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Abstract— Complex nonlinear dynamics in a recent mathe-
matical model of non-basal testosterone regulation are inves-
tigated. In agreement with biological evidence, the pulsatile
(non-basal) secretion of testosterone is modeled by frequency
and amplitude modulated feedback. It is shown that, in addition
to already known periodic solutions with one and two pulses
in the least period of the closed-loop solution, cycles of higher
periodicity and chaos are present in the model in hand. The
broad range of exhibited dynamical behaviors makes the model
highly promising in model-based signal processing of hormone
data.

I. INTRODUCTION

Hormones are signaling molecules, acting as chemical
messengers from one cell (or a group of cells) to another,
and are produced by nearly every organ and tissue type in a
multi-cellular organism. Hormones are secreted mainly in
endocrine glands directly in the blood stream. Hormonal
(endocrine) regulation is seen as a complex dynamical bi-
ological system where hormones, often represented as their
serum concentrations, interact via numerous feedback and
feedforward relationships, see [1] and [2].

Endocrine glands secrete their product (hormones) either
in continuous (basal) or pulsatile (non-basal) manner. The
pulsatile hormone secretion generally stems from the pulse
dynamics of neurons. Hormone concentration pulses are
modulated in amplitude and frequency [3], [4] with both
characteristics imparting biological effect. Within a feedback
construct, pulsatile hormone secretion gives rise to a dy-
namical system where amplitude and frequency modulation
is employed to control concentration of other hormones,
typically in order to induce sustained oscillations in the
closed-loop system.

Mathematical models of endocrine systems are mostly
intended as quantitative representations of currently available
medical and biological knowledge and designed to perform
experiments in silico. For instance, a recently devised math-
ematical model of the human menstrual cycle [5] consists
of 43 ordinary differential equations with 191 parameters.
To enable mathematical analysis, coarse-grained low-order
models of endocrine systems are rather needed. Another
driving factor to this end is the development of model-based
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signal processing and control algorithms for endocrine ap-
plication, e.g. the artificial pancreas [6] or state observers for
the reconstruction of inaccessible for measurement hormone
concentrations [7].

In endocrinology, a classical example of a low-order model
is the Smith model of testosterone regulation [1]. Apparently,
this model, even augmented with a delayed feedback, is
proven in [8] to possess a unique globally asymptotically
stable equilibrium point, which property contradicts the
pulsatile nature of non-basal endocrine regulation. A limited
repertoire of dynamical behaviors is an inherent limitation
of smooth continuous low-order models. However, under
piecewise linear (affine) nonlinearities in the feedback path
of the Smith model, complex dynamical phenomena such
as cycles of higher periodicity and chaos arise in the sys-
tem [9]–[11]. Similar richness of dynamics is observed in
another detailed simulation model of the female menstrual
cycle [12] where amplitude and frequency modulation as
well as feedback time delays are combined with high-order
Hill functions. In this case, it is difficult to discriminate
between the contributions of different dynamical components
to the resulting nonlinear phenomena.

Periodic solutions in a low-order model of non-basal (pul-
satile) testosterone regulation suggested in [13] have been
recently analyzed in [14]. The model is shown to possess
sustained periodic oscillations with one and two pulses in
the least period of a closed-loop system solution that is a
clear improvement in comparison with the classical Smith
model. A more comprehensive search for other dynamical
behaviors of this model was though out of scope there.

Interestingly enough, some recent findings emanating from
research based on clinical data suggest that chaotic phe-
nomena indeed occur in endocrine systems. A nonlinear
dynamics analysis of several thousands of menstrual cycles
in [15] provided significant evidence that the menstrual cycle
is the result of chaos. Similarly, deterministic chaos was
strongly indicated in measured with high resolution (2 min.
sampling) pulsatile secretion of parathyroid hormone [16].

The role of chaos in endocrine systems remains for the
time being a debatable issue. The classical point of view
implicating chaos in disease [9] seems to drift towards
appreciating it as a normal “broadband” and “information-
rich” condition [16]. In any case, the occurrence of chaos
in a mathematical model of an endocrine system indicates
the dynamical richness of the model and its ability to pro-
duce trajectories highly reminding actual measured hormone
concentration data.

The present paper takes further the earlier presented
analysis of a hybrid model for non-basal testosterone se-
cretion [14] and shows that solutions of higher periodicity
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and chaos occur under pulse-modulated feedback in a third-
order smooth model of hormone kinetics. It demonstrates that
the considered hybrid model can display a great variety of
nonlinear dynamical phenomena, including finite and infinite
sequences of direct and reverse period-doubling cascades as
well as a period-doubling transition to chaos. Bifurcation
analysis proves the model to be monostable with bifurcation
curves in the form of closed contours.

The paper is organized as follows. First a brief description
of pulsatile testosterone secretion in the male, together with
its mathematical formulation as a pulse modulated feedback
system, are provided. Then, a bifurcation analysis of the
model for the special case of a second-order Hill function as
the modulation function is carried out. Further, the changes in
dynamical phenomena arising for higher-order Hill functions
are considered.

II. SYSTEM DESCRIPTION
In the endocrine regulation of testosterone (Te) in the

male, an essential role is played by the luteinizing hormone
(LH) and gonadotropin-releasing hormone (GnRH). While
Te is produced in testes, LH and GnRH are secreted in
different parts of the brain — hypophysis (pituitary gland)
and hypothalamus, respectively.

The pulsatile secretion of GnRH stimulates the secretion
of LH, which, in turn, stimulates the production of Te, while
Te inhibits the secretion of GnRH and LH [17]. Thus, there
arises an endocrine feedback loop GnRH-LH-Te with pulse
modulated control through the pulsatile secretion of GnRH.
Notice that the pulsatile character of the GnRH release
is a necessary attribute of the endocrine system since a
continuous administration of GnRH would not stimulate the
production of LH [18].

Experimental studies reveal that concentrations of Te and
LH in the adult male exhibit oscillative behavior and their
exact signal forms depend on the individual. As for direct
measurements of GnRH in the human, they are difficult to
implement due to ethical reasons. Oscillations in hormone
concentrations are of a broad spectrum. Ultradian harmonics
with a period of 1 – 3 h, depending on the individual, are
present and a circadian rhythm of 24 h is clearly observed.

In order to explicitly describe the pulsatile mechanism
of non-basal secretion of Te, the classical Smith model [1]
was in [14] modified by the introduction of a frequency
and amplitude pulse modulated feedback [19]. The resulting
system is governed by a system of three coupled ordinary
differential equations

ẋ = Ax+Bξ(t) (1)

with

ξ(t) =
∞∑

k=0

γkδ(t− tk)

and

x =

x1

x2

x3

 , A =

−b1 0 0
g1 −b2 0
0 g2 −b3

 , B =

1
0
0

 .
The concentration of GnRH corresponds to x1, the concen-
trations of LH and Te are given by x2 and x3, respectively.

The positive constants b1, b2, b3 and g1, g2 are defined by
the kinetics of the involved hormones and δ(·) denotes the
Dirac function. Notably, none of the biologically meaningful
variables in the model above are unbounded and the Dirac
functions are simply used for marking the instants of GnRH
release.

The pulse firing times tk are determined by tk+1 = tk+τk,
τk = Φ(x3(tk)) and γk = F (x3(tk)), where

Φ(x3) = k1 + k2
(x3/h)p

1 + (x3/h)p
, F (x3) = k3 +

k4

1 + (x3/h)p

represent frequency and amplitude modulation characteris-
tics, respectively. Here parameters k1, k2, k3, k4, h are
positive and p > 1 is an integer number. The function Φ(·) is
known as Hill (sigmoidal) function. To keep in touch with the
biological nature of the system, the value of p (Hill function
order) should be kept reasonably low. Hill functions of high
order behave as a relay and sometimes are used in smooth
closed-loop systems to induce oscillations.

Model (1) is a so-called positive system, i.e. xi(t) > 0,
i = 1, 2, 3, reflecting the fact that hormone concentrations
remain non-negative for t > 0 if their initial values are non-
negative. It is easily seen that system (1) has no equilibria.
Since the impulse frequency and the impulse weights are
bounded from above, all the solutions of (1) are bounded.
Moreover, as time increases, any solution of (1) enters and
stays within a certain bounded region in the phase space and
this region does not depend on the initial values.

The period T of a periodic solution Xc(t), Xc(t + T ) ≡
Xc(t) of dynamical system (1) is equal to the sum of the
durations of the time intervals τk = tk+1 − tk

T =
m−1∑
k=0

τk,

where m is the number of impulses during the period T . Such
a solution is termed as m-cycle. Local stability of an m-cycle
is determined by its multipliers, i.e. by the eigenvalues of the
monodromic matrix [20].

III. BIFURCATION ANALYSIS FOR THE SYSTEM
WITH HILL FUNCTIONS OF THE SECOND ORDER

Periodic solutions of hybrid model (1) with one or two
pulses of GnRH in the least period, i.e. stable 1-cycles and
2-cycles, were observed and analyzed in [14]. It was also
revealed that a 2-cycle arises from a 1-cycle in a period-
doubling bifurcation.

In this section the following values of the parameters
are assumed: b2 = 0.15, b3 = 0.1, g2 = 1.5, k1 = 40,
k2 = 80, k3 = 0.05, k4 = 5, h = 2.7, p = 2. The
parameters bi, i = 1, 2, 3 are defined by the half-life times
of the hormones and these values are typically known with
higher certainty than the rest of the model parameters. Notice
e.g. that the gains g1, g2 amplify in (1) the amplitudes of the
δ-functions of the pulsatile feedback. Since the concentration
of GnRH is not available for measurement, absolute values
of the gains cannot be uniquely established from observed
data. The choice of p is intentionally low in order to avoid
the artifacts produces by the switch-like characteristic of the
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high-order Hill functions. The effects of steeper modulation
characteristics are studied in next section.

In the following bifurcation analysis b1 and g1 are used
as bifurcations parameters. Thus, b1 describes the clearing
rate of GnRH while g1 characterizes the secretion rate of
LH stimulated by the concentration of GnRH.

As long as the parameter g1 is small enough, for any b1,
system (1) has a single stable 1-cycle. When g1 is relatively
large, the model displays more complicated dynamical phe-
nomena, including a cascade of a finite sequence of direct
and reverse period-doubling bifurcations as well as a period-
doubling route to chaos.

Fig. 1 shows a chart of dynamical modes in the (b1, g1)
parameter plane. Here Πi, i = 1, 2, 3, 4, 8, 16 are regions
of existence for stable i-cycles. The domains Π2j−1 , j =
1, 2, . . . are separated by period-doubling bifurcation curves
N−. Transverse to these curves are the curves along which
the accumulating period-doubling cascades occur.

The regions of chaotic dynamics Π∞ are broken up by
a variety of different periodic zones, each with its internal
bifurcation structure. Only two of them (Π̂10 and Π̂12) are
depicted in the Fig. 1. The number of such domains in
the parameter plane can be infinite. The domain Π̂10 is
comprised of a union of the sets Π10·2i−1 , i = 1, 2, . . . :

Π̂10 =
∞⋃

i=0

Π10·2i−1 .

where Π10·2i−1 are domains of existence of locally stable 10·
2i−1- cycles (i = 1, 2, . . . ). The boundaries, separating these
domains in Π̂10, correspond to period-doubling bifurcation
curves. These bifurcation curves accumulate, and there exist
transverse directions along which infinite series of period-
doubling bifurcations take place. The basic domain Π10 is
bounded from outside by a saddle-node bifurcation curve
in the points of which the 10-cycle is first created. The
properties of Π̂12 are similar to those of Π̂10.

Moreover, as illustrated in Fig. 2, any domain of stability
for k · 2i-cycles Πk·2i is “embedded” into the k · 2i−1-cycle
window Πk·2i−1 , i = 1, 2, . . . and delineated by a closed
period-doubling bifurcation curve. Here k is the period of a
basic cycle.

First, examine the transition that occurs as moving along
the direction A in Fig. 1, i.e., while the parameter b1
increases from 0.003 to 0.045 and the parameter g1 remains
constant at g1 = 0.6. This transition is shown in Fig. 3 and
corresponds to the domains where an incomplete cascade of
period-doubling bifurcations is realized.

At the starting point, i.e., for b1 = 0.003, system (1) has
a single stable 1-cycle. When b1 increases, the 1-cycle be-
comes a saddle and undergoes a supercritical period-doubling
bifurcation. This produces a stable 2-cycle. With a further
increase in b1, the 2-cycle undergoes a new period-doubling
bifurcation. To explain the mechanism of a finite sequence of
period-doubling bifurcations, consider characteristics of the
bifurcational behavior shown in Fig. 3 in more detail.

The variation of the critical multiplier for the 2-cycle is
shown in Fig. 4. At the bifurcation point b1 = bL1 , the largest
(in absolute value) multiplier ρ1 of the 2-cycle leaves the unit
circle through −1 and the 2-cycle turns into an unstable node.

Fig. 1. Chart of dynamical modes in the (b1, g1) parameter plane for
p = 2. Πi, i = 1, 2, 4, 8, 16 are the domains of stability for the i-cycles
and Π∞ are the regions of chaotic dynamics. N− is the period-doubling
bifurcation curve.

Fig. 2. Part of the chart of the dynamical modes Fig. 1 near the 10-
periodic window bΠ10. The periodic window bΠ10 is comprised of a union
of the sets Π10·2i−1 , i = 1, 2, . . . ,∞, where Π10·2i−1 are domains of
existence of locally stable 10 · 2i−1- cycles (i = 1, 2, . . . ). Each domain
of stability for 10 · 2i-cycle is “embedded” into the region of existence
for a stable 10 · 2i−1-cycle, and delineated by a closed period-doubling
bifurcation curve.

Figs. 3 and 4 show that the loss of stability for the 2-cycle is
accompanied by the soft birth of a stable 4-cycle. When b1
passes through the value b1 = bR1 , the largest multiplier of
the 2-cycle enters the unit cycle through −1, and the 2-cycle
becomes stable again.

To complete the discussion of the system dynamics for
p = 2, consider Fig. 5 that illustrates a classical period-
doubling transition to chaos. Fig. 5 displays the results of a
one-dimensional bifurcation scan for g1 = 2.0 in Fig. 1. As
illustrated in Fig. 5, with the increase of b1, one can observe
an infinite cascade of period doubling bifurcations leading
to chaos. Fig. 6 depicts a chaotic attractor for g1 = 2.8 and
b1 = 0.031.

IV. COMPLEX DYNAMICS IN THE SYSTEM WITH
HILL FUNCTIONS OF A HIGHER ORDER

In endocrinology, the order of a Hill function in a mathe-
matical model is typically estimated from data or simply used
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Fig. 3. Bifurcation diagram for p = 2, g1 = 0.6. Green lines 1 and 2
show unstable 1- and 2-cycles, respectively.

Fig. 4. Multiplier diagram illustrating the direct and reverse period doubling
of the 2-cycle (see Fig. 3). Variation of the largest (in absolute value)
multiplier of the 2-cycle for g1 = 0.6, p = 2. With the increase of b1,
the multiplier of the 2-cycle leaves the unit circle through −1 and the 2-
cycle becomes a saddle. As a result, a stable 4-cycle softly arises from the
2-cycle. With the further increase in b1, the multiplier of the 2-cycle enters
the unit circle through −1, and the 2-cycle becomes stable again. Here bL

1
and bR

1 are the points of the period-doubling bifurcation.

as a “design” parameter to achieve desired model properties.
In this section, changes in dynamical behaviors of system
(1) related to the order of the Hill functions are highlighted.

The same model parameter values as previously are uti-
lized below. The difference is that Hill functions of order 4
are considered. Once again, the parameters b1 and g1 will be
taken as bifurcational parameters.

Fig. 7 shows the chart of dynamical modes (two-parameter
bifurcation diagram) in the parameter plane (b1, g1) for p =
4. When comparing Figs. 1 and 7, one may note that the
increase in the Hill function order leads to the appearance
of a large periodic window Π3

⋃
Π6 with the following

peculiarity (in contrast to the case p = 2).
As shown in Fig. 7, the domain Π3 of stability for

the 3-cycle is bounded from outside by the saddle-node
bifurcation curve N+ and from inside by the period-doubling
bifurcation curve N−. The domain of 6-cycle dynamics Π6 is
“embedded” into the 3-cycle window Π3, and delineated by
a closed period-doubling bifurcation curve. This implies that
the 3-cycle undergoes only two period-doubling bifurcations,
first a direct bifurcation, and then a reverse one.

To illustrate this peculiarity, Fig. 8 displays a one-
dimensional bifurcation diagram obtained by performing a
horizontal scan B in Fig. 7 through the region Π3

⋃
Π6 for

g1 = 1.0. Again, at the starting point, system (1) has a single

Fig. 5. Transition to chaos through a period-doubling sequence (p = 2).
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Fig. 6. A chaotic attractor. g1 = 2.8, b1 = 0.031 and p = 2.

stable 1-cycle. As b1 increases, the stable 1-cycle undergoes
a period-doubling bifurcation. This leads to the soft birth
of a 2-cycle. With further increase of b1, a period-doubling
sequence leading to chaotic dynamics occurs. Fig. 9, Fig. 10,
and Fig. 11 illustrate the change of the waveform for the
concentrations of GnRH, LH and Te during the transition
to chaos via the period-doubling sequence. Fig. 12 shows
temporal variations of the concentrations of GnRH, LH and
Te for the chaotic dynamics.

To further illustrate the above bifurcation behavior, a
horizontal scan is performed along the line B near the peri-
odic window Π3

⋃
Π6. A magnified part of the bifurcation

diagram, outlined by the rectangle in Fig. 8, is depicted in
Fig. 13. To better illustrate bifurcation transitions, not all
branches of the bifurcation diagram are included but only a
magnified view of two of three.

At b1 = b+∗ , a stable (denoted by the number 1) and a
saddle (denoted by the number 2) 3-cycles are born in a
saddle-node bifurcation and the system enters the periodic
window Π3

⋃
Π6. With further increase in b1, namely when

b1 = b−∗ , the stable 3-cycle undergoes a period-doubling
bifurcation. As a result, a stable 6-cycle (denoted by the
number 4) softly arises, and the 3-cycle becomes a saddle
(denoted by the number 5). When the parameter b1 passes
through the value b1 = b−∗∗, the saddle 3-cycle again becomes
stable as a result of the “reverse” period-doubling bifurcation
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Fig. 7. Chart of dynamical modes in the (b1, g1) parameter plane for
p = 4. Here Πi, i = 1, 2, 3, 4, 6 are the domains of stability for the
i-cycles. Regions of chaotic dynamics are indicated by Π∞. N− is the
period-doubling bifurcation curve and N+ is the saddle-node bifurcation
curve.

Fig. 8. Transition to chaos through a period-doubling sequence. Bifurcation
diagram for g1 = 1.0 and p = 4.

(the largest (in absolute value) multiplier of the 3-cycle enters
the unit circle through −1).

Finally, when crossing the saddle-node bifurcation curve
N+ (see Fig. 7) with increasing b1 along the direction B, the
stable node 3-cycle (denoted by the number 1) merges with
the saddle 3-cycle (denoted by the number 2) and disappears.
This leads to an abrupt transition from periodic to chaotic
oscillations.

V. CONCLUSIONS

An earlier proposed parsimonious impulsive model of
non-basal feedback hormone regulation is demonstrated to
exhibit a wide range of complex dynamical behaviors. In
agreement with previous research regarding pulse-modulated
mathematical models of non-basal Te regulation, a regular
periodic mode with one or two impulses of GnRH in the least
period is observed for the main part of the parameter domain.
However, there also exist parameter regions where cycles of
higher periodicity and deterministic chaos are revealed.

The regions of chaotic dynamics are broken up by a
variety of different periodic windows, each with its internal
bifurcation structure. The periodic windows are located ev-
erywhere dense in the parameter plane, which observation
is in line with the lack of equilibria in the system. It
appears that each k-periodic window Π̂k is comprised of
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Fig. 9. Temporal variations of concentrations of GnRH, LH and Te for a
1-cycle (see Fig. 8). g1 = 1.0, b1 = 0.006 and p = 4.
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Fig. 10. Example of the temporal variations of concentrations of GnRH,
LH and Te for a 2-cycle. g1 = 1.0, b1 = 0.00921 and p = 4.
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Fig. 11. Temporal variations of concentrations of GnRH, LH and Te for
a 4-cycle (see Fig. 8). g1 = 1.0, b1 = 0.01 and p = 4.
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Fig. 12. Temporal variations of concentrations of GnRH, LH and Te for
the chaotic dynamics (see Fig. 8). g1 = 1.0, b1 = 0.0128 and p = 4.

Fig. 13. Magnified part of the bifurcation diagram for g1 = 1.0 and p = 4
that is outlined by the rectangle in Fig. 8. When the parameter b1 increases,
the 3-cycle undergoes direct and reverse period-doubling bifurcations. Here
green lines show the unstable 3-cycle and the red line 3 marks the unstable
1-cycle. b+∗ and b+∗∗ are the saddle-node bifurcation points. b−∗ and b−∗∗ are
the period-doubling bifurcation points.

a union of the sets Πk·2i−1 , i = 1, 2, . . . ,∞, where Πk·2i−1

are domains of existence of locally stable k · 2i−1- cycles
(i = 1, 2, . . . ). Moreover, each domain of stability for k · 2i-
cycle is “embedded” into the region of existence for a stable
k · 2i−1-cycle, and delineated by a closed period-doubling
bifurcation curve.

It is finally demonstrated that the increase in the Hill
function order leads to the appearance of a large periodic
window that is composed by a finite number of domains
of existence for stable cycles, namely Π3

⋃
Π6, with the

following peculiarity. The domain of stability for the 3-cycle
Π3 is bounded from outside by the saddle-node bifurcation
curve N+ and from inside by the period-doubling bifurcation
curve N−. The domain of 6-cycle dynamics Π6 is “embed-
ded” into the 3-cycle window Π3. This implies that the 3-
cycle undergoes only two period-doubling bifurcations, first
a direct bifurcation, and then a reverse one.

The discovery of chaos in the model is consistent with
some published experimental and theoretical results in en-
docrinology implicating chaos in prominent biological phe-
nomena and provides a simple tool for describing irregularity
in hormonal systems. The performed bifurcation analysis

also indicates that higher, but still very moderate, orders
of Hill functions in the model give rise to more complex
dynamical modes.
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