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Abstract— This paper addresses the problem of solving a
constrained optimal control for a general single-input single
output linear time varying system by means of an unconstrained
method. The exposed methodology uses a penalty function
approach, commonly considered in finite dimensional optimiza-
tion problem, and extended here it to the considered infinite
dimensional (functional optimization) case. The main novelty is
that both the bounds on the control variable and on a freely
chosen output variable are considered and studied theoretically.
It is shown that a relatively simple and constructive choice
of penalty functions allows to completely alleviate the usual
difficulties of handling such constraints in optimal control. An
illustrative example is provided to show the potential of the
method.

I. INTRODUCTION

This paper addresses the problem of solving a con-
strained optimal control for a general single-input single-
output (SISO) linear time varying system by means of an
unconstrained method. The exposed methodology uses a
penalty function approach, commonly considered in finite
dimensional optimization problem.

In penalty function methods, an augmented performance
index is introduced by adding to the original cost of the
optimal control problem, so-called penalty functions that
have some diverging asymptotic behavior when the con-
straints are approached by any tentative solution. Then, the
augmented performance index is optimized, in the absence
of constraints, yielding a biased estimate of the solution of
the original problem. Gradually, the weight of the penalty
functions is reduced to provide a converging sequence,
hopefully diminishing the bias.

Computationally, the penalty function methods are ap-
pealing, as they yield unconstrained problems for which a
vast range of highly effective algorithms are available. In
finite dimensional optimization, outstanding algorithms have
resulted from the careful analysis of the choice of penalty
functions, and the sequence of weights. In particular, the
interior points methods which are nowadays implemented in
successful software packages such as KNITRO [1] have their
foundations in these approaches. The interested reader can
refer to [2] for an historical perspective starting from the
1960s.

In this article, we are interested in applying similar penalty
methods to solve constrained optimal control problems. In
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numerous domains of engineering, optimal control appears
as a very natural formulation of objectives, especially if con-
straints can be introduced. Unfortunately, these constraints
induce some serious difficulties [3], [4], [5]. In particular,
constraints bearing on state variables are difficult to charac-
terize, as they generate both constrained and unconstrained
arcs along the optimal trajectory. To determine optimality
conditions, it is usually necessary to a-priori postulate the
sequence and the nature of the arcs constituting the sought-
after optimal trajectory. Active or inactive parts of the
trajectory split the optimality system in as many algebraic
and differential equations. Yet, not much is known on this
sequence, and this often results in a high complexity. For
this reason, it is often preferred to use a discretization based
approach to this problem, and to treat it, e.g. through a
collocation method [6], as a finite dimensional problem [7],
[8], [9], [10], [11], [12], [13]. Of course, the resulting
mathematical problem can be addressed by one of the interior
points methods cited above. In this context, interior point
algorithms have been applied to optimal control problems
by Wright [14], Vicente [15], Leibfritz and Sachs [16],
Jockenhövel, Biegler and Wächter [17]. This is not the path
that we explore, as we desire to use indirect methods (a.k.a.
adjoint methods) to take advantage of their accuracy.

Although there is a well established literature on the math-
ematical foundations of interior-point methods for finite-
dimensional mathematical programming, this is not the case
yet for optimal control problems [18], [19]. In [19], the
authors investigate the merits of augmenting the cost to
be minimized by an integral term penalizing the control
when it approaches its upper or lower bound. This very
natural idea appears to be a successful way to solve input-
constrained optimal control problems but it also proves
to require a detailed analysis. The main difficulty is, as
noted in [19], that the divergence of the penalty value
for constraints-touching (not strictly interior) trajectories is
not automatically guaranteed. To illustrate this point, one
can simply consider the following case. Let u ≥ 0 be
the constraint that one desires to penalize, using, e.g., a
logarithmic penalty which is usually considered as a very
good choice in finite dimensional optimization. Over any
finite length interval, there exist continuous functions u such
that mint(u(t)) = 0, while

∫
ln (u(t)) dt < +∞. Therefore,

there could exist trajectory touching the constraints that could
be optimal. This problem of interiority in infinite dimensional
optimization has been addressed in [19] for input-constraint
optimal control where a formal result is established on such
logarithmic functions. Similar interior points methods for
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state constrained optimal control problems have also been
used (see [20], [21], [22] in coordination with saturation
functions), but the interiority of the trajectory has so far
been left as an assumption. In this paper, we consider both
input constraints and constraints bearing on state variables.
We establish that the trajectory of any penalized problem,
provided that certain explicit guidelines are accounted for in
the construction of the penalty functions, is strictly interior.
The main elements of the proof of interiority in [19] are
used. Variations of the trajectory are built allowing us to
exhibit sufficient conditions on the penalty functions such
that the solution of the penalized problem is interior (i.e.
the cost diverges if the essential infimum of the distance
between the constrained variable and its constraint is equal
to 0). An important technicality differs though. Because of
the state constraint, the employed variations cannot be local
in time anymore, but are the result of global homotopies on
the trajectory.

This theoretical contribution allows us to build a sequence
of penalized unconstrained problems, that are numerically
easy to solve, and that converge to the solution of the original
problem. The interiority result and the obtained algorithm are
the main contributions of this article.

This paper is organized as follows: in Section II, the con-
strained OCP is presented together with two penalized opti-
mal control problem (POCP), a state and input constrained
one and an input constrained one. For these two POCPs
to be equivalent, two conditions must hold. In Section III,
sufficient conditions on the penalty are derived such that the
first condition holds. In Section IV, a sufficient condition on
the state penalty is given such that the second condition holds
as well. In Section V, a constructive choice of the penalty
is given such that the two conditions aforementioned hold.
There, a completely unconstrained algorithm converging to
the solution of the constrained optimal control problem is
given. The proposed algorithm is tested on an illustrative
example in Section VI. Conclusions and perspectives are
given in Section VII.

II. PRESENTATION OF THE PROBLEM

A. Constrained optimal control problem and notations.

In this article, we investigate the following normalized
Constrained Optimal Control Problem (COCP)

min
u∈U ad

[
J(x, u, t) =

∫ 1

0

`(x, u, t)dt
]

(1)

where ` : Rn × R × R is a Λ-Lipschitz smooth function.
The variables x ∈ Rn and u ∈ R are respectively the state
and the control of the following linear time-varying (LTV)
single-input single-output (SISO) dynamics

ẋ(t) = A(t)x(t) +B(t)u(t) (2)
y(t) = C(t)x(t) (3)

with the (fixed) initial condition x(0) = x0. The state space
matrices are also assumed to belong in L∞[0, T ]. A solution
of (2)-(3) with input u is noted xu and the corresponding

output is noted yu. Classically, the set of admissible controls
U ad is a subset of L2[0, 1] defined by:

U ad = {u s.t. (u(t), yu(t)) ∈ [−1,+1]2} (4)

Now, let us define two useful subsets of U ad

V ad = {u s.t. (u(t), yu(t)) ∈ (−1,+1)2} (5)
W ad(β) = {u s.t. (u(t), yu(t)) ∈ [−1 + β, 1− β]2}(6)

where β ∈ [0,+1), and W ad(0) = U ad. Due to the linearity
of the dynamics (2)-(3), for all β ∈ [0, 1), W ad(β) is a
convex set. In what follows, a control is said to be strictly
interior when it belongs to some W ad(β), with β ∈ (0,+1).
We note ‖.‖∞ the usual L∞[0, T ] norm on R, or on matrix
spaces when needed.

Remark: This normalized form of optimal control problem
allows to treat, after some changes of variables, numerous
cases of interest. It can be made more general by introducing
drift terms in the dynamics and biases in the output. This
solely complexifies the exposition but leaves the main results
unchanged.

B. Presentation of the penalized problem

Following the approach of interior methods in their appli-
cation to optimal control, we use two penalty functions

γy(.) : [−1, 1] → [0,+∞) (7)
γu(.) : [−1, 1] → [0,+∞) (8)

which are assumed to be strictly convex, symmetric, and
go to infinity as their argument approaches one of the
bounds ±1. These functions serve to define a (first) Penalized
Optimal Control Problem (POCP) with the dynamics (2)-(3)

min
u∈U ad

[
K(u, ε) =

∫ 1

0

`(x, u, t) + ε [γy(y) + γu(u)] dt
]

(9)

where ε > 0. At this stage, not much has been gained
since the POCP (9) is just as difficult to solve as the
COCP (1). The main difficulties is the output constraints.
This is a well-known fact in optimal control, as discussed in
the introduction, stemming from the difficulty to handle the
calculus of variations in this case. Interestingly, this point
can be alleviated as will be shown. Let us define a second
POCP

min
u∈(−1,1)

[
K(u, ε) =

∫ 1

0

`(x, u, t) + ε [γy(y) + γu(u)] dt
]

(10)
where ε > 0. These two POCPs (9) and (10) are not equiv-
alent for two reasons. First, the control in (9) is constrained
to belong to [−1,+1], while, on the other hand, the control
in (10) belongs to (−1,+1). Second, the output constraint
used to define U ad is not present in the formulation of (10).
In the following, we wish to show that, provided γy and γu
are suitably chosen, these problems are in fact equivalent.
For this, we introduce a preliminary assumption

Assumption 1 (existence, uniqueness): There exists a
unique global solution u∗ for problem (9).
Under this assumption one obtains the following theorem.
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Theorem 1: Let us formulate two conditions (C1) and
(C2)

(C1) There exists β ∈ (0, 1) such that u∗ ∈W ad(β).
(C2) For any ũ ∈ (−1,+1) such that ũ /∈ V ad, then

K(ũ, ε) = +∞ for all ε > 0.
Under Assumption 1, if Conditions (C1)-(C2) hold, then
there exists a unique solution u] for problem (10) and one
has:

u] = u∗ (11)
Proof: With β of (C1), from the definitions (4)-(5)-(6),

one has
W ad(β) ⊂ V ad ⊂ U ad

Thus,

min
u∈W ad(β)

K(u, ε) ≥ min
u∈V ad

K(u, ε) ≥ min
u∈U ad

K(u, ε)

Using (C1), one has minu∈W ad(β)K(u, ε) =
minu∈U ad K(u, ε) = K(u∗, ε). Now, Condition (C2)
means that problem (10) is equivalent to minu∈V ad K(u, ε).
Indeed, if u does not belong to V ad, the cost K(u, ε) is not
finite. As a consequence, to prove the theorem, we have to
prove the existence and the uniqueness of u] solution of
minu∈V ad K(u, ε). Using the fact that u∗ is admissible for
(10) and that it is the global minimizer of the cost K(., ε)
on U ad ⊃ V ad, then u∗ is an optimal control for (10). The
existence of an optimal control u] for (10) is thus proven.
Now let us consider an optimal control u]2 for (10) such
that u]2 6= u∗. From Condition (C2), this control belongs to
V ad, then it is an admissible control for (9). Moreover, we
have proven that the optimal cost for (10) is K(u∗, ε). Thus,
K(u]2, ε) = K(u∗, ε). Then, u]2 is an optimal control for (9).
Since the optimal control for (9) is unique u]2 = u∗, This
contradiction gives the uniqueness of the optimal control
for (10) and one has:

u] = u∗

We now pursue as follows. In Section III, sufficient condi-
tions on the penalty are derived such that Condition (C1)
actually holds (Theorem 2). In Section IV, a sufficient
condition on the state penalty is given such that Condition
(C2) holds as well (Theorem 3). Eventually, in Section V,
penalty functions satisfying the conditions from Sections III
and IV are exhibited (Theorem 4). From Theorem 1, one has
that these penalties guarantee the equivalence of problems (9)
and (10).

III. FROM FEASIBLE TO INTERIOR TRAJECTORY

In this section, we determine sufficient conditions on the
penalty functions γu(.) and γy(.) such that the optimal
control u∗ of the problem (9) belongs to a set W ad(β) with
β ∈ (0, 1). This guarantees that Condition (C1) holds. To
determine these conditions, we use a proof by contradiction.
From u∗, a deviation method is exhibited, such that a
constructed control umod is strictly interior. Then, sufficient
conditions on the penalty are derived, such that the penalized

cost K associated to u∗ is greater than the cost K of umod.
This contradicts the optimality of u∗ if it is not strictly
interior.

Section III-A exposes the construction of umod from uref.
In Section III-B, the conditions on the penalties are exhibited
and the main result is given in Theorem 2.

A. Deviation method

Consider any reference control uref ∈ U ad which can touch
the constraint. This reference control may be an optimal
control for problem (9), i.e. one can have uref = u∗.

We now formulate the following (accessibility) assumption
on the system

Assumption 2 (accessibility): There exists β0 ∈ (0, 1)
such that

W ad(β0) 6= ∅ (12)
Now, pick any ui(t) ∈ W ad(β0). Then, define a modified
control as follows

umod(t) = (1− α)uref(t) + αui(t), for a given α ∈ (0, 1)
(13)

From this definition, |umod(t)| ≤ 1 − αβ0 for all t ∈ [0, 1].
Due to the convexity of U ad = W ad(0), (13) implies that
umod ∈ U ad. The control (13) directly impacts on the value
of the state, and consequently on the output y. Using the
linearity of the dynamics (2)-(3), a direct computation yields
that umod satisfies

umod(t) ∈W ad(αβ0) (14)

This shows that the interpolation (13) generates a strictly
interior trajectory.

B. Condition guaranteeing the strict interiority of the opti-
mal trajectory

The following result gives an upper estimate on the
difference K(umod, ε)−K(uref, ε).

Proposition 1: Under Assumption 2, for any ε > 0 one
has

K(umod, ε)−K(uref, ε) ≤ α [U(ε)− Luref(ε, α)− Lyuref (ε, α)]
(15)

with

U(ε) , 4Λ + 2ε
[
γ′y(1− β0) + γ′u(1− β0)

]
Luref(ε, α) , ε(1− α)β0γ

′
u(1− 2α+ β0α

2)µuref(β0α)
Lyuref (ε, α) , ε(1− α)β0γ

′
y(1− 2α+ β0α

2)µyuref (β0α)

and, for any measurable function z

µz(s) , meas ({t s.t. |z(t)| ≥ 1− s)}) (16)

where meas(.) is the Lebesgue measure (see [23]) of its
argument.

Proof: See Appendix A.
Finally, using (15), the following result holds.

Lemma 1: Under Assumption 2, if for all ε > 0, there
exists α ∈ (0, 1) such that

Luref(ε, α) + Lyuref (ε, α) > U(ε) (17)
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then
K(umod, ε) < K(uref, ε), ∀ε > 0 (18)

Using Proposition 1 together with Lemma 1, one has the
following result.

Theorem 2: Under Assumptions 1 and 2, consider u∗ the
optimal control for problem (9) and assume that for all ε > 0
there exists α ∈ (0, 1) such that inequality (17) holds for
uref = u∗ and yuref = yu

∗
, then there exists β > 0 such that

u∗ ∈W ad(β) (19)

and Condition (C1) holds.
Proof: With the notations of the statement, we wish to

prove that u∗ is strictly interior. Assume it is not, by picking
any ui ∈ W ad(β0), where β0 is defined by Assumption 2,
one can construct umod(t) = (1 − α)u∗(t) + αui(t) with
0 < α ≤ 1. The control umod belongs to W ad(αβ0). Then,
using Proposition 1 and Lemma 1, one directly gets

K(umod, ε) < K(u∗, ε)

This contradicts the optimality of u∗ and concludes the proof.

Theorem 2 provides a sufficient condition on the penalty
functions (under the form of inequalities) such that Condition
(C1) from Theorem 1 holds. Now, Condition (C2) must hold
as well, this is the subject of the following section.

IV. FEASIBILITY OF OUPUTS OF THE
PENALIZED PROBLEM

In this section, we study how the penalty function γy(.)
can be used to guarantee that any ũ ∈ (−1,+1) which does
not belong in V ad is such that K(ũ, ε) = +∞ for all ε > 0.
This is (C2).

Lemma 2: Under Assumption 2, consider problem (10).
Assume that the penalty function γy is such that the follow-
ing holds

lim
α↓0

γy(1− α)µy(α) = +∞ (20)

where µy(.) is defined in equation (16) and y is any output
solution of (2)-(3) with input u ∈ (−1,+1). Then any control
ũ ∈ (−1,+1) which does not belong to V ad yields K(ũ, ε) =
+∞.

Proof: Since, γy ≥ 0, we have

I ,
∫ 1

0

γy(y(t))dt ≥
∫
|y(t)|≥1−α

γy(y(t))dt , J (α)

Since γy ≥ 0, J (α) is an increasing positive function of
α ∈ [0, 1], thus J (α) is minimum in α = 0

J (0) = lim
α↓0

∫
|y(t)|≥1−α

γy(y(t))dt

≥ lim
α↓0

γy(1− α)µy(α)

with µy(.) the Lebesgue measure defined in equation (16). If
(20) holds, then J (0) = +∞ which implies that I = +∞.
Since ũ ∈ (−1, 1) and ũ /∈ V ad the corresponding output
yũ is such that there exists τ ∈ [0, 1] such that |y(τ)| = 1.

Then, the cost K(ũ, ε) is infinite. This concludes the proof.

Since the measure µy appears in equations (17) and (20),
it is important to give a lower bound on it. This will be
exploited in Section V, in the explicit construction of suitable
penalty functions. Noting that y is the output of a LTV
system with a bounded input, a lower bound is given by
the following Lemma.

Lemma 3: Considering a reference output y, given by (2)-
(3) with input u ∈ (−1,+1), such that there exists τ ∈ [0, 1]
with |y(τ)| = 1. Then, there exists a constant K < +∞ such
that the measure µy(α) of the set {t s.t. |y(t)| ≥ 1− α}
is lower-bounded under the form

µy(α) ≥ α

K
(21)

Proof: The proof is given in Appendix B together with
the expression of K.

Using Lemmas 2 and 3, one finally has the following
result.

Theorem 3: Under Assumption 2, if the state penalty γy
is such that

lim
α↓0

γy(1− α)
α

K
= +∞ (22)

then Condition (C2) holds.

V. MAIN RESULT AND ALGORITHM

In Section III and IV, conditions have been given, under
the form of Theorem 2 and Theorem 3, such that the
Conditions (C1)-(C2) required in Theorem 1 hold. These
theorems are given under the form of inequalities (17) and
(22) depending on a parameter α ∈ (0, 1). In this section, a
class of penalty functions γy and γu are given such that for
all ε > 0 there exists α ∈ (0, 1) such that inequalities (17)
and (22) actually hold.

A. Penalty design

The inequality (17) is now studied. Depending on the
nature of the optimal trajectory of (9), the desired strict
positivity of Luref(., .) + Lyuref (., .) − U(.) may stem from
Lyuref (., .) or from Luref(., .). When Lyu∗ (t)(ε, 0) = 0 (i.e.
when the optimal trajectory does not touch the output
constraints), our study requires that an assumption on the
behavior on the measure µu∗(.) is formulated.

Assumption 3 (touching of input constraint): If
supesstu

∗(t) = 1, then there exists M > 0 and q ≥ 0 such
that the asymptotic behavior close to zero of the measure
µu∗(.) defined in equation (16) satisfies:

µu∗(α) ≥Mαq (23)

Fig. 1 provides an illustration of the possible values q =
0, 1, 2 in (23).

We are now ready to state our main result.
Theorem 4: Under Assumptions 1, 2 and 3, there exists

penalty functions γy(.) and γu(.) such that problems (9) and
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Fig. 1. Local behavior of the input near the constraints for different values
of q. A touch point corresponds to q > 0, while a constrained arc gives
q = 0 in (23)

(10) are equivalent: their unique solution u∗ and u] are equal.
A particular choice of penalty is:

γy(y) =

[
1
2

(
2√

1− y2
− 1

)]ny
(24)

γu(u) =
[

1
2

(
2√

1− u2
− 1
)]nu

(25)

with ny > 2 and nu > max{1, 2(q − 1)}.
Proof: The existence is proven by showing that (24) and

(25) are suitable penalties. First, let us prove that Condition
(C2) holds. The penalty (24) is such that equation (22) is
satisfied, then Theorem 3 holds. Thus (C2) holds.
Now, let us prove that the optimal solution u∗ of (9) belongs
to W ad(β), β ∈ (0, 1). The proof considers three mutually
exclusive cases.
• If there exists s ∈ (0, 1) such that µyu∗ (s) = µu∗(s) =

0, then, the optimal trajectory does not touch the con-
straint, so there exists β ∈ (0, 1) such that u∗(t) belongs
to W ad(β).

• If supt |yu
∗
(t)| = 1 (u∗ /∈ W ad(β), β ∈ (0, 1)), then,

using Lemma 3, the state penalty (24) is such that
limα↓0 γ

′
y(1− 2α + β0α

2)µyu∗ (αβ0) ≥ limα↓0 γ
′
y(1−

2α + β0α
2) αK = +∞. Moreover, γ′y is a continuous

function. As a consequence, there always exits α ∈
(0, 1) such that Theorem 2 holds. Then there exists
β ∈ (0, 1) such that u∗ ∈ W ad(β). This contradiction
shows that this case is impossible.

• If there exists s ∈ (0, 1) such that µyu∗ (s) = 0 and
supesst|u∗(t)| = 1 (u∗ /∈ W ad(β), β ∈ (0, 1)), then,
the control penalty (25) is such that limα↓0 γ

′
u(1 −

2α+β0α
2)µu∗(αβ0) = +∞. Moreover, γ′u and µu are

continuous functions. As a consequence, there always
exists α ∈ (0, 1) such that Theorem 2 holds. Then
there exists β ∈ (0, 1) such that u∗ ∈ W ad(β). This
contradiction shows that this case is impossible.

We have proven that there always exists α ∈ (0, 1) such that
Theorems 2 and 3 holds, then Conditions (C1) and (C2) from
Theorem 1 hold. This implies that problems (9) and (10) are
equivalent.

B. Investigation of convergence

Theorem 4 allows us to solve problem (10) instead of
problem (9). Our ultimate goal is to solve (1), which as
announced earlier in Section II, is approached by a sequence
of POCPs (9), or simpler, thanks to the equivalence, a
sequence of POCPs (10). One such algorithm is presented
below. Now, let us mention a few facts on convergence of
the constructed sequence (uεn , εn)n∈N where (εn)n∈N is a
decreasing sequence converging to zero, and u∗εn the solution
of (10) for ε = εn. The proof of convergence of the cost
limn→+∞ P (u∗εn , εn) = J∗ follows along the same lines as
the proof in [20] and [21]. To prove to convergence of u∗εn
an assumption on the strong convexity of J can be used.
More details can be found in [21].

C. Algorithm

First, to have a completely unconstrained algorithm, the
following change in variable is used

u , φ(ν) = tanh(ν) (26)

Where ν is an unconstrained variable such that tanh(ν) ∈
L2[0, T ], and such that the corresponding POCP

min
ν
P (ν, ε) =

∫ 1

0

`(x, φ(ν), t)+ε[γy(y)+γu◦φ(ν)]dt (27)

is defined with the penalty functions from (24) and (25).
Theorem 5: Under Assumptions 1, 2 and 3, and from

Theorem 4, problems (9) and (27) are equivalent in the sense
that there exists an optimal solution ν∗ of (27) such that

u∗ = tanh(ν∗)

where u∗ is the optimal solution of (10).
Proof:

min
u∈(−1,+1)

K(u, ε) = min
φ(ν)

K(φ(ν), ε)

= min
φ(ν)

P (ν, ε)

φ(.) being a bijective mapping, one obtains

min
u∈(−1,+1)

K(u, ε) = min
ν
P (ν, ε)

Note u] the optimal control for (10). Then, the control
ν̃ = tanh−1(u]) is an optimal control for (27). Thus,
the existence is proven. Now, consider ν2 6= ν̃ such that
P (ν2, ε) = P (ν̃, ε). Then, the control u2 = tanh(ν2) 6= u]

is also a global minimizer of (10). This contradicts the
uniqueness of u]. Thus, the control ν∗ = ν̃ is the unique
global minimizer of (27) and one has u] = tanh(ν∗). Then,
from Theorem 4, one obtains

u∗ = tanh(ν∗)

where u∗ is the optimal solution of problem (9).
The main purpose of the main result of this paper, i.e.

Theorem 4 (and Theorem 5 which stems from it), is to
allow one to solve a simple OCP (Problem (27)) instead of a
constrained OCP (Problem (9)) because they are equivalent.
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Each problem (27) penalized by ε from a sequence (εn)
can be solved using the calculus of variations. Define the
Hamiltonian of the penalized problem (27) as follows

Hε(x, ν, p, t) , `(x, φ(ν), t) + ε [γy(y) + γu ◦ φ(ν)]
+p(t)T [A(t)x(t) +B(t)φ(ν)] (28)

where p(t) ∈ Rn is the adjoint state of Pontryagin solution
of dp

dt = −∂Hε∂x and where the penalty functions are chosen
according to Theorem 4. The choice of nu can be made
by trial and error which solely depend on the nature of
the sought-after (but a-priori unknown) optimal solution
u∗. Now, defining a positive decreasing sequence, one can
approach the solution of (1).
• Step 1: Initialize the continuous functions x(t) and p(t)

such that the initial |C(t)x(t)| < 1 for all t ∈ [0, 1], and
set ε = ε0. Note that x(t) and p(t) need not to satisfy
any differential equation at this stage, even if it is better
if they do.

• Step 2: Solve for each time ∂Hε
∂ν = 0, and note ν∗ε the

solution.
• Step 3: Solve the 2n differential equations dx

dt =
A(t)x(t) + B(t)φ(ν∗ε ) and dp

dt = −∂Hε∂x (x, ν∗ε , p, t)
forming a two point boundary values problem using
bvp4c (see [24]), with the following boundary con-
straints x(0) = x0 and p(1) = 0.

• Step 4: Decrease ε, initialize x(t) and p(t) with the
solutions found at Step 3 and restart at Step 2.

Convergence of the state in L∞([0, 1]) and convergence
of the control in L2([0, 1]) for OCP (1) ([21], [20]) can be
established as well.

VI. NUMERICAL EXAMPLE

To illustrate the proposed methodology, we consider the
following simple example of constrained OCP

ẍ(t) = u(t)− w(t) (29)

where w(t) = 3 if t ∈ [3, 6] and w(t) = 2 everywhere
else. The state constraint is x(t) ∈ [x−(t), x+(t)] and the
input constraint is u(t) ∈ [u−(t), u+(t)] where u− and u+

are continuous piece-wise affine functions and x+, x− are
continuous functions. The cost to minimize is J =

∫ T
0

u2

2 dt,
T = 10. The final state is free. Interestingly, the possible
initial guess u(t) ≡ 0 is not a feasible control because xu(t)
does not satisfy the state constraints. Thus, the trivial solution
(for which the adjoint state is equal to zero) is not a feasible
solution. The state penalty is chosen according to equation
(24) with ny = 3, and the control penalty has been chosen
according to equation (25) with nu = 1. The algorithm has
been initialized by setting x(t) = (x+(t) + x−(t))/2 and
ẋ(t) ≡ 0, which is not a solution of (2). Moreover, the adjoint
state is also initialized with p(t) ≡ 0. The sequence (εn) is
a sequence of twenty values logarithmically decreasing from
1 to 10−10.

The algorithm of Section V-C generates a sequence of
control that are converging to a limit solution. One can see
on figures 2, 3 that the solution provided by the proposed
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Fig. 2. Histories of the optimal constrained state x(t) while decreasing
the penalty parameter ε from 1 to 10−10. The white domain is the feasible
domain [x−(t), x+(t)]
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Fig. 3. Histories of the optimal control u(t) while decreasing the penalty
parameter ε from 1 to 10−10. The white domain is the feasible domain
[u−(t), u+(t)]
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Fig. 4. History of the first adjoint parameter while decreasing the penalty
parameter ε from 1 to 10−10. Observe the appearance of discontinuities
(which are expected as the constraints become active).
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unconstrained algorithm computes controls and trajectories
that strictly satisfy the constraints. Moreover, one can see in
figure 4 that the first adjoint state exhibits some discontinu-
ities when the constrained state reaches a junction between
a constrained and an unconstrained arc. The optimal cost
given by the optimization procedure is J∗ = 37.846. It is
well-estimated as soon as ε get below 10−7.5 (see Table I).

TABLE I
ITERATIONS

Value of ε Cost

ε = 1 J = 42.5032
ε = 10−1 J = 39.328
ε = 10−2 J = 38.257
ε = 10−3.5 J = 37.902
ε = 10−4.5 J = 37.861
ε = 10−5.5 J = 37.851
ε = 10−6.5 J = 37.848
ε = 10−7.5 J = 37.846
ε = 10−8.5 J = 37.846
ε = 10−10 J = 37.846

VII. CONCLUSIONS AND FUTURE WORKS

As a result of the proposed study, a practical method to
solve constrained optimal control problems for LTV systems
has been given. It solely requires the mathematical formula-
tion of a suitably penalized OCP. A constructive choice has
been given. Then, this unconstrained problem can be handled
using a classic two-point boundary value problem solver. The
presented iterative algorithm using an off-the-shelf routine is
quite easy to implement and provides satisfactory results.
Yet, the constituted algorithm is relatively slow, in particular
for small value of the penalty parameter ε. Indeed, Step 2
of the algorithm can be hard to solve due to the bad shape
of ∂Hε

∂ν . Further, no internal information is kept from one
value of the penalty parameter to the next. This lack of
coordination and the resulting slow-down is not problematic
to treat the presented “toy” problem, but reveals costly when
considering long horizon or high order optimization. This is
our need as we apply the proposed technique to determine
optimal energy management strategies (and the dual problem
of energetic systems setups) for low consumption buildings
over several weeks or months. Therefore, an important
objective is to increase the speed of the algorithm.
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APPENDIX

A. Proof of Proposition 1

The difference K(umod, ε)−K(uref, ε) can be decomposed
as follows

K(umod, ε)−K(uref, ε) = K+ +K− (30)

where K+ ≥ 0 (resp. K− ≤ 0) represents the possible
increase (resp. decrease) on the penalized cost (9) when
compared to uref.
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1) An upper bound on the possible increase K+: To
exhibit an upper bound on the possible increase, K+ is split
into three parts itself: the possible increase of the original
cost

∫
`(x, u, t)dt and the possible increases due to the state

and control penalties, separately.
a) Possible increase of the original cost: There, an up-

per bound on the possible increase of
∫ 1

0
|`(xumod , umod, t)|−

|`(xuref , uref, t)|dt is exhibited. Let us call K` this up-
per bound. Now, let us consider that the cost function∫
`(x, u, t)dt is Lipschitz with constant Λ, then using equa-

tions (13) one has:

K` ≤ Λα(|y+ − y−|+ |u+ − u−|)
K` ≤ Λ4α (31)

b) Possible increase due to the control penalty: Note
Ku ,

∫ 1

0
γu(umod) − γu(uref)dt. The integrand is positive

only when |ui(t)| ≥ |uref|. Otherwise, the interpolation (13)
makes umod lie further from the saturation than uref, and
the integrand is negative. Using the convexity and symmetry
properties of the penalties, one obtains

Ku ≤
∫
|ui|≥|uref|

γu(umod)− γu(uref)dt

Ku ≤
∫
|ui|≥|uref|

α|ui(t)− uref|γ′u(|ui(t)|)dt

and, then
Ku ≤ 2αγ′u(1− β0) (32)

c) Possible increase due to the state penalty: Note
Ky ,

∫ 1

0
γy(yumod) − γy(yuref)dt. The calculus follows the

exact same lines of (32). One obtains

Ky ≤ 2αγ′y(1− β0) (33)

d) Summary of the upper bounds: Denote αU(ε) the
upper bound K+ = K` + Ku + Ky from equation (30).
Then using equation (31), (32) and (33), one has

K+ ≤ αU(ε) = α4Λ + 2εα
[
γ′y(1− β0) + γ′u(1− β0)

]
(34)

2) A lower bound on the possible decrease K−: In this
part, a lower bound on |K−| is exhibited. To do so, two
lower bounds are constructed, one on the possible decrease
due the control penalty and the other due to the state penalty
itself.

a) Possible decrease due to the control penalty: In
this paragraph a lower bound −αLuref(α, ε) on Ku ,
ε
∫ 1

0
γu[umod]−γu[uref]dt is exhibited. As already discussed,

the integrand is negative only when |umod| ≤ |uref|. To exhibit
the desired lower bound, we restrain the integral on the
domain where |uref| ≥ 1−αβ0. The integral over this domain
is strictly negative. Using convexity and symmetry properties
of the penalty functions and equation (16) one has

Ku ≤ ε

∫
|uref|≥1−αβ0

γu(umod)− γu(uref)dt

Ku ≤ −ε
∫
|uref|≥1−αβ0

α|ui − uref|γ′u(|umod(t)|)dt

Thus, one gets Ku ≤ −αLuref(α, ε) with

−αLuref(α, ε) , −αε(1−α)β0γ
′
u(1− 2α+β0α

2)µuref(β0α)
(35)

b) Possible decrease due to the state penalty: There, a
lower bound −αLyuref (α, ε) on Ky is derived. The calculus
follows the exact same lines as earlier and one obtains Ky ≤
−αLyuref (α, ε) with

−αLyuref (α, ε) , −εα(1−α)β0γ
′
y(1−2α+β0α

2)µyuref (β0α)
(36)

c) Summary of the lower bounds: The lower bound on
K− = Ku + Ky from (30) is the sum of the lower bounds
−αLuref(α, ε) from (35) and −αLyuref (α, ε) from (36)

0 ≥ −αLuref(α, ε)− αLyuref (α, ε) ≥ K− (37)

3) An upper bound on K(umod, ε)−K(uref, ε): Gathering
(34) and (37), one finally obtains

K(umod, ε)−K(uref, ε) ≤ α [U(ε)− Luref(ε, α)− Lyuref (ε, α)]
(38)

This concludes the proof of Proposition 1.

B. Proof of Lemma 3

Considering the state space representation (2)-(3), we
have:

‖Ax+Bu‖∞ ≤ G(‖x‖∞ + 1)

with G , sup{n‖A‖∞, ‖Bu‖∞}. Using the integral
representation of (2), one has ‖x(t)‖∞ ≤ ‖x0‖∞+

∫ t
0
G(1+

‖x(s)‖∞)ds. Thus, 1 + ‖x(t)‖∞ ≤ 1 + ‖x0‖∞ +
∫ t
0
G(1 +

‖x(s)‖∞)ds. Then using Gronwall’s Lemma [26] we have
(1 + ‖x(t)‖∞) ≤ (1 + ‖x(0)‖∞)eGt. Thus, we obtain:

R(T ) = (1 + ‖x(0)‖∞)eGT − 1 ≥ ‖x(t)‖∞ ∀t ∈ [0, T ]
(39)

Now, let us consider t1 ∈ [0, 1] such that y(t0) = 1 − α
and [0, 1] 3 t1 > t0 such that y(t1) = 1. Then, y(t1) =
y(t0) + C

∫ t1
t0
A(s)x(s) +B(s)u(s)ds. Thus, we have

α ≤ ‖C‖L∞
∫ t1

t0

n‖A‖L∞‖x(s)‖∞ + ‖Bu‖L∞ds (40)

Inserting equation (39) into (40), one has:

α ≤ ‖C‖L∞ [n‖A‖L∞R(T ) + ‖Bu‖L∞ ] (t1 − t0) (41)

Defining the following constant K

K , ‖C‖L∞ [n‖A‖L∞R(T ) + ‖Bu‖L∞ ]

one obtains

(t1 − t0) ≥ α

K

Since the measure µy(α) cannot be lower than the minimal
time needed to reach the constraint starting from y(t0) =
1− α, we finally obtain

µy(α) ≥ t1 − t0 ≥
α

K

This concludes the proof.
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