

The compact form of Eqn. (7) is given by,

U = Ū + FY (8)

where

F =


F0,0 0 . . . 0

F1,0 F1,1
. . .

...
...

. . . 0
FN−1,0 FN−1,1 . . . FN−1,N−1

 , (9)

and Ū =
[
ūT

0, . . . , ū
T
N−1

]T
.

Now the characteristics of the closed-loop state and input
can be determined. Substituting for X from Eqn. (4) yields,

Y = C (T0x0 +HU +GW) + V. (10)

Substituting for U from Eqn. (8) results in,

Y = C
(
T0x0 +H

(
Ū + FY

)
+GW

)
+ V. (11)

After simplifying and combining common terms,

(I − CHF )Y = C
(
T0x0 +HŪ +GW

)
+ V. (12)

The term CHF is lower triangular, therefore I − CHF is
invertible. Solving for Y yields,

Y = (I − CHF )
−1 (

C
(
T0x0 +HŪ +GW

)
+ V

)
. (13)

Substituting this into Eqn. (8) and simplifying yields,

U = F (I − CHF )
−1
CT0x0+(

I + F (I − CHF )
−1
CH

)
Ū+

F (I − CHF )
−1
CGW+

F (I − CHF )
−1 V.

(14)

Substituting this into Eqn. (3) results in,

X =
(
I +HF (I − CHF )

−1
C
)
T0x0+

H
(
I + F (I − CHF )

−1
CH

)
Ū+(

I +HF (I − CHF )
−1
C
)
GW+

HF (I − CHF )
−1 V.

(15)

In this formulation, the controller gains, F , are being
optimized in order to shape the covariance to satisfy the

constraints and improve the objective. In general, the pro-
gram is not convex in the original design variables F and
Ū. However, [5], [12] showed by a change of variables
the problem can be cast as a convex optimization problem.
This is accomplished by using the Youla parametrization as
follows,

Q = F (I − CHF )
−1
, (16)

and the original gain matrix F can be efficiently solved for
by

F = (I +QCH)
−1
Q, (17)

resulting in a block lower triangular matrix. Also, define

r = (I +QCH) Ū (18)

such that

Ū = (I +QCH)
−1
r = (I + FCH) r. (19)

The variables Q and r can now be used in place of F and
Ū to generate a convex optimization program. Using this
change of variables, the control input and state simplify to

U = QCT0x0 + r +QCGW +QV, (20)

X = (I +HQC)T0x0 +Hr + (I +HQC)GW +HQV,
(21)

which are affine expressions in Q and r. Similarly, the
uncertainty of the state and control input can be expressed
in terms of Q and r,

ΣX = LT0Σ0T
T
0 L

T + LGΣWG
TLT +HQΣVQ

THT, (22)

ΣU = QCT0Σ0 (QCT0)
T

+QCGΣW (QCG)
T

+QΣVQ
T,

(23)
where L = I +HQC.

Now that the feedback controller has been defined, the
next complication in solving the optimization program is
evaluating and satisfying the state chance constraints. While
they may first appear to be easy to evaluate, they require the
integration of a multivariate Gaussian density which does
not have an analytic solution. Fortunately, there are many
different ways to simplify the problem, which are presented
in the next section.

IV. CHANCE CONSTRAINTS

Given the complexity in integrating the multivariate Gaus-
sian density, a simplification will be needed to reduce it to
a tractable problem. Previously when optimizing over the
controller feedback gains ([5], [6]), an ellipsoidal relaxation
technique was used to simplify the constraints, but this
typically leads to a very conservative approximation of the
probability of failure which degrades the overall objective
cost. Another approach to simplify the chance constraints is
to use Boole’s inequality which provides a tighter approx-
imation of the probability of failure, but it complicates the
solution of the optimization program. These two approaches
are described in more detail below.

736



A. Ellipsoidal Relaxation

The ellipsoidal relaxation method has been previously
developed by [5] to simplify the joint chance constraints and
is presented for completeness.

Let z ∈ Rnz and z ∼ N (z̄,Σz). The chance constraint
P
(
hT
i z > gi, ∀i

)
≤ δ is equivalent to P

(
hT
i z ≤ gi, ∀i

)
≥

1− δ, which is also equivalent to,

α

∫
Pz

exp

(
−1

2
(z − z̄)TΣz(z − z̄)

)
dz ≥ 1− δ, (24)

where α =
1√

(2π)ndet (Σ)
and Pz is the feasible region for

z. There is no straightforward way of handling this integral
constraint, therefore it was suggested to tighten the constraint
as follows. If the constraint

z̄ + Er ⊂ Pz (25)

is ensured to be satisfied for the ellipsoid,

Er =
{
ξ : ξTΣ−1

z ξ ≤ r2
}
, (26)

with an appropriately chosen r, then the original constraint
P
(
hT
i z ≤ gi, ∀i

)
≥ 1− δ is implied by

α

∫
z̄+Er

exp

(
−1

2
(z − z̄)TΣz(z − z̄)

)
dz ≥ 1− δ. (27)

After simplifying Eqn. (27) to a one-dimensional integral, r
is chosen such that

1

2
nz
2 Γ
(
nz

2

) ∫ r2

0

χnz/2−1exp(−χ
2

)dχ = 1− δ. (28)

Now the original constraint P
(
hT
i z ≤ gi, ∀i

)
≥ 1 − δ can

be replaced by requiring z̄+ Er ⊂ Fz which is equivalent to
requiring

hT
i z̄ + r

√
hT
iΣzhi ≤ gi,∀i. (29)

B. Boole’s Inequality

The chance constraint P(X /∈ FX) can be converted into
univariate integrals by using Boole’s inequality to conserva-
tively bound the probability of violation. Consequently, from
Eqn. (6) and Boole’s inequality the probability of the state
not being contained inside the feasible region is bounded by,

P(X /∈ FX) = P

(
X ∈

NFX⋃
i=1

{
X : aT

iX > bi
})

≤
∑NFX
i=1 P(aT

iX > bi).

(30)

Now that the multivariate constraints have been converted
to univariate constraints in Eqn. (30), they can be efficiently
evaluated through,

P(aT
iX > bi) = P(yi > bi)

= 1− Φ(
bi − aT

i X̄√
aT
iΣXai

).
(31)

The function Φ(·) is the Gaussian cumulative distribution
function which does not have an analytic solution, but it can

be efficiently evaluated using a series approximation or a
pre-computed lookup table. If the constraints

1− Φ

(
bi − aT

iX√
aT
iΣXai

)
≤ δi∑

δi ≤ δ
(32)

are satisfied then the original chance constraint will also be
satisfied.

In the current problem formulation both δi and ΣX are
variables and as of now there isn’t a direct way of handling
them. However, if either variable is fixed then the opti-
mization problem can be solved efficiently. This property is
exploited in the proposed solution methodology in Section V.

For a fixed covariance, ΣX, and δ ≤ 0.5 the constraints in
Eqn. (32) are convex since the function Φ(x) is concave in
the range x ∈ [0,∞) [8], [13].

If the risk allocation, δi, is fixed such that
∑
δi ≤ δ then

the constraints in Eqn. (32) can be converted into equivalent
second order cone constraints as follows. The constraints
require

1− Φ

(
bi − aT

iX√
aT
iΣXai

)
≤ δi, (33)

which can be simplified to

aT
iX + Φ−1 (1− δi)

√
aT
iΣXai ≤ bi (34)

where Φ−1 is the inverse of the Gaussian cumulative dis-
tribution function. Finally, the standard deviation of the
constraint uncertainty can be converted into a second order
cone constraint,√

aT
iΣXai =

‖
[
(I +HQC)T0Σ

1
2
0 , (I +HQC)GΣ

1
2

W, HQΣ
1
2

V

]
ai‖.

(35)

C. Comparison

The previous two techniques are equally valid for sim-
plifying and bounding the joint chance constraints, but the
ellipsoidal relaxation technique is very conservative even for
a small number of states. For example, for two states and
two constraints the ellipsoidal relaxation method’s conserva-
tiveness in the violation probability is 72.9% whereas using
Boole’s inequality results in only 0.7% conservativeness.
Figure 1 shows a comparison of the two constraint relaxation
techniques in which the original constraints are the red
solid lines, the blue dash line is the ellipsoidal relaxation
technique, and the green dash-dot line is for Boole’s in-
equality with a uniform risk allocation. The feasible region
for each technique is below the corresponding lines. The
ellipsoidal relaxation technique clearly requires a larger
backoff from the original constraints resulting in a larger
over-approximation.
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Fig. 1. A comparison of the two joint chance constraint relaxation
techniques. The original constraints are the red solid lines, the ellipsoidal
relaxation technique is shown as the blue dash line, and the Boole’s
inequality method is shown as the green dash-dot line with a uniform risk
allocation. The feasible region for the state is below the corresponding lines.

D. Optimization Problem
Using either method for bounding the chance constraints,

the Program P2.1 can be simplified to P4.1.

Chance Constrained Problem

minimize
Q,r

E (f(X,U))

subject to
X = (I +HQC)T0x0 +Hr+

(I +HQC)GW +HQV
U = QCT0x0 + r +QCGW +QV
W ∼ N (0,Σw)
V ∼ N (0,Σv)
E (U) ∈ FU
L = I +HQC

νi = ‖
[
LT0Σ

1
2
0 , LGΣ

1
2

W, HQΣ
1
2

V

]
ai‖

aT
iX + βiνi ≤ bi, ∀i
Q lower triangular

(P4.1)

In the optimization program P4.1, βi = r for the ellip-
soidal relaxation technique, or βi = Φ−1(1− δi) for Boole’s
inequality. Given a fixed controller F or fixed risk allocation
δi, the Program P4.1 is a convex optimization problem which
can be efficiently solved. However, optimizing over both the
controller parameters and the risk allocation simultaneously
isn’t a straightforward procedure given the complication of
βi and νi being involved in a multiplicative constraint.

V. SOLUTION METHODOLOGY: TWO-STAGE METHOD

Given the complexity in simultaneously optimizing the
risk allocation as well as the controller parameters, an
iterative two-stage optimization scheme is utilized. The upper
stage allocates the risk associated to each individual con-
straint while the lower stage solves a second order cone
program (SOCP) for the optimal control parameters given the
current risk allocation. The difficulty in solving this problem
is devising the iterative risk allocation scheme.

A. Upper Stage
There are many heuristic methods that can be devised for

the upper stage which allocates the risk for each constraint.
1) Bisection Method: The simplest heuristic is to use a

bisection method presented in Algorithm 1 to adjust the
uniform allocation of the risk until the actual risk is within

a specified threshold of the allowed value. The algorithm
starts with two uniform risk allocations that result in a true
probability of constraint violation, as calculated in lines 3
and 6 of Algorithm 2, above and below the desired value
as described in Algorithm 2. A uniform risk allocation at
the midpoint of the current two allocations that bracket the
desired violation is then passed to the lower stage to solve
for the controller parameters. For this solution, if the true
probability of constraint violation, calculated in line 1 of
Algorithm 1, is less than the allowed risk then it replaces the
current lower bound otherwise it replaces the upper bound.
This is continued until the actual risk is within a threshold
of the allowed risk.

Algorithm 1 Bisection Method for Risk Allocation

1: δitrue =
∑
i 1− Φ

(
bi − aT

iX√
aT
iΣXai

)
2: if |δitrue − δ| ≤ ε then
3: Solution found.
4: end if
5: if δitrue ≥ δ then
6: δ = δi
7: else
8: δ = δi
9: end if

10: δi = 0.5(δ + δ)

Algorithm 2 Initialization for the Bisection Method
1: δ = δ/NFX

2: Perform optimization of P4.1 with βi = Φ−1(1− δ)

3: δtrue =
∑
i 1− Φ

(
bi − aT

iX√
aT
iΣXai

)
4: δ = 0.5
5: Perform optimization of P4.1 with βi = Φ−1(1− δ)

6: δtrue =
∑
i 1− Φ

(
bi − aT

iX√
aT
iΣXai

)
7: if δtrue < δ then
8: Solution found, no need to iterate.
9: end if

10: δi = 0.5(δ + δ)

2) Optimal Risk Given Fixed Controller: As was stated
before, if the controller parameters, F or Q, are fixed (and
hence the covariance ΣX) then the problem simplifies to a
convex optimization program. Consequently, this problem
can be efficiently solved for the optimal risk allocation, δi ∀i,
for the particular controller parameters. However, there is
no guarantee that this risk allocation is the optimal risk
allocation for the original problem.

B. Lower Stage

Once the risk allocation has been fixed, the program P4.1
simplifies to a standard second order cone program which
can be solved efficiently by many standard solvers.
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VI. APPLICATIONS: MOTION PLANNING

The above method is applicable to many different fields
and is evaluated on a stochastic motion planning problem. In
this example, the system has double integrator dynamics with
a 2D position, and ∆t = 0.1 seconds. The noise parameters
are Σw = diag(0.0003, 0.0005, 0.0003, 0.0005) and Σv =
diag(0.001, 0.002). The objective function for this problem
is quadratic in the final state as well as the control inputs,

f(X̄, Ū) = (xN − xref )
T
Qobj (xN − xref ) + ŪTRobjŪ

(36)
with Qobj = I , Robj = 0.001I and
xref =

[
2 1 0 0

]T
. The allowed risk is δ = 0.15.

The results are shown in Figure 2. The solution with a
fixed LQR trajectory tracking controller and Kalman filter
is shown in Figure 2(a) with an objective function cost of
0.184. The system has to take the suboptimal route through
the top; the bottom path is infeasible because the vertical
uncertainty is too large for the allowed risk. The solution for
the ellipsoidal relaxation technique is shown in Figure 2(b).
Here, the system also had to take the suboptimal route
through the top of the environment because the relaxation
method for the joint constraints was too conservative. The
objective function cost is 0.186 with a probability of failure
of 0.004 which is significantly less than the allowed risk.

The solution using the two-stage algorithm for optimiz-
ing the output feedback controller parameters is shown in
Figure 2(c-d). Figure 2(c) shows the solution from the
binary search upper stage algorithm. The algorithm took 16
iterations for an ε = 1 × 10−5 and the objective function’s
value was 0.120. The solution for the optimal risk given fixed
controller upper stage is shown in Figure 2(d) which only
took 1 iteration. The algorithm was initialized with a uniform
allocation of the risk δi = δ/NFX , and the trajectory for this
allocation is shown as the black line. The final solution is
shown as the blue line with the 90% confidence ellipsoids
around it. The initial objective cost is 0.146 and the final
objective cost is 0.116 which is a 26% relative improvement.

VII. CONCLUSION

The planning problem for a linear, Gaussian stochastic
system with state constraints was formulated as a stochastic
optimal control problem. A two-stage solution methodology
was proposed that allocates the risk in one stage and opti-
mizes the feedback controller in the other. This methodology
reduces the conservatism in the probability of violation
calculation and outperforms the other proposed methods in
the example shown.
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the solution using the controller parameters from the first SOCP stage and
optimizing the risk for each constraint.
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