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Abstract— We present a method for the computation of
control invariant (c.i.) sets and a simple suboptimal explicit
controller for a large class of constrained nonlinear discrete
time systems. The explicit controller provides, for any point
in the c.i. set, a finite sequence of input values that drive
the system to the origin. These input sequences may serve
as feasible initializations for the nonlinear program (NLP)
associated to nonlinear model predictive control (NMPC). The
proposed method is a straightforward extension of an existing
method for the computation of c.i. sets, which we augment by
a mechanism to record feasible control actions. In contrast to
existing explicit NMPC approaches, the explicit control law is
calculated without solving the underlying NLP. The method is
computationally expensive, but most of the computational effort
can be moved offline, and the evaluation of the resulting explicit
controller is quite fast.

I. INTRODUCTION

Model predictive control (MPC) is a powerful instrument

provided that closed-loop stability of the dynamical system

and feasibility of the underlying nonlinear program (NLP)

can be ensured. Stability is often guaranteed by computing

a positively invariant (p.i.) terminal set T to which each

trajectory is driven within the prediction horizon (enforced

by a terminal constraint, see [3] or [8]). The feasible set F ,

i.e. the largest state space subset for which there exists a

control sequence that satisfies all constraints, plays a crucial

role in this context. Feasible sets can be computed based on

orthogonal projections [4]; newer methods make use of set

relations [9]. However, implementations of these approaches

only exist for special system classes, such as linear systems,

polytopic systems, or piece-wise affine systems (see [2] and

[6]). In contrast, Bravo et al. [2] presented a method for

estimating the feasible set for a general class of nonlinear

systems using step sets S. The present paper deals with the

extension of the approach suggested by Bravo et al. [2].

It is our aim to compute feasible initializations for MPC

optimization problems for discrete-time, time-invariant, non-

linear systems of the form

x(k + 1) = f(x(k), u(k)) (1)

that are subject to state constraints x ∈ X ⊆ Rn and input

constraints u ∈ U ⊆ Rm, where k ∈ N and where f is

defined on at least X × U and maps into Rn.
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Existing algorithms for the computation of F provide the

subset of the state space for which the MPC optimization is

feasible or an estimation of this subset. We present a simple

but useful method that provides both such an estimation

F̂ ⊆ F and, for any initial point x0 ∈ F̂ , an input sequence

u(k) that is guaranteed to drive the system to the terminal set.

This input sequence is in general not the optimal solution,

but it serves as a feasible solution to the MPC optimization

problem. In contrast to existing explicit NMPC approaches

(e.g. [11]), our method provides an explicit suboptimal

control law without ever solving the underlying NLP.

The paper is organized as follows. In Sect. II we state the

problem and collect some basic results on feasibility and step

sets. Section III deals with the approximation of step sets and

the computation of an explicit control law. The main results

of the paper, i.e. the identification of feasible inputs (without

solving the NLP) and the compact representation of feasible

sets are treated in Sect. III-C and III-D. Section IV illustrates

the method with an example. Conclusions are given in Sect.

V.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let the tuple (x̆, ŭ) denote an equilibrium of system (1),

i.e. x̆ = f(x̆, ŭ) with x̆ ∈ X and ŭ ∈ U . Let Tg be a terminal

set for x̆, where a terminal set is defined as follows.

Definition 1: The set Tg ⊆ X is called a terminal set for

the equilibrium x̆ of (1) subject to the control law u = g(x),
if x̆ ∈ Tg and

f(x, g(x)) ∈ Tg, g(x) ∈ U

for all x ∈ Tg .

Obviously, a terminal set always represents a p.i. set for the

system f(x, g(x)), i.e. f(x, g(x)) ∈ Tg for all x ∈ Tg , and

a control invariant (c.i) set for f(x, u), i.e. for every x ∈ Tg

there exists an u ∈ U such that f(x, u) ∈ Tg .

Terminal sets are used to guarantee stability in NMPC

problems. Specifically, we treat the discrete time nonlinear

receding horizon optimization problem of the following form

(with k ≥ 0). Let N j
i = {k ∈ N 0 | i ≤ k ≤ j} for brevity.

min
Û(k)

J(X̂(k), Û(k)) (2)

subject to

x̂(k|k) = x(k),

x̂(i+ 1|k) = f(x̂(i|k), û(i|k)), ∀ i ∈ N k+h−1
k ,

x̂(i+ 1|k) ∈ X , ∀ i ∈ N k+h−1
k ,

û(i|k) ∈ U , ∀ i ∈ N k+h−1
k ,

x̂(k + h|k) ∈ Tg,

(3)
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where X̂(k)T =
(

x̂(k + 1|k)T . . . x̂(k + h|k)T
)

and

Û(k)T =
(

û(k|k)T . . . û(k + h− 1|k)T
)

. In this con-

text, x̂(k + i + 1|k) refers to the predicted state vector at

time k+ i+1 based on the application of the input sequence

û(k|k), . . . , û(k + i|k) starting from x(k). In the current

formulation, the cost function is defined as

J(X̂(k), Û(k)) = ϕ(x̂(k + h|k)) +
k+h−1
∑

i=k

l(x̂(i|k), û(i|k))

with the stage cost l(x̂, û) = ‖x̂ − x̆‖2Q + ‖û − ŭ‖2R, the

terminal cost ϕ(x̂) = ‖x̂ − x̆‖2P , the positive definite (p.d.)

matrices P , Q, R and the weighted norm ‖x‖2
P = xTP x.

Since x̂(k + h|k) ∈ Tg , the control law

û(i|k) = g(x̂(i|k))

can be applied for i = k+h, . . . ,∞ to ensure stability. This

results in a quasi-infinite horizon, stable nonlinear model

predictive controller [3].

The nonlinear program (NLP) (2)-(3) is feasible for the

current state x(k) at time k, if there exists a feasible control

sequence, i.e. a sequence Û(k) such that the constraints (3)

are satisfied. This leads to the following definition of the

feasible set.

Definition 2: The set of states x0 ∈ X for which the NLP

(2)-(3) is feasible for all k ≥ 0 is called feasible set and

denoted by Fh(Tg), where h and Tg are as in Eqs. (2)-(3).

Definition 2 requires the NLP (2)-(3) to be feasible for all

k ∈ Nh
0 . It is well-known, however, that feasibility at k = 0

implies feasibility for all k > 0.

Lemma 3: [10] The NLP (2)-(3) is feasible for all k > 0,

if it is feasible for k = 0.

Lemma 3 implies that we can drop the feasibility requirement

for k = 1, . . . , h in Def. 2 of the feasible set. For ease of

reference this is summarized in Lemma 4, which we state

without proof.

Lemma 4: The feasible set Fh(Tg) is equal to the set of

all states x0 ∈ X for which there exists a control sequence

Û(0) that satisfies the constraints (3).

In order to calculate an approximation of Fh(Tg) based

on Prop. 4, the so called one-step set Q(T ) [1] is needed.

The one-step set is defined as the set of states x0 ∈ X which

can be steered to the target set T ⊆ X in one time-step, i.e.

Q(T ) = {x ∈ Rn | ∃u ∈ U : f(x, u) ∈ T }.

The generalization of the one-step set leads to the definition

of σ-step sets.

Definition 5: The σ-step set Sσ(T ) ⊆ X is defined as the

set of states x0 ∈ X which can be steered to T ⊆ X in σ
or fewer steps by a sequence of feasible inputs.

The σ-step sets can be calculated by repeatedly calculating

one-step sets [7]. More precisely, let S0(Tg) = Tg. Then

Si(Tg) = Q(Si−1(Tg)) ∩ X (4)

for all i ∈ N σ
1 .

As a final preparation we state without proof the following

relation between the σ-step sets Sσ(Tg) and the feasible set

Fh(Tg).
Proposition 6: [6] Let σ ≤ h. Then Sσ(Tg) ⊆ Fh(Tg).

Furthermore, σ = h implies Sσ(Tg) = Fh(Tg) (the converse

does in general not hold).

III. SIMULTANEOUS COMPUTATION OF APPROXIMATE

STEP SETS AND FEASIBLE INPUTS

We approximate the feasible set Fh(Tg) by calculating

subsets Ŝi(Tg) of the step sets Si(Tg) for i = 1, . . . , σ with

σ ≤ h. Since Ŝi(Tg) ⊆ Si(Tg), this results in Ŝσ(Tg) ⊆
Sσ(Tg) ⊆ Fh(Tg) according to Prop. 6. The computation of

Ŝi(Tg) is carried out in the style of [2]. Specifically, we also

decompose the state space X into a set of hyperrectangles

and use interval arithmetic to verify the membership of

a particular hyperrectangle to Ŝi(Tg). In contrast to [2],

however, we record the feasible inputs for the identified

hyperrectangles within the step sets in an appropriate data

structure. To this end it turns out to be necessary to represent

U by a grid of points as opposed to a set of hyperrectangles

as in [2].

A. State space bisection and input space grid

The proposed approach relies on bisecting X into a set

of hyperrectangles. The resulting hyperrectangles can con-

veniently be represented by a binary tree. Furthermore, the

bisection induces a grid for U . While we attempt to keep

these technical aspects to a minimum, the following notation

needs to be introduced.

(0, 1)

(1, 1)

(2, 1)∗ (2, 2)∗

(3, 3)

(4, 5) (4, 6)

(3, 4)

(1, 2)∗

(2, 3)

(3, 5)

(4, 9) (4, 10)

(3, 6)

(2, 4)

Fig. 1. Sample binary tree of maximal depth d = 4 with nodes (δ, β).
The underlined green (red) leaf nodes refer to hyperrectangles, which

are (are not) members of a sample step set Ŝi(Tg). The nodes labeled

with an asterisk give the most compact representation of Ŝi(Tg) and the

complementary set Ŝc
i (Tg). This is explained in more detail in Sect. III-D.

Consider an arbitrary closed hyperrectangle B = [b1 , b1]×
· · · × [bn, bn] ⊂ Rn. By bisection we refer to the operation

that divides B into two closed hyperrectangles by splitting

the interval of largest width ωi(B) = bi − bi of B into

two intervals of equal length. Recursive bisection results in

a hierarchy of hyperrectangles that have pairwise disjoint

interiors and cover B. Such a collection of hyperrectangles

can conveniently be represented by a binary tree (cf. Fig. 1).

We assume the hyperrectangle with the smaller values of

the bisected interval is assigned to the left child node to
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ensure uniqueness of the tree. Figure 1 illustrates that every

hyperrectangle can uniquely be identified with the depth δ
of its node in the tree and the position β of the node in its

level. Hyperrectangles that correspond to the node at depth

δ and position β are denoted by

⊞δβB.

Hyperrectangles that correspond to leaf nodes are referred to

as leaf hyperrectangles for short.

A desired resolution of the mesh can be enforced by

requiring a certain number of bisections ν i along each of

the coordinate axes i = 1, . . . , n. Without giving details we

claim that for all i and all hyperrectangles ⊞dβB at leaf nodes

with maximal depth (i.e. δ = d)

ǫ/2 < ωi(⊞dβB) ≤ ǫ,

if the maximal tree depth d is set to d =
∑n

i=1 νi(ǫ), where

νi(ǫ) = ceil
(

log2
(

ǫ−1 ωi(B)
))

. Finally, the set of all nodes

(δ, β) of a tree of depth d is given by

Nd = {(δ, β) | δ ∈ N d
0, β ∈ N 2δ

1 }.

The vertices of the 2d leaf hyperrectangles of a perfect

tree span an equidistant grid of γ =
∏n

i=1(2
νi + 1) points.

This set is denoted as

{⊡1B, · · · ,⊡γB},

where the grid points ⊡jB may be enumerated in any

arbitrary but fixed order.

As mentioned above, we represent the state space X
by a set of hyperrectangles ⊞δβX and the input space U
by a set of grid points ⊡jU . This requires X and U to

be hyperrectangles, i.e. X = [x1] × · · · × [xn] and U =
[u1] × · · · × [um] with [xi] = [xi, xi] ⊂ R, [uj] ⊂ R. Note

that the resolution of the bisection of X and the resolution

of the bisection of U may be chosen independently of one

another.

B. Step set approximation

In order to approximate the one-step set, we need to

investigate the images of the hyperrectangles ⊞δβX under

f for the inputs ⊡jU . In other words we need to investigate

sets of the form

{f(x,⊡jU)|x ∈ ⊞δβX} , (5)

which we denote by f(⊞δβX ,⊡jU). The calculation of sets

of the type (5) is in general difficult, if not impossible. It

suffices, however, to calculate supersets

P(f(⊞δβX ,⊡jU)) ⊇ f(⊞δβX ,⊡jU)

instead. Such a superset can be determined with, for example,

interval arithmetic ([2], [5]).

Assuming that P(f(⊞δβX ,⊡jU)) is available, an approx-

imation of the one-step set can be determined by collecting

all leaf hyperrectangles ⊞δβX for which there exists a

control action ⊡jU such that P(f(⊞δβX ,⊡jU)) ⊆ T . This

is summarized in the following lemma.

Lemma 7: Let Q̂(T ) =
⋃

(δ,β)∈M̃
⊞δβX , where

M̃ = {(δ, β) ∈ Nd | ∃ j ∈ N γ
1 : P(f(B,⊡jU)) ⊆ T }.

Then Q̂(T ) ⊆ Q(T ).

x1x1

x
2

x
2

step set 1 step set 2

step set 5 step set 12
2

2

2

2

2

2

2

2

0

0

0

0

0

0

0

0

−2−2

−2−2

Fig. 2. Sets Ŝi(Tg) for the steps i = {1, 2, 5, 12}. The hyperrectangles
which are members (no members) of the particular step sets are colored
green (red). The terminal set and the setpoint x̆ are represented by a blue
ellipse and blue cross, respectively.

Note that the inclusion T ⊆ Q(T ) holds for the exact

one-step set for any c.i. set T . However, the correspond-

ing inclusion does not apply to the one-step set estimates

Q̂(T ) ⊆ Q(T ) from Lemma 7. In fact there may be

hyperrectangles ⊞dβX which are contained in T , but are

not contained in the estimate Q̂(T ). As a consequence, we

have to replace Eq. (4) by

Ŝi(Tg) = Q̂(Ŝi−1(Tg)) ∪ Ŝi−1(Tg),

during the approximate calculation of step sets according to

the following proposition, which we state without proof.

Proposition 8: Let i ∈ N σ
1 and Ŝ0(Tg) = S0(Tg) = Tg .

Define the initial set M̃0 = {(δ, β) ∈ Nd |⊞δβX ⊆ Ŝ0(Tg)},

the candidate set

C̃i ={(δ, β)∈Nd\M̃i−1 | ∄ (δ̃, β̃)∈M̃i−1 : ⊞δ̃β̃X ⊂ ⊞δβX}

and the improvement

∆M̃i={(δ, β)∈C̃i|∃ j∈N γ
1:P(f(⊞δβX ,⊡jU))⊆Ŝi−1(Tg)}.

Then the set Ŝi(Tg) =
⋃

(δ,β)∈M̃i
⊞δβX with M̃i = M̃i−1∪

∆M̃i represents an underestimation of the i-step set Si(Tg),
i.e. Ŝi(Tg) ⊆ Si(Tg).

The sets M̃ in Lemma 7 and Prop. 8 contain redundant

information, since some hyperrectangles may be contained in
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others in that there may exist (δ, β) ∈ M, (δ̃, β̃) ∈ M such

that ⊞δ̃β̃X ⊂ ⊞δβX . Cases of this type may arise, since

B̃ ⊆ B implies f(B̃, u) ⊆ f(B, u), where we assume that

this inclusion property is preserved in overestimations, i.e.

P(f(B̃, u)) ⊆ P(f(B, u)). The redundancy can be removed

by selecting those nodes whose parents are not part of the

considered step sets, since these nodes correspond to the

largest regions for which a feasible input can be found. The

set

M = {(δ, β) ∈ M̃ | (δ − 1, ⌈β/2⌉) /∈ M̃}

describes the desired nodes. The underlined green leaf nodes

in Fig. 1 illustrate the set M.

Note that algorithm 1 given in the appendix implements

are more efficient way to compute Si(Tg) than Prop. 8.

These improvements are technical, however, and therefore a

discussion is omitted here. Figure 2 illustrates some step sets

for the example discussed further below (in Sect. IV). The

growth of the sets as well as the hyperrectangle hierarchy

(cf. Sect. III-D) is apparent from this figure.

C. Calculation of suboptimal feasible inputs

As pointed out before, we intend to calculate feasible input

sequences that may serve, for example, as feasible initial

guesses for the NMPC optimization problem (2)-(3). Having

established the necessary tools and notation, this aim can be

stated more precisely. We would like to determine a sequence

of inputs such that, for any initial condition x(0) ∈ ⊞δβX ⊆
Ŝσ(Tg), the dynamical system (1) is driven to the terminal

set Tg in σ or fewer steps. The mentioned hyperrectangle

⊞δβX with (δ, β) ∈ Mσ is a subset of Ŝσ(Tg) by definition,

but it may be part of a step set Ŝi(Tg) with i < σ. The

smallest number of steps i such that the leaf hyperrectangle

is contained in Ŝi(Tg) is given by

iδβ = min({i ∈ Nσ
0 | ⊞δβ X ⊆ Ŝi(Tg)}).

We intend to identify inputs ⊡jU that steer, for every

⊞δβX ⊆ Ŝσ(Tg) with (δ, β) ∈ Mσ and ⊞δβX � Tg
(i.e. iδβ > 0), ⊞δβX into the previous step set Ŝiδβ−1

(Tg).
Note that one such ⊡jU arises in Prop. 8 during step iδβ .

However, we opt for determining all possible ⊡ jU , since

the quality of the NMPC initializations can be improved this

way. Fortunately, the identification of the remaining ⊡ jU can

be carried out during step iδβ as well. In fact those ⊡jU with

j ∈ Iδβ , where

Iδβ = {j ∈ N γ
1 | P(f(⊞δβX ,⊡jU)) ⊆ Ŝiδβ−1(Tg)}

steer ⊞δβX to Ŝidβ−1(Tg). We refer to the set Iδβ as input

set for short.

It remains to state an explicit formulation of the desired

initialization sequences, or equivalently, an explicit control

law. To this end we assign a single input value uδβ to each

node (δ, β), which is part of the final member set, i.e. (δ, β) ∈
Mσ . This results in a piecewise constant suboptimal control

law

ũ(x)=

{

uδβ if x ∈ ⊞δβX , (δ, β)∈Mσ, ⊞δβX � Tg
g(x) if x ∈ Tg

(6)

with guaranteed closed-loop stability and convergence to

Tg (for x0 ∈ Ŝσ) by construction. In order to select

uδβ we consider the midpoint of the current box (i.e. set

x0 = mid(⊞δβX )) and evaluate the input ⊡j∗U with j∗ ∈
Iδβ with the smallest cost function value for the resulting

trajectory. More formally, this amounts to the following

optimization problem, which can be solved by enumeration,

and setting uδβ = ⊡j∗U .

j∗ = arg min
j∈Iδβ

J(X̂(0), Û(0)) (7)

subject to

x̂(0|0) = mid(⊞δβX )
û(0|0) = ⊡jU
x̂(k + 1|0)= f(x̂(k|0), û(k|0)), ∀ k ∈ Nh−1

0 ,

û(k|0) = ũ(x̂(k|0)), ∀ k ∈ Nh−1
1

(8)

In Alg. 1, the computation of uδβ is carried out in line 21.

Figure 3 visualizes the resulting control law ũ(x) for the

example discussed in Sect. IV. Based on Eq. (6), a feasible

initialization for the NMPC optimization problem (2)-(3) can

be generated, for any x0 ∈ Ŝσ(Tg), by setting û(k|0) =
ũ(x̂(k|0)) with x̂(0|0) = x0 and k ∈ N h−1

0 .

x1

x
2

u

11

1

22

2

00

0

−1−1

−1
−2−2

−2

Fig. 3. Visualization of the piecewise constant, suboptimal control law ũ(x)
for the example discussed further below (in Sect. IV). The green colorbar
refers to the input value of the particular regions. The blue ellipse represents
the terminal set, where the control law g(x) is applied.

D. Node aggregation

The procedure described in Sect. III-B and III-C provides

an approximation of the feasible set Sσ(Tg) and a suboptimal

explicit control law ũ(x) with guaranteed stability. The size

of the trees that are needed to represent the partition of the

feasible set and the control law can become a limiting factor

of the method. The tree that represents the feasible set can

be reduced in size considerably by merging hyperrectangles

based on the following observation: If the hyperrectangles
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associated with two sibling nodes are part of Ŝi(Tg), then

the parent hyperrectangle is also a member of Ŝi(Tg). For-

mally, this aggregation of nodes corresponds to solving the

optimization problem

M∗
i = argmin

Mi

|Mi| s.t.
⋃

(δ,β)∈Mi

⊞δβX = Si(Tg). (9)

A corresponding size reduction for the tree that represents

the control law ũ(x) is not straightforward.

Figure 4 visualizes the aggregation that results from

Eq. (9) for the system discussed in Sect. IV. Obviously,

the reduction can be significant. The advantage of this

aggregation becomes evident during the calculation of step

sets. The decision whether a superset P(f(⊞δβX ,⊡jU)) is

a subset of Ŝi−1(Tg) or not (cf. Prop. 8), can be carried out

much more efficiently using M∗
i instead of Mi.

x1x1

x
2

2

2

2

2

0

0

0

0 −2−2

aggregated representationleaf node representation

Fig. 4. Two representations of the step set Ŝ12(Tg) for the system discussed
in Sect. IV. The associated perfect box-tree exhibits a total of 65536 leaf

nodes, of which 30034 would be part of Ŝ12(Tg) (i.e. 35502 would not).
The 5861 green rectangles in the left figure represent boxes, for which at
least one feasible input was detected, which steers the box to a previous
step set. Merging the corresponding nodes (according to (9)) results in the

aggregated representation on the right, which describes Ŝ12(Tg) based on

only 452 boxes. The visualization of the complementary set Ŝc
12
(Tg) (red)

requires 446 boxes in both cases.

IV. APPLICATION AND EXAMPLE

We apply the proposed approach to the nonlinear system

x(k + 1) = f(x(k), u(k)) with

f1(x, u)=
201
200x1+

601
6000x2+

(

631
12000+

299
6000x1−

3
400x2

)

u

+
(

9
8000+

1
800x1+

13
24000x2

)

u2+ 1
48000 (1+x1)u

3

f2(x, u)=
601
6000x1+

201
200x2+

(

631
12000−

3
400x1−

2407
12000x2

)

u

+
(

− 41
8000+

13
24000x1+

1
50x2

)

u2+ 1
3000 (1− 4 x2)u

3,

where X = [−2, 2]× [−2, 2] and U = [−2, 2]. The system is

a discrete-time variant1 of the continuous time system treated

in [2] and [3].

Obviously, (x̆, ŭ) = (0, 0) is an equilibrium. We claim

without proof that the ellipsoid E = {x ∈ Rn | ‖x− x̆‖2P ≤
α2} with

P =

(

22.7067 19.9485
19.9485 22.7067

)

and α = 0.8408

1Heun’s third order discretization method with a sample time ∆t = 0.1 s
was applied to the system used in [2].

is a terminal set Tg for the control law u = g(x) = −K (x−
x̆)+ŭ with K =

(

2.0057 2.0057
)

. Choosing a prediction

horizon h = 15 and defining

Q =

(

0.5 0.0
0.0 0.5

)

and R = 1.0

completes the definition of the NLP (2)-(3).

We choose σ = 12 and ǫ = ǫX = ǫU = 0.02 for the

calculation of step sets and feasible inputs. We note that the

associated box-tree exhibits a maximal depth d = 16 and

a maximum of 2d = 65536 leaf nodes. The grid of inputs

contains γ = 28+1 = 257 elements ⊡jU . The resulting step

x1

x
2

I

II

III

IV

V

1

1

2

2

0

0

−1

−1

−2

−2

Fig. 5. Initial, optimal, and some reference trajectories. Black circles
mark initial states x0. Green trajectories result from applying the suboptimal
explicit control law ũ(x) for input u(k) at step k = 0, . . . , h − 1. Black
trajectories result from solving the NMPC optimization problem (for 50
steps). Dash-dotted lines represent the solution of the NLP for k = 0. Red
trajectories result for the choice u(k) = ŭ. The grey region represents the

step set Ŝ12(Tg), the blue ellipse marks the terminal set Tg = E and the
blue square indicates the boundary of X .

sets Ŝi(Tg) and the corresponding control law are illustrated

in Figs. 2 and 3, respectively. Figure 5 illustrates the results

of some numerical experiments. For the initial values I to III,

which are members of the step set Ŝ12(Tg) (grey region), we

are able to calculate feasible initializations for the NMPC

optimization problem (2)-(3) using the control law ũ(x)
as specified in Sect. III-C. As expected, the corresponding

resulting trajectories of the dynamical system (green curves)

never leave Ŝ12(Tg) and always lead to Tg . Note, however,

that the optimal trajectory that results from solving the

NMPC optimization problem deviates from the one that

results from our approach.

For states which are not part of Ŝσ(Tg) (here σ = 12),

the presented method is not able to provide a feasible

initialization. Since Ŝσ(Tg) in general is an underestimation

of the actual feasible set, i.e. Ŝσ(Tg) ⊂ Fh(Tg), feasible

input sequences may exist for points x0 �∈ Ŝσ(Tg), however.

Consider the points in Fig. 5 marked by IV and V, for ex-

ample. There exist feasible initializations (cyan trajectories)

in these cases (found by trial and error here).

Finally, Fig. 5 illustrates that the initialization û(i|0) = ŭ
is in general not a good choice (red trajectories).
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V. CONCLUSIONS

We extended an existing method for the computation of

c.i. sets ([2], [3]) to the simultaneous calculation of c.i. sets

and an explicit controller that regulates the system to the

origin. The control law may be used to compute feasible

initializations for NMPC (warm start). By construction the

feasible input sequences guarantee stability of the NMPC

problem for any initial value in the c.i. set.

The approach was illustrated with a benchmark example

[2], [3]. Numerical experiments show that the feasible input

sequences are excellent initial guesses for NMPC. This is

an interesting result by itself, since NMPC optimization

problems sometimes cannot be solved if no feasible initial

guess for the underlying nonlinear program can be found.

The computational effort of the method is high. Once the

step sets Ŝi(Tg) and the explicit control law ũ(x) have been

calculated offline, however, feasible initializations can be

calculated for any initial condition in the c.i. set very quickly.

Compared to existing explicit NMPC approaches [11], our

control laws result in a worse performance, but they can be

calculated without solving the underlying NLP.

VI. APPENDIX

Algorithm 1 formalizes the calculation of step sets and

feasible inputs. Lines 1-8 carry out preliminary steps. such

as the compilation of the sets M0 and C. Lines 9-32 calculate

the step sets Ŝi(Tg) acc. to Prop. 8 and the piecewise constant

control law ũ(x) corresponding to Sect. III-C. At first, we

identify neighboring boxes of the current target set T (ll. 12-

13). Then, we check these neighbors in terms of membership

to the current step set i. In doing so, we calculate the

propagation of the considered box ⊞ δβX in combination

with each input ⊡jU and check whether the (overestimated)

image is part of Ŝi−1(Tg) or not (ll. 17-18). If at least

one feasible input was detected, we update the member and

candidate sets and calculate the suboptimal input uδβ by

solving the optimization problem (OP) (7)-(8) (ll. 19-21).

Otherwise, the current node-box is bisected (if the maximal

depth d is not reached) (ll. 22-29). Now, the update of the

target and member set is carried out by taking the obtained

improvement (∆M) into account (l. 30). The lines 12-30

are repeated until no improvement is achieved. Finally, M ∗
i

and the step itself are computed in line 31 and 32. Note that

there are more efficient ways to implement algorithm 1. The

version shown here is chosen for ease of presentation.
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