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Abstract— This paper presents a complete analysis of a three
dimensional retro-PN guidance law, suited for intercepting
targets that are of higher speeds than the interceptors. It
proposes a somewhat counter-intuitive guidance law that uses
a negative navigation constant (as against the usual positive
one) to show that this modification makes it possible to achieve
collision conditions that were inaccessible to the standard law.
An analysis for three dimensional engagements is presented in
a modified polar coordinate system and complete capturability
results are obtained. Simulation results are given to support
the theoretical findings.

I. INTRODUCTION

Intercepting targets having speeds higher than the intercep-
tor speed is a challenging task. There are very few papers in
the literature that address this problem. Kuroda and Imado
[1] showed that the near-head-on scenario is the best way
for an interceptor to achieve small miss distances against
a higher speed target. Golan and Shima [2] positioned the
interceptor ahead of the higher speed target on its flight
trajectory. The standard PN law, with positive navigation
constant N, is a widely used guidance law, and has been
analyzed extensively in the literature for 2-D engagements
with lower speed targets [5], [6], [7]. A 3-D version was
discussed by Tyan [3] with the aid of a modified polar co-
ordinate system, which was later extended to higher speed
targets by Tyan and Shen [4].

Prasanna and Ghose [8], [9], [10] showed that for in-
tercepting a higher speed target, there exists two collision
conditions (as against only one for a lower speed target),
and one of them can be achieved with positive N (standard
PN) while the other can be achieved by using a negative
N (retro-PN). However, all these studies were confined to
a 2-D space. Since the 3D engagements are more practical,
this paper analyzes the capturability of retro-PN guidance
law for 3-D engagement scenarios, using a modified polar
co-ordinate system given in [3], [4], [11]. Fig. 1(a) gives
an idea about the perspective in which this paper makes a
contribution.
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Fig. 1. Focus of present work and Basic engagement geometry

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Consider the engagement geometry shown in Fig. 1(b).
In the line-of-sight (LOS) fixed reference frame [4], [3],
the relative position vector r (LOS vector), relative velocity
vector ṙ and relative acceleration vector r̈ between the target
and the interceptor are defined as below.

r � ρer � rT − rM (1)
ṙ = ρ̇er +ρ ėr = ρ̇er +ρ(Ω× er) = vT −vM (2)
r̈ = ρ̈er +2ρ̇ ėr +ρ ër = aT −aM (3)

er is the unit vector along the LOS and ėr = Ω× er and the
angular velocity of the LOS, Ω is orthogonal to the LOS.

Ω = ρ−1er × (vT −vM) (4)

Magnitude of the angular velocity of LOS vector with sign

ω �
{ ‖Ω‖ ,when er moves anticlockwise

−‖Ω‖ ,when er moves clockwise (5)

Define et � ėr/ω , eΩ � Ω/ω . Clearly er×et = eΩ. er, et
and eΩ are the orthogonal unit vectors of the modified LOS-
fixed polar co-ordinate system.

B. Retro-PN Guidance Law

The latax command for the retro-PN guidance law is:

aM =−(−βVMeM×Ω) = βVMω[(eM
′et)er−(eM

′er)et] (6)

where, −β is the navigation constant, with β > 0, VM is the
speed of the interceptor and eM is the unit vector along the
interceptor velocity vector. Note that in standard PN guidance
law, the navigation constant is always positive.

C. Dynamics of relative velocity and direction cosines

Define u � ρ̇ , v � ρω , w � ρ−1. Here u and v denote the
relative velocity of the target with respect to the interceptor
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along the LOS and along the transverse direction et respec-
tively and w is the inverse of the range.

u =VT (eT
′er)−VM(eM

′er); v =VT (eT
′et)−VM(eM

′et) (7)

where, eT is the unit vector along the target velocity vector.
For a non-maneuvering target, aT = 0. Transforming the
independent variable from t to τ by dτ � wdt, we obtain,

du/dτ = [v−βVM(eM
′et)]v, u(τ0) = u0 (8)

dv/dτ = [−u+βVM(eM
′er)]v, v(τ0) = v0 (9)

dw/dτ =−uw, w(τ0) = w0. (10)

v = 0 is the equilibrium in the (u,v)-plane. The differential
equations related to the direction cosines associated with eM
with respect to θ are obtained as below, where dθ � vdτ .

d(eM
′er)/dθ = (β +1)eM

′et, eM
′er(θ0) = (eM

′er)0 (11)
d(eM

′et)/dθ =−(β +1)eM
′er, eM

′et(θ0) = (eM
′et)0 (12)

d(eM
′eΩ)/dθ = 0, eM

′eΩ(θ0) = (eM
′eΩ)0 (13)

Solving (11) and (12), direction cosines of eM are obtained,[
eM

′er(θ)
eM

′et(θ)

]
= R[−(β +1)(θ −θ0)]

[
(eM

′er)0
(eM

′et)0

]
(14)

where, R[.] =

[
cos(.) sin(.)
−sin(.) cos(.)

]
.

The dynamic equations related to u and v in terms of θ are,[
du/dθ
dv/dθ

]
=

[
0 1
−1 0

][
u

v

]
+

βVM

[
0 −1
1 0

]
R[−(β +1)(θ −θ0)]

[
(eM

′er)0
(eM

′et)0

]
(15)

Solving (15), u and v are obtained as,[
u(θ)
v(θ)

]
= R[−(θ −θ0)]

[
u0 +VM(eM

′er)0
v0 +VM(eM

′et)0

]

−R[−(β +1)(θ −θ0)]

[
VM(eM

′er)0
VM(eM

′et)0

]
(16)

Using (7), it follows that,[
u(θ)
v(θ)

]
= R[−(θ −θ0)]

[
VT (eT

′er)0
VT (eT

′et)0

]

−R[−(β +1)(θ −θ0)]

[
VM(eM

′er)0
VM(eM

′et)0

]
(17)

Therefore, direction cosines for eT can be written as,[
eT

′er(θ)
eT

′et(θ)

]
= R[−(θ −θ0)]

[
(eT

′er)0
(eT

′et)0

]
(18)

D. Trajectories in the normalized (u, v)-plane

The trajectory of the engagement in the normalized (u, v)-
plane is obtained as a moving cycloid with fixed radius and
varying centre. Let η � VT/VM, u � u/VT , v � v/VT . Note
that vT −vM has no component in eΩ direction.

VT (eT
′eΩ) =VM(eM

′eΩ)⇒ (eT
′eΩ) = η−1(eM

′eΩ) (19)

By (13), VM(eM
′eΩ) = VM(eM

′eΩ)0 and since aT = 0,
VT (eT

′eΩ) = VT (eT
′eΩ)0. From (7), the trajectories in the

(u, v)-plane are given in two alternative forms below.

[u+η−1(eM
′er)]

2 +[v+η−1(eM
′et)]

2 = 1−η−2(eM
′eΩ)

2
0

(20)

[u− (eT
′er)]

2 +[v− (eT
′et)]

2 = η−2 − (eT
′eΩ)

2
0 (21)

For the feasibility of trajectories given by (20) and (21) the
conditions are (eM

′eΩ)
2
0 < η2; (eT

′eΩ)
2
0 < η−2 respectively.

E. Feasible final conditions

For successful interception, the conditions at the final
instant are given by v f = 0 and u f < 0 [12]. The set of initial
conditions that would lead to successful interception by the
retro-PN guided interceptor, that is, the above-mentioned
feasible final conditions, are called the capture zone of the
retro-PN guidance law. Solving (20) and (21) separately with
constraint v f = 0, we obtain (22) and (23) respectively.

u f =−η−1(eM
′er) f ±η−1

√
(eM′er)2

f +(η2 −1) (22)

u f = (eT
′er) f ±

√
(eT′er)2

f − (1−η−2) (23)

From (22), if η < 1, then for u f < 0, (eM
′er) f > 0 and√

1−η2 ≤ (eM
′er) f ≤ 1. If η > 1, then for u f < 0, (eM

′er) f

can be either positive or negative or zero, but the interception
is possible only for one set of initial conditions for which
(22) holds with ’−’ sign. From (23), if η < 1, then at u f < 0,
(eT

′er) f can be either positive or negative or zero, but the
interception would be possible only for one set of initial
conditions for which (23) holds with ’−’ sign. If η > 1, then
at u f < 0, (eT

′er) f < 0 and −1 ≤ (eT
′er) f ≤−

√
(1−η−2).

III. CAPTURABILITY ANALYSIS

A. Some preliminary results

x �
√
(eM′er)2

0 +(eM′et)2
0 =

√
1− (eM′eΩ)

2
0 (24)

y �
√
(eT′er)2

0 +(eT′et)2
0 =

√
1− (eT′eΩ)

2
0 (25)

Clearly, 0 ≤ x, y ≤ 1.
Lemma 1: η > 1 ⇒ x ≤ y, η < 1 ⇒ x ≥ y. η = 1 ⇒ x = y.

Proof: From (19) and subsequent discussions, we get,

1− x2 = η2(1− y2)⇒ y2 = (xη−1)2 +(1−η−2) (26)

⇒(1− x2)/(1− y2) = η2 (27)

For x = y = 1, η can be any number greater than or equal to
or less than 1. Hence from (26), (27), the lemma follows.

Since eM
′eΩ and eT

′eΩ remain constant throughout the
mission time, x and y would also remain same throughout
the engagement time. Define cosθM0 � (eM

′er)0/x, sinθM0 �
(eM

′et)0/x; cosθT0 � (eT
′er)0/y, sinθT0 � (eT

′et)0/y. There-
fore, referring to (17), u and v can be written as,

u = ycos(θT0 −�θ)− (x/η)cos(θM0 − (β +1)�θ) (28)

v = ysin(θT0 −�θ)− (x/η)sin(θM0 − (β +1)�θ) (29)
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Fig. 2. (er, et)-plane and feasible region for v f = 0

where, �θ � θ − θ0. Hence, in the (er, et)-plane the pro-
jections of the two vectors eT and eM/η can be thought
of as rotating in two circles centered at origin with radius
y and x/η respectively. For β > 0, if v > 0, then they
rotate in the clockwise direction and if v < 0, then they
rotate in the anticlockwise direction. The projection of eM/η
rotates (β +1) times faster than that of eT. Hence u can be
considered as the difference of the projections of eT and
eM/η along the LOS, that is in the er direction and v as the
difference of their components in et direction.

The combinations of v0 and u0 (or the combinations of
v0, θT0 and θM0 ), which lead to the final conditions v f = 0
and u f < 0, define the capture zone. The combinations of v0,
θT0 and θM0 , for which v0 = 0 and u0 < 0, define the trivial
capture zone, since when v0 = 0, the system is already at
equilibrium and the negative relative velocity along the LOS
leads to successful interception. The capture zone, other than
the trivial capture zone, would be referred to as the nontrivial
capture zone. Define z � (x/ηy).

Lemma 2: If η > 1, then there exists a feasible nontrivial

capturability region in terms of θM0 and θT0 .

Proof: For successful engagement, the conditions at the
final instant are v f = 0 and u f < 0. By Lemma 1, η > 1 ⇒
x < y and hence, z = x/ηy < 1. Then with respect to θT ,
the (er, et)-plane can be segmented into five disjoint regions
as shown in Fig.2. T1 = {θT |sin−1 z ≤ θT < π − sin−1 z};
T2 = {θT |π − sin−1 z < θT < π + sin−1 z}; T3 = {θT |π +
sin−1 z < θT < 2π − sin−1 z}; T4 = {θT |θT ∈ [0, sin−1 z) ∪
[2π − sin−1 z, 2π)}; T5 = {π − sin−1 z, π + sin−1 z}.

All these regions are defined modulo 2π . For any θT , three
disjoint regions M1 = {θM | v > 0}, M2 = {θM |v < 0}, M3
= {θM |v = 0} are defined. Clearly θT0 ∈ T1 ⇒ v0 > 0 and
θT0 ∈ T3 ⇒ v0 < 0 for any θM0 . v f = 0 is only possible at
θTf

∈ T2 ∪T4 ∪T5. From (28) and (29), we have,

[(u/y)−cos(θT0 −�θ)]2+[v/y−sin(θT0 −�θ)]2 = z2 (30)

As z2 < 1, u f < 0 if π/2 < θT0 −�θ f < 3π/2. For v f = 0,

u f /y = cos(θT0 −�θ f )±
√

z2 − sin2(θT0 −�θ f ) (31)

From (31),
∣∣sin(θT0 −�θ f )

∣∣< z. Therefore, the conditions
of successful interception v f = 0 and u f < 0 are possible

only if θTf
∈ T2 ∪ T5. By the intermediate value theorem,

clearly, given any real β , the normalized relative velocity in
the transverse direction v̄, being a smooth function of �θ ,
as given in (29), must cross zero before changing its sign.

In Scenario 1, since v0 > 0, the projection of both eT and
eM/η rotate in the (er, et)-plane in the clockwise direction.
v has to be zero before the projection of eT reaches the T3
region of θT , as in this region v < 0, that is, v would become
zero in the T4 region of θT , where, u f > 0. Hence, this case
would not lead to any feasible interception. In Scenario 5,
v0 < 0 and hence the projection of both eT and eM/η rotate
in the (er, et)-plane in the anticlockwise direction. v has to
be zero before eT reaches the T1 region of θT , as in this
region v > 0, that is, v would become zero in T2 or T4 or T5
region of θT . By selection of proper proportional navigation
gain β , this v can be made equal to zero in T2 or T5 region
of θT , where, u f < 0 leading towards feasible interception.

By similar logic for all scenarios in the disjoint and
exhaustive set of initial conditions, mentioned in Table I,
if η > 1, then θT0 ∈ T2 in combination with θM0 ∈ (M1 ∪
M2) form nontrivial capture zone, while θT0 ∈ T2 ∪ T5 in
combination with θM0 ∈ M3 form trivial capture zone.

However note that for feasible interception in any scenario,
(eM

′er) f ≤ 0, that is, for v0 > 0, θMf
= π/2+δ , where, δ ∈C

and for v0 < 0, θMf
= 3π/2−δ , where, δ ∈ D, where C and

D are defined in Lemma 5 and 6 respectively. Following
similar arguments, the following results can be proved.

Lemma 3: If η = 1, then there exists a feasible nontrivial

capturability region when θT0 ∈ T2 and θM0 ∈ [0, 2π).
Lemma 4: If η < 1, then there does not exist any nontriv-

ial feasible capturability region in terms of θT0 and θM0 .
From Lemma 2, 3 and 4, it is evident that a retro-PN

guided interceptor would have a feasible nontrivial capture
zone if and only if η ≥ 1, provided β > 0 in (6). Now the
existence of such β > 0 would be analyzed in the following
two lemma for v0 > 0 and v0 < 0 respectively.

Lemma 5: If η ≥ 1, θT0 ∈ T2 and v0 > 0, then

1) If θM0 ∈ Q1 = [0, π/2), then ∀δ ∈ C, ∃β > 0 �
3π/2+θM0 −δ = (β +1)(θT0 −π + sin−1(zcosδ )).

2) If θM0 ∈ Q2 ∪ Q3, where Q2 = (3π/2, 2π) and Q3 =
[π/2, 3π/2], then ∀δ ∈ C, ∃β > 0 �
θM0 −π/2−δ = (β +1)(θT0 −π + sin−1(zcosδ )).

where, C = [0, cos−1(z−1 sin(π −θT0))).
Proof: T2a = {θT |π − sin−1 z < θT ≤ π}, T2b =

{θT |π < θT < π + sin−1 z} and T2 = T2a ∪ T2b. When
θT0 ∈ T2a, then v0 > 0 ⇔ θM0 ∈ M1a∪M1b, where M1a =
[0, sin−1(z−1 sinθT0)), M1b = (π − sin−1(z−1 sinθT0), 2π).
When θT0 ∈ T2b, then v0 > 0 ⇔ θM0 ∈ M1b.

Case 1:(θT0 ∈ T2a, θM0 ∈ M1a ⊆ Q1)
Since δ < cos−1(z−1 sin(π − θT0)) ≤ π/2 and θM0 ≥ 0,
3π/2 + θM0 − δ > 3π/2 − cos−1(z−1 sin(π − θT0)) ≥ π .
But, since π − sin−1 z < θT0 ≤ π and δ ≥ 0, θT0 − π +
sin−1(zcosδ ) ≤ θT0 − π + sin−1(z) < π . Hence, if θT0 ∈
T2a, θM0 ∈ M1a, then ∀δ ∈ C and for some β > 0,

3π/2+θM0 −δ > θT0 −π + sin−1(zcosδ )
⇔3π/2+θM0 −δ = (β +1)(θT0 −π + sin−1(zcosδ ))
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TABLE I
PRESENCE OF NONTRIVIAL CAPTURE ZONE FOR x < ηy

Scenario Combination of Rotation of v f = 0 u f Feasible Nontrivial
No. θT0 and θM0 eT and eM/η at θTf

∈ Interception Capture Zone
1 {T1 ∪T4}and{M1} clockwise {T4} > 0 No No
2 {T3 ∪T4}and{M2} anticlockwise {T4} > 0 No No
3 {T4}and{M3} none {T4} > 0 No No
4 {T2}and{M1} clockwise {T2 ∪T5} < 0 Yes Yes
5 {T2}and{M2} anticlockwise {T2 ∪T5} < 0 Yes Yes
6 {T2}and{M3} none {T2} < 0 Yes No
7 {T5}and{M1} clockwise {T4} > 0 No No
8 {T5}and{M2} anticlockwise {T4} > 0 No No
9 {T5}and{M3} none {T5} < 0 Yes No

Case 2:(θT0 ∈ T2a∪T2b, θM0 ∈ M1b ⊆ Q2 ∪Q3)
Since θM0 ∈ M1b, θM0 > π − sin−1(z−1 sinθT0). Here the
function δ + sin−1(zcosδ ) is increasing in δ over C, since
x ≤ ηy. Therefore, for any given θT0 ∈ T2, we have,
δ + sin−1(zcosδ )< cos−1(z−1 sin(π −θT0))+π −θT0 . Thus,
θM0 − π/2 − δ − θT0 + π − sin−1(zcosδ ) > 0. So if θT0 ∈
T2a∪T2b, θM0 ∈ M1b, then ∀δ ∈C and for some β > 0,

θM0 −π/2−δ > θT0 −π + sin−1(zcosδ )
⇔θM0 −π/2−δ = (β +1)(θT0 −π + sin−1(zcosδ ))

By similar logic the next result for v0 < 0 can be proved.
Lemma 6: If η ≥ 1, θT0 ∈ T2 and v0 < 0, then

1) If θM0 ∈ Q1 ∪Q3, then ∀δ ∈ D, ∃β > 0 �
3π/2−θM0 −δ = (β +1)(π + sin−1(zcosδ )−θT0).

2) If θM0 ∈ Q2, then ∀δ ∈ D,∃β > 0 �
7π/2−θM0 −δ = (β +1)(π + sin−1(zcosδ )−θT0).

where, D = [0, π − cos−1(z−1 sin(π −θT0))) and Q1, Q2, Q3
are as defined in Lemma 5.

B. Some definitions

Given θT0 ∈ T2, for v0 < 0 also, two regions
of θM0 , namely M2a = (max(0, sin−1(z−1 sinθT0)), π −
sin−1(z−1 sinθT0)) and specifically for θT0 ∈ T2b, M2b =
(2π + sin−1(z−1 sinθT0), 2π) are defined.

Now for η ≥ 1, define the following regions.
R1 = {v0, θT0 , θM0 | v0 > 0, θT0 ∈ T2, θM0 ∈ M1b}
R2 = {v0, θT0 , θM0 | v0 > 0, θT0 ∈ T2a, θM0 ∈ M1a}
R3 = {v0, θT0 , θM0 | v0 < 0, θT0 ∈ T2, θM0 ∈ M2a}
R4 = {v0, θT0 , θM0 | v0 < 0, θT0 ∈ T2b, θM0 ∈ M2b}
R5 = {v0, θT0 , θM0 | v0 = 0, θT0 ∈ T2}.

Clearly, R5 forms the trivial capture zone. To analyze the
nontrivial capture zone define the following set.

CRRPN = R1 ∪R2 ∪R3 ∪R4 (32)

Define f1, f2 : C → R
+ and f3, f4 : D → R

+ as
f1(δ ) = (θM0 −π/2−δ )/(θT0 −π + sin−1(zcosδ ))−1,
f2(δ ) = (3π/2+θM0 −δ )/(θT0 −π + sin−1(zcosδ ))−1,
f3(δ ) = (3π/2−θM0 −δ )/(π + sin−1(zcosδ )−θT0)−1,
f4(δ ) = (7π/2−θM0 −δ )/(π + sin−1(zcosδ )−θT0)−1,
which are convex functions in their respective domains of
δ , where, C and D are as mentioned in Lemma 5 and 6

respectively. Therefore, over C, both f1(δ ) and f2(δ ) and
over D, both f3(δ ) and f4(δ ) have unique minima at δ 1,
δ 2, δ 3 and δ 4 respectively and are positive as ensured by
Lemma 5 and 6 respectively. β

i
= ( fi(δ i))∀i = 1,2,3,4.

C. Capturability analysis without LOS turn rate constraint

Theorem 1: Consider a Retro-PN guided ideal intercep-

tor, pursuing a non-maneuvering target with η =VT/VM ≥ 1.

The necessary and sufficient condition for the existence of

nontrivial capture zone with no constraints on LOS turn rate

are (v0, θT0 , θM0) ∈ CRRPN , where, CRRPN is given by (32)

and (1) i f (v0, θT0 , θM0)∈ R1, β ≥ β
1
; (2) i f (v0, θT0 , θM0)∈

R2, β ≥ β
2
; (3) i f (v0, θT0 , θM0) ∈ R3, β ≥ β

3
and (4)

i f (v0, θT0 , θM0) ∈ R4, β ≥ β
4
.

Proof: From Lemma 2, if η ≥ 1, the nontrivial capture
zone exists if and only if θT0 ∈ T2 and v0 ≷ 0. The set
S = {v0, θT0 , θM0 | v0 ≷ 0, θT0 ∈ T2} can be segmented into
four mutually disjoint and exhaustive subsets R1, R2, R3, R4,
while by (32), R1 ∪R2 ∪R3 ∪R4 = CRRPN = S. Therefore,
(v0, θT0 , θM0) ∈ CRRPN forms one of the necessary and
sufficient conditions for existence of nontrivial capture zone.

Consider (v0, θT0 , θM0) ∈ R1. Note in Fig. 3 that given a
θT0 ∈ T2, for feasible interception, v f can be zero for any δ ∈
[0, cos−1(z−1 sin(π−θT0)))=C. For the proof of necessity of
β ≥ β

1
, consider that v f = 0 for some δ = δ ′ ∈C. Therefore,

the angle of rotation of the projections of eT and eM/η in
the (er, et)-plane can be related as below.

(θM0 −π/2−δ ′)/(β +1) = θT0 −π + sin−1(zcosδ ′)
⇒β ′ = (θM0 −π/2−δ ′)/(θT0 −π + sin−1(zcosδ ′))−1

From Lemma 5, β ′ > 0 exists and by the definition of
δ 1 and β

1
, we can conclude that β ′ ≥ β

1
. For the proof

of sufficiency of β ≥ β
1
, we need to show that ∃δ ∈ C �

f1(δ ) = β . By definition of β
1
, for β = β

1
, it is trivially

true. Now consider some β = β ′ � β ′ > β
1
. f1(δ ) → ∞

as δ → cos−1(z−1sin(π − θT0)). By the intermediate value
theorem, f1(δ ), being continuous over the domain C, takes
all values in the range [β

1
,∞). Therefore, ∃δ = δ ′ ∈C � for

β = β ′ > β
1
, β ′ = f1(δ ′). Hence, β ≥ β

1
is both necessary

and sufficient for the existence of the nontrivial capture zone
if (v0, θT0 , θM0) ∈ R1.

By similar analysis of f2 : C → R
+, f3 : D → R

+ and f4 :
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Fig. 3. Rotation of the projections of eT and eM/η in (er, et)-plane

D → R
+ in case of (v0, θT0 , θM0) ∈ R2, (v0, θT0 , θM0) ∈ R3

and (v0, θT0 , θM0) ∈ R4 respectively; we obtain that β ≥ β
2
,

β ≥ β
3

and β ≥ β
4

are necessary and sufficient conditions
for existence of nontrivial capture zone in respective cases.

Finally, as it has already been proved that (v0, θT0 , θM0) ∈
R1∪R2∪R3∪R4 =CRRPN = S forms a part of the necessary
and sufficient conditions of successful interception.

D. Capturability analysis with constraint on LOS turn rate

Lemma 7: If (v0, θT0 , θM0) ∈ R1, then for F1(δ ) =
( f1(δ ) + 2)2 and if (v0, θT0 , θM0) ∈ R2, then for F2(δ ) =
( f2(δ )+ 2)2, both defined over C, there exists at least one

interval of δ in C− = (0, cos−1(z−1 sin(π −θT0))), at which

F1(δ ) and F2(δ ) are respectively greater than g1(δ ) = 4(1+
(η2 −1)/(x2 cos2(π/2+δ ))), defined over C−.

Proof: If (v0, θT0 , θM0)∈R1∪R2, then f1(δ ) and f2(δ ),
as well as F1(δ ) and F2(δ ), are defined over the domain
C = [0, cos−1(z−1 sin(π −θT0))). By construction, F1(δ ) and
F2(δ ) are continuous convex functions over C and they attain
their unique minimum at δ = δ 1 and δ = δ 2 respectively.

As δ → cos−1(z−1sin(π−θT0)), F1(δ ), F2(δ )→∞. Hence,
by the intermediate value theorem, F1(δ ) ∈ [F1(δ 1), ∞)
and F2(δ ) ∈ [F2(δ 2), ∞). As δ → 0, g1(δ ) → ∞ and as δ
increases, g1(δ ) assumes finite positive values and finally as
δ → cos−1(z−1 sin(π −θT0)), g1(δ )→ g1(cos−1(z−1 sin(π −
θT0))), which is positive finite. Therefore, there exists at
least one δ ∈C− such that F1(δ ) = g1(δ ). Similar argument
holds for F2(δ ) and g1(δ ). Since g1(δ ) is convex over
its domain C−, it can intersect F1(δ ) a finite number of
times in C−. D1 � {δ ∈ C− | g1(δ ) = F1(δ )}, D2 � {δ ∈
C− | g1(δ ) = F2(δ )} are nonempty finite cardinality sets
of positive elements and hence have their maximals. Let
δ̃11 � max{D1}, δ̃21 � max{D2}, δ̃12 = δ̃22 � sup{C−} =
cos−1(z−1 sin(π −θT0)).

F ′
1(δ ) � dF1(δ )/dδ , F ′

2(δ ) � dF2(δ )/dδ , g′1(δ ) �
dg1(δ )/dδ . By the smoothness of F ′

1(δ ) and F ′
2(δ ) over

C−, clearly δ 1, δ 2 < π/2. Therefore, as δ → δ̃12 = δ̃22,
F ′

1(δ ), F ′
2(δ ) > 0. If δ̃12 = δ̃22 ≤ π/2, then g′1(δ ) < 0 as

δ → δ̃12 = δ̃22, in which case trivially F1(δ ) > g1(δ ), ∀δ ∈
(δ̃11, δ̃12) and F2(δ ) > g1(δ ) ∀δ ∈ (δ̃21, δ̃22). Otherwise,
g′1(δ )> 0; F1(δ ), F2(δ )→ ∞; F ′

1(δ )/g′1(δ ), F ′
2(δ )/g′1(δ )→

Fig. 4. F1(δ ) and g1(δ )

∞ as δ → δ̃12 = δ̃22, hence, F1(δ ) > g1(δ ) ∀δ ∈ (δ̃11, δ̃12)
and F2(δ )> g1(δ )∀δ ∈ (δ̃21, δ̃22).

Lemma 8: If (v0, θT0 , θM0) ∈ R3, then for F3(δ ) =
( f3(δ ) + 2)2 and if (v0, θT0 , θM0) ∈ R4, then for F4(δ ) =
( f4(δ )+ 2)2, both defined over D, there exists at least one

interval of δ in D− = (0, π − cos−1(z−1 sin(π − θT0))), at

which F3(δ ) and F4(δ ) are respectively greater than g2(δ ) =
4(1+(η2 −1)/(x2 cos2(3π/2−δ ))), defined over D−.

Proof: By similar analysis of F3(δ ), F4(δ ), and g2(δ )
over D−, we get, ∃ δ̃31, δ̃41 ∈ D− � ∀δ ∈ (δ̃31, δ̃32), F3(δ )>
g2(δ ), and ∀δ ∈ (δ̃41, δ̃42), F4(δ )> g2(δ ) where δ̃32 = δ̃42 �
sup{D−}= π − cos−1(z−1 sin(π −θT0)).
Define δ̃i � argmin{ fi(δ ) |δ ∈ [δ̃i1, δ̃i2)} ∀i = 1,2,3,4.

Theorem 2: Consider a Retro-PN guided ideal intercep-

tor, pursuing a non-maneuvering target with η ≥ 1. The

sufficient conditions for the existence of nontrivial cap-

ture zone with constraints on finiteness of LOS turn rate

are, (v0, θT0 , θM0) ∈ CRRPN , (given in (32)) and β ∈
[ f (δ̃i), f (δ̃i2))when (v0, θT0 , θM0) ∈ Ri f or i = 1,2,3,4.

Proof: By Theorem 1 and the definition of β
1
, if η =

VT/VM ≥ 1 and (v0, θT0 , θM0)∈ R1 and β ∈ [ f1(δ̃1), f1(δ̃12)),
then the retro-PN guided ideal interceptor would intercept the
target. From (8)-(10), we obtain,

dw/w =−uwdt = (u/(u−βVM(eM
′er)))(dv/v) (33)

Integrating both sides of (33) in the vicinity of θ f , we get,

⇒‖Ω‖ρ [(−2u f +βVM(eM
′er) f )/(−u f )] = constant (34)

As θ → θ f , u → u f < 0 and v → v f = 0 for feasible
interception, [−2u f + βVM(eM

′er) f ] has to be non-positive
for finite LOS turn rate. From (22) and its subsequent
discussion, βVM(eM

′er) f − 2u f = η−1[(β + 2)(eM
′er) f +

2
√
(eM′er)2

f +(η2 −1)]. Since for a retro-PN guided inter-
ceptor, (eM

′er) f < 0 for feasible interception, as indicated in
Lemma 2,

[−2u f +βVM(eM
′er) f ]≤ 0

⇔(β +2)2 ≥ 4(1+(η2 −1)/(x2cos2(θMf
))) (35)

When (v0, θT0 , θM0) ∈ R1 or R2, then by Lemma 7, if
β ∈ [ f1(δ̃1), f1(δ̃12)) or β ∈ [ f2(δ̃2), f2(δ̃22)) respectively,
then (35) is satisfied achieving feasible interception with
finite LOS turn rate. And when (v0, θT0 , θM0)∈R3 or R4, then
by Lemma 8, if β ∈ [ f3(δ̃3), f3(δ̃32)) or β ∈ [ f4(δ̃4), f4(δ̃42))
respectively, then (35) is satisfied achieving feasible intercep-
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Fig. 5. Engagement Scenario for θT0 = 0.85π, θM0 = 1.60π

tion with finite LOS turn rate.
However if D1, D2, D3, D4 are singleton sets, the conditions
mentioned in Theorem 2 are also necessary for successful
interception with finite LOS turn rate in respective cases.

IV. SIMULATION RESULTS

A. Simulation result for planar engagement for η = 1.5

The simulation result, shown in Fig. 5, is for the en-
gagement parameters VM = 1000 m/sec, VT = 1500 m/sec,
x = 1, y = 1, θT0 = 0.85π, θM0 = 1.60π , Initial Range (R0) =
10000 m. Clearly, (v0, θT0 , θM0) ∈ R1. Applied navigation
constant is −β =− f1(δ̃1) =−12.3305. The variation of ρ ,
aM and v with time and the interceptor and target trajectory
are shown in Fig. 5. Here δ 1 = 0.085, δ̃11 = 0.1583 =
δ̃1, δ̃12 = 0.8217 and β

1
= 12.205. Hence applied β > β

1
and β = f1(δ̃1)∈ [ f1(δ̃1), f1(δ̃12)) leading towards successful
interception with finite LOS rate.

B. Capture zone of 3D Retro-PN guidance law

Fig. 6 and 7 show the capture zone of the retro-PN
guidance law against high speed non-maneuvering target
with η = 1.5 and 1.25 in the (u0, v0, x)-space for 3D
engagement and in the (u0, v0)-plane for planar engagement
(where x = y = 1) respectively. From Theorem 1, one of the
necessary and sufficient conditions for successful intercep-
tion is π − sin−1 z < θT0 < π + sin−1 z. Clearly by (26), as x

increases sin−1 z also increases resulting into expansion of
the capture zone with respect to feasible zone of θT0 , which
justifies the pattern of the capture zone in the (u0, v0, x)-
space with respect to x. The capture zone is symmetric v0
and is much smaller u0 > 0 than for u0 < 0. As η increases,
the capture zone shrinks since z decreases as η increases, as
clearly obtained in (26) and validated in Fig. 6.

V. CONCLUSION

The conceptualization of retro-PN guidance law has been
discussed in this paper. The capturability of this law against
high speed non-maneuvering target has been investigated
analytically and simulation results have been presented.

Fig. 6. capture zone of 3D Retro-PN Guidance Law in (u0, v0, x)-space
for (a)η = 1.5, (b) η = 1.25

Fig. 7. capture zone of 3D Retro-PN Guidance Law in (u0, v0)-plane for
planar engagement and (a)η = 1.5, (b)η = 1.25

The simulation results were found to be in line with the
theoretical analysis. The capture zone of this law has also
been depicted in (u0, v0, x)-space along with the capture zone
for the planar engagement in (u0, v0)-plane.
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