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Abstract— The root locus is an important tool for analysing
the stability and time constants of linear finite-dimensional
systems as a parameter, often the gain, is varied. However,
many systems are modelled by partial differential equations or
delay equations. These systems evolve on an infinite-dimensional
space and their transfer functions are not rational. In this paper
we provide a rigorous definition of the root locus and show that
it is well-defined for a large class of infinite-dimensional systems.
As for finite-dimensional systems, any limit point of a branch of
the root locus is a zero. However, the asymptotic behaviour can
be quite different from that for finite-dimensional systems. We
also show that the familar pole-zero interlacing property for
collocated systems generated by a self-adjoint operator extends
to infinite-dimensional systems.

I. INTRODUCTION

Consider the control system on a Hilbert space Z

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t). (1)

where for some b, c ∈ Z , Bu = bu, Cx = 〈c, x〉. For
real k, we are interested in the eigenvalues of A− kBC as
k → ∞. A plot of these eigenvalues as k → ∞ is known
as a root locus plot. An understanding of the behaviour of
these eigenvalues as k varies, or the root locus, is important
to understanding the behaviour of the system with feedback

u(t) = −ky(t) + v(t),

where v(t) is an external signal.
Suppose that the system is finite-dimensional; that is A ∈

Cn×n. In the 1970’s it was shown that if the relative degree
of the system is r then there are r eigenvalues going to
infinity and the remaining eigenvalues tend to the zeros of
the corresponding transfer function G(s) = C(sI − A)−1B
[1], [2]. Furthermore, the angle of the asymptotes as k →
∞, in particular whether they are in the left-half-plane, is
determined by the relative degree.

Extension of these results, now well-known for finite-
dimensions, to infinite-dimensions has been elusive. In [3]
the root locus is considered for the case where A is self-
adjoint with compact resolvent on a Hilbert space Z , B is a
linear bounded operator from Cp to Z , and C : D(C)→ Cp
where D(A) ⊂ D(C) is A-bounded. A complete analysis
of collocated boundary control of parabolic systems on an
interval was provided in [4]. The analysis in that paper
uses results from differential equations theory and is difficult
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to extend to more general classes. In [5] high-gain output
feedback of infinite-dimensional systems in the case where
A generates an analytic semigroup and B = C∗ was studied.
The zeros of the system are given as the eigenvalues of
an operator and a nonlinear stabilizing feedback law is
constructed. Zeros of systems where A is self-adjoint and
B = C∗ are shown to be real and be bounded by α if
A + A∗ ≤ 2αI on D(A) in [6]. If moreover, the system
transfer function can be written in spectral form, and an
additional technical condition is satisfied, the poles and the
zeros interlace on the real axis.

In this paper we provide a definition of the root locus for
single-input-single-output infinite-dimensional systems and
show that it is well-defined if no invariant zeros are in the
spectrum of A. Each eigenvalue of A defines a branch of the
root locus and these curves are smooth and non-intersecting
if the set of zeros of (A,B,C) and the eigenvalues of A
do not intersect. Moreover, if any branch converges to a
point, that point is a zero of the system. Conversely, each
zero is the terminus of a branch of the root locus. We close
by generalizing the earlier result of [6] on the interlacing
property to a wider class of systems. Furthermore, we show
that every branch of the root locus of these collocated
systems converges to a zero. We conclude by illustrating the
results with a few simple examples.

II. ROOT LOCUS

In this section we establish that the root locus of a large
class of infinite-dimensional systems is well-defined.

Let A be the generator of Co-semigroup on a Hilbert space
Z that has only isolated point spectrum, each with finite
multiplicity and of finite type, that is the Riesz projection on
the generalized eigenspace is finite dimensional. This implies
in particular that the essential spectrum of A is empty and the
assumption on the spectrum are satisfied if A has a compact
resolvent. Let {λn} be the set of eigenvalues of A. Let B,
C be bounded operators with scalar input and output spaces.
This means that Bu = bu and Cx = 〈c, x〉 for some b, c ∈
Z . For real k, we are interested in the eigenvalues of A −
kBC. Since B and C are bounded finite rank operators, the
spectrum of A− kBC also consists only of point spectrum
of finite multiplicity [7, Theorem I.4.1]. There is a family
of curves fn(k) associated with each eigenvalue of A with
fn(0) = λn. The values of fn(k) are the eigenvalues of
A − kBC. The root locus is the set of curves fn(k). In
this section we show that these curves are well-defined for
k ∈ [0,∞) and prove some properties of the curves.

Throughout this paper we will use the following notation.
For a closed densely defined linear operator A on some
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Hilbert space Z we denote by D(A), σ(A), and ρ(A), the
domain, the spectrum, and the resolvent set, respectively.

Definition 2.1: Let (T (t))t≥0 be the Co-semigroup gen-
erated by A. The system (A,B,C) is approximately observ-
able if for every z ∈ Z the function CT (t)z is not identically
zero on [0,∞).

Let G(s) = C(sI − A)−1B indicate the characteristic
function of (A,B,C). If (A,B,C) is approximately observ-
able, this definition is equivalent to the other definitions of
the transfer function for all s ∈ ρ(A) [8, Cor. 2.8].

Lemma 2.2: For any point s ∈ ρ(A), and k 6= 0, s ∈
σ(A− kBC) if and only if G(s) = − 1

k .
Proof: The proof of this lemma is along the lines of that
outlined for systems with self-adjoint A and B = C∗ in [9,
ex. 4.28c(i)]. The point s ∈ σ(A − kBC) if and only if
1 ∈ σ(−k(sI −A)−1BC). This occurs if and only if − 1

k ∈
σ((sI − A)−1BC), or − 1

k ∈ σ(G(s)) which is equivalent
to G(s) = − 1

k . �

We need the following result on holomorphic functions.
Proposition 2.3: [10, Thm. 7.4] Let g : Ω→ C with Ω ⊂

C be holomorphic and k ∈ R. If G(s0) = 1
k for some s0 ∈ Ω

and m be the order of zero which the function G(s)− 1
k has

at s0. Then there exists for every sufficiently small ε > 0
a neighbourhood Uε of s0 such that the function G(s)|Uε

attains every value w with 0 < |w− 1
k | < ε exactly m times.

Similarily to the finite-dimensional case we introduce the
notion of transmission zeros and invariant zeros.

Definition 2.4: The transmission zeros of (A,B,C) are
the zeros of G(s) = C(sI −A)−1B.

Definition 2.5: The invariant zeros of (A,B,C) are the
set of all λ such that[

λI −A b
C 0

] [
x
u

]
=
[

0
0

]
(2)

has a solution for some scalar u and non-zero x ∈ D(A). De-
note the set of invariant zeros of a system by inv(A,B,C).

As in finite-dimensional systems, it is straightforward
to show that every transmission zero is an invariant zero.
Similarly, every invariant zero z ∈ ρ(A) is a transmision
zero [6].

Proposition 2.6: The set inv(A,B,C) is countable and
has no finite accumulation point.
Proof: As G(s) is a meromorphic function, the set of
transmission zeros of (A,B,C) is countable and has no finite
accumulation point. Moreover, by assumption the spectrum
of A is countable and has no finite accumulation point. Since
the set inv(A,B,C) is a subset of the union of σ(A) and
the set of transmission zeros of (A,B,C), inv(A,B,C) is
countable and has no finite accumulation point. �

Theorem 2.7: If inv(A,B,C) ∩ σ(A) is empty then
σ(A) ∩ σ(A− kBC) is empty for all k.
Proof: Suppose that for some k 6= 0 there is s ∈ σ(A −
kBC) ∩ σ(A) and let xo 6= 0, xk 6= 0 be such that

sxo = Axo, sxk = Axk +B(kCxk). (3)

Let α be a scalar such that

Cxo + αCxk = 0.

If xo + αxk = 0, then from (3) it follows that Cxk = 0.
Since C is linear, then Cxo = 0. This implies that s is an
invariant zero of (A,B,C) and so inv(A,B,C) ∩ σ(A) is
not empty. Suppose now that xo + αxk 6= 0. Then[

sI −A B
C 0

] [
xo + αxk
kCxk

]
=
[

0
0

]
and so s is an invariant zero of (A,B,C). This implies that
σ(A) ∩ inv(A,B,C) is not empty. �

We can now show that the root locus for the class
of infinite-dimensional functions considered here is well-
defined.

Theorem 2.8: Consider the root locus functions fn(k) as
defined above. Each fn is a continuous function of k, k ∈
[0,∞). Furthermore, if inv(A,B,C) ∩ σ(A) = φ then each
branch fn is a simple non-intersecting curve.
Proof: For any finite set of eigenvalues, enclose them by a
simple closed curve Γ separating this part of the spectrum
σ1(A) from the remainder. Let N be the indices of the
eigenvalues of A contained in Γ. Then [11, IV.5, pg. 213]
implies there is a kM such that fn(k) is a continuous well-
defined curve for all k ∈ [0, kM ], n ∈ N . Thus, for each
n, there is kMn so that fn is a continuous function of k for
k ∈ [0, kMn ].

Proposition 2.3 together with Lemma 2.2 implies that the
root locus curves are defined on the interval [0,∞). The
continuity of the root locus curves follows now from [11,
IV.5, pg. 213].

Suppose that for some n, k1, k2, fn(k1) = fn(k2) = s.
Since fn(k1) = s implies that s ∈ σ(A−k1BC) we have s ∈
ρ(A) (Theorem 2.7). Lemma 2.2 then implies that G(s) =
− 1
k1

= − 1
k2

and so k1 = k2. Thus, no curve intersects with
itself. �

Corollary 2.9: For any point s, only finitely many fn
intersect. Multiplicity of the spectrum is preserved at such
intersection points.
Proof: Let s ∈ C. If fn(k) = s for some n and k, then s
is an eigenvalue of A − kBC. As the multiplicity of every
spectral point is finite, Proposition 2.3 implies that at most
finitely many curves fn intersect at s and the multiplicity of
the spectrum is preserved at these intersection points. �

We also have the following continuity result.
Lemma 2.10: Let sn → so as kn → ko where sn ∈ σ(A−

knBC). Then so ∈ σ(A− koBC).
Proof: We have, for a sequence xn ∈ Z of normalized
eigenvectors of A− knBC with eigenvalue sn,

‖(A− koBC)xn − soxn‖ ≤ ‖(A− knBC)xn − snxn‖
+|(kn − ko)|‖BCxn‖
+|sn − so|‖xn‖.

Thus,
lim
n→∞

‖(A− koBC)xn − soxn‖ = 0

and so so is in the approximate point spectrum of A−koBC.
Since σ(A) consists of only point spectrum, and koBC

is a bounded perturbation of A, then σ(A − koBC) also
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contains only point spectrum and so is in the point spectrum
of A− koBC. �

III. ZEROS

The following result provides a sufficient condition for
inv(A,B,C) ∩ σ(A) = φ.

Proposition 3.1: If (A,B,C) is approximately observable
and controllable and A is Riesz-spectral then inv(A,B,C)∩
σ(A) is empty.
Proof: See [9, Ex. 4.28b]. The proof is similar to that for
finite-dimensions. �

Although it may be possible to extend this result to a
larger class of systems, the assumption of a discrete system
is critical.

Example 3.2: We consider the transport equation on the
interval [0,∞)
∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t) + χ[0,1]u(t) t ≥ 0, ζ ∈ [0,∞) (4)

w(ζ, 0) = w0(ζ), ζ ∈ [0,∞) (5)

y(t) =
∫ 1

0

w(ζ, t) dζ, t ≥ 0. (6)

The corresponding operator A : D(A) ⊂ L2(0,∞) →
L2(0,∞) is given by Ax := x′ with D(A) = H1(0,∞).
The system is approximately controllable and approximately
observable, but σ(A) = σ(A−kBC) = {s ∈ C | Re s ≤ 0}.

In finite-dimensions, each branch of the root locus fn
converges to either a zero or to infinity as k →∞. We have
obtained some partial results in this direction for infinite-
dimensional systems.

Theorem 3.3: Let z ∈ ρ(A) be a transmission zero. Then
there exists sk → z as k →∞ such that sk ∈ σ(A− kBC).
Conversely, if sk → so as k →∞ where sk ∈ σ(A−kBC),
then so is a transmission zero.
Proof: By the Open Mapping Theorem, point z ∈ ρ(A)
satisfies G(z) = 0 if and only if there is {sn} ∈ C ∩ ρ(A)
and a real-valued sequence such that sn → s, kn → ∞
and G(sn) = C(snI − A)−1B = − 1

kn
. This is (trivially)

equivalent to − 1
kn
∈ σ(C(snI − A)−1B). By [12, pg. 38

(3)] this is equivalent to − 1
kn
∈ σ((snI − A)−1BC) and

similarly, since (snI−A)−1B and C are bounded operators,
1 ∈ σ(−kn(snI − A)−1BC). This is also equivalent to
sn ∈ σ(A − knBC) [13, Prop. 4.2,pg. 289]. Since each
statement in the preceding argument is an equivalence, the
converse follows immediately. That is, if sn → z where
sn ∈ σ(A− knBC) then z is a transmission zero. �

Thus, in summary, the root locus of any control system in
the class considered here is well-defined. Provided that an
assumption, such as observability is satisfied so that σ(A)∩
inv(A,B,C) is empty, then each branch is a simple, non-
intersecting curve. The limit of any branch is a transmission
zero and every transmission zero is the limit of a branch
of the root locus. A remaining question is to establish that
either every branch fn(k) → z where z is a zero or else
whether |fn(k)| → ∞ in some situations. This question is
answered below for a special class of systems.

IV. COLLOCATED SELF-ADJOINT SYSTEMS

Consider the case where A is a self-adjoint, negative semi-
definite operator and B = C∗. If the underlying state space
is finite-dimensional, then it is well-known that the poles
and zeros are real, interlace on the negative real axis and
furthermore, the system is relative degree one so that there is
one asymptote. This asymptote moves along the negative real
axis to −∞. A partial generalization for infinite-dimensional
systems was obtained in [6]. In that paper the authors show
that the poles and zeros of spectral systems that satisfy an
additional technical condition interlace on the real axis. The
following theorem which uses results provided earlier in this
paper, provides a significant generalization of this earlier
work.

Theorem 4.1: Suppose that A is a self-adjoint, negative
semi-definite operator on a infinite-dimensional space and
B = C∗. If inv(A,B,C) ∩ σ(A) is empty then each fn(s)
is real-valued, all the zeros are real, each branch converges
to a zero as k →∞ and the zeros interlace with the poles.
Proof: First, since A − kBB∗ is self-adjoint and negative
semidefinite, all branches of the root locus lie entirely on
the negative real axis Re s ≤ 0. Also, no branch intersects
with itself and so each branch starts at a pole and moves
monotonically either to the left or right. The assumption
inv(A,B,C) ∩ σ(A) is empty implies that the root locus
does not intersect with σ(A) for any value of k. Each branch
must either converge to a zero or to infinity. Since no branch
crosses a eigenvalue, any asymptotic branch must go to ∞.
However, all branches of the root locus lie entirely on the
negative real axis and so this is impossible. Thus, each branch
is a bounded monotonic function of k and converges to a
zero. The limit is a zero of (A,B,C) and since the root
locus is real-valued for all k, all the zeros are real. This also
implies that a zero lies between each pole. �

Note that if we consider k → −∞, the above argument
yields that there could be one branch of the root locus that
converges to∞. Also, if A is defined on a finite-dimensional
space, then there are a finite number of eigenvalues and there
is one branch of the root locus that converges to −∞ as
k →∞.

V. EXAMPLES

Example 5.1: (Heat flow in a rod) Consider the problem
of controlling the temperature profile in a rod of length 1
with constant thermal conductivity κ, mass density ρ and
specific heat Cp. The rod is insulated at the ends x = 0,
x = 1.To simplify, use dimensionless variables so that κ

Cpρ
=

1. With control applied through some weight b(x), and the
temperature is governed by the following problem

∂z(x, t)
∂t

=
∂2z(x, t)
∂x2

+b(x)u(t), x ∈ (0, L), t ≥ 0.

∂z

∂x
(0, t) = 0,

∂z

∂x
(1, t) = 0,
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where b(x) ∈ L(′,∞). The temperature sensor is modelled
by

y(t) =
∫ 1

0

b(x)z(x)dx. (7)

It is well-known that this can be written as an abstract control
system (1) on the Hilbert space L2(0, 1) with

Az =
∂2z

∂x2
, D(A) = {z ∈ H2(0, 1), z′(0) = z′(1) = 0}

and Bu = b(x)u, and C = B∗ is defined by (7). This system
is approximately controllable (and observable) if∫ 1

0

b(x) cos(nπx)dx 6= 0 (8)

for all integers n [9, Thm. 4.2.1]. The operator A is a
self-adjoint, negative semi-definite operator. Thus, the eigen-
values λ of A are all real and non-positive. In this case,
they are λ = n2π2, n ≥ 0. The invariant zeros depend
on b(x), but Theorem 4.1 implies that they are real and
negative (since 0 is an eigenvalue of A, it cannot be a zero).
Furthermore, for any b(x) satifying (8), the zeros interlace
with the eigenvalues. The eigenvalues of A−kBB∗ converge
to the zeros. Thus, the stability of a controlled system is
limited by the largest zero, which lies in the interval [−π2, 0].

Example 5.2: (Delay Equation) Eigenvalues of delay
problems are poorly approximated by standard schemes - see
for instance, [14]. Furthermore, little is known about zeros
or high gain behaviour. Consider a simple delay equation,

ẋ(t) = ax(t)− x(t− 1) + u(t),
y(t) = x(t).

A state-space realization of the form (1) exists on Z = C×
L2(−1, 0) with

A

[
r
f(·)

]
=
[
a− f(·(−1)

f ′(·)

]
,

D(A) = {(r, f) ∈ Z; f ∈ H1(−1, 0), f(0) = r},

B =
[

1
0

]
, C =

[
1 0

]
.

The eigenvalues are given by the roots of

κ(s) = s− a+ e−s. (9)

The invariant zeros are the values of s for which there exist
a non-trivial solution (r, f(·) ∈ D(A) to the following:

sr − ar + f(· − 1) + 1 = 0,
sf(·)− f ′(·) = 0, r = 0.

The only solution to this system of equations is the trivial
solution and so there are no invariant zeros. Since

rank
[
κ(s); 1

]
= 1,

the system is approximately controllable [9, Thm. 4.2.10]
and since

rank
[
κ(s)

1

]
= 1,

the system is approximately observable [9, Thm. 4.2.6].
Since the systems is approximately controllable and observ-
able, these same conclusions can be found by examining the
transfer function

G(s) =
1

κ(s)
.

The eigenvalues of A form a sequence with Reλ → ∞
as |λ| → ∞ and in fact

|λ|l ≤ |a|+ eReλ.

[15, Prop. 1.8, Prop. 10]. The eigenvalues of A− kBB∗ are
the roots of

s− a+ k + e−s (10)

and so they have a similar pattern, for each k, as the
eigenvalues of A.

Theorem 5.3: [14, Thm. 6.1] Consider the equation

δ(s) = kpkce
−s + 1 + Ts

where T > 0, kp > 0. All roots of this equation will have
negative real parts if

−1
kp

< kc
T

kp

√
z1 +

1
T 2

where z1 ∈ (π2 , π) solves

tan(z) = −Tz.
Rewriting the characteristic equation (10) in the above form,
we obtain that all the eigenvalues of A + kBB∗ are stable
for every k > a. Since there are no zeros, all branches of
the root locus move from the eigenvalues of A to −∞ in the
left-half-plane.
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