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Abstract— The control of plasma density profiles is one of
the most fundamental problems in fusion reactors. During
reactor operation, the spatial profiles of deuterium-tritium
fuel, alpha-particles generated by fusion reactions, and energy
must be precisely regulated. Here we apply a backstepping
boundary control technique to stabilize an unstable equilibrium
in a burning plasma. A one-dimensional approximation of
the transport equation for energy as well as the density of
deuterium-tritium fuel ions and alpha-particles is represented
in cylindrical coordinates by a system of partial differential
equations (PDEs). To control the ion and energy density profiles,
the PDE system is discretized in space using a finite difference
method and a backstepping design is applied to obtain a discrete
transformation from the original system into an asymptotically
stable target system. Numerical simulations of the resulting
boundary control law show that the profiles can be successfully
controlled with just one step of backstepping.

I. INTRODUCTION

To realize the promise of nuclear fusion and make it
an economical energy source, tokamak reactors may need
to be operated at inherently unstable operating points and
steady state operation will require precise control of kinetic
and magnetic variables within the fusion plasma. Most ap-
proaches to the control of kinetic variables in tokamaks begin
by considering 0-D (zero-dimensional) models of transport
within the fusion plasma. In these models, quantities are
spatially averaged over the volume of the plasma, simplifying
the governing equations to ordinary differential equations
(ODEs) and allowing the problem to be approached with
lumped-parameter control design techniques. The problem
is often simplified further by linearizing the nonlinear 0-D
model and putting the model in a standard control form
for which linear control techniques can be used. In [1],
[2], the linearization of the model is avoided and much
higher levels of performance and robustness are achieved.
However, the 0-D control of the system using modulation of
bulk heating, fueling and impurity density does not take into
account the 1-D (one-dimensional) effect of this modulation
on the spatial profiles. In a reactor, the heating, fueling, and
impurity injection rates are indeed distributed throughout the
plasma and affect the shape of the kinetic variable profiles.

The importance of these profiles stems from their effect
on transport, confinement times, and magnetohydrodynamic
stability within the fusion plasma. A reliable profile con-
trol system will be essential for creating and maintaining
kinetic profiles that minimize transport and maximize reactor
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performance within stability limits. Previous work in the
field, [3], [4], [5], [6], [7] has recognized the importance of
kinetic profile control in tokamak reactors. In these pieces
of work, a 1-D plasma model is represented by a set of
partial differential equations (PDEs) and various methods
are utilized to reduce the distributed parameter model to a
lumped-parameter one. The resulting set of ODEs are then
linearized and conventional linear control techniques are used
for controller design.

In contrast to this previous body of work, the control
method presented in [8] was based on the full non-linear
model of density and temperature in a non-burning plasma.
By accounting for the non-linear terms, this approach avoids
the operability limits created by linearization. The backstep-
ping control technique used has been successfully demon-
strated for other physical applications in work such as [9]
and [10]. In [11], we applied the backstepping technique to
controlling and tracking electron density and effective atomic
number in a non-burning plasma. In this work, we apply this
technique to the control of density and energy profiles in a
burning plasma.

The paper is organized as follows. In Section II the
one-dimensional burning plasma model is introduced. In
Section III the control objective and actuation methods
are outlined. Section IV shows the backstepping technique
used and contains an analysis of the stability of the target
system. Simulation results showing successful stabilization
of an unstable set of equilibrium profiles are contained in
Section V. Concluding remarks and a discussion of future
work are given in Section VI.

II. ONE-DIMENSIONAL BURNING PLASMA MODEL

The one-dimensional burning plasma model must include
the dynamics of the spatial profiles of the density of α-
particles, the deuterium-tritium fuel, as well as the spatial
profile of the energy in the system. The model used in
this work is based on standard 1-D transport equations. The
model is simplified by assuming a constant diffusivity and a
negligible pinch velocity. The equations for particle densities
and plasma energy are:
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where 〈σν〉 is the DT reactivity, SDT is the DT fuel injection,
and Qα = 3.52 MeV is the alpha particle energy. Paux
and Prad represent the auxiliary power and radiation losses,
respectively.

The DT reactivity 〈σν〉 is a highly nonlinear, positive,
and bounded function of the plasma temperature T and is
calculated by

〈σν〉= exp
( a1

T r +a2 +a3T +a4T 2 +a5T 3 +a6T 4
)

(4)

where the parameters ai and r are taken from [12]. The
plasma temperature is a function of the energy and the total
plasma density, i.e., T = 2

3
E
n , and the total plasma density is

given by the sum of the ion and electron densities, ni and
ne:

ni = nDT +nα (5)
ne = nDT +2nα (6)
n = ni +ne = 2nDT +3nα (7)

The radiation loss Prad considered in this work is given by

Prad = Pbrem = AbZe f f n2
e

√
T (8)

where Ab = 5.5× 10−37 Wm3/
√

keV is the bremsstrahlung
radiation coefficient, Ze f f is the effective atomic number,
and ne is the electron density. Note that the control design
presented in this work could easily be extended to include
other forms of radiation losses and this choice of model is
only used for simplification of presentation. The effective
atomic number is given by

Ze f f =
∑

i

niZ2
i

ne
=

nDT +4nα

ne
(9)

In this work, the following boundary conditions are used:
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where kα , kDT , and kE are positive and a is the radius of the
plasma.

III. CONTROL OBJECTIVE

At equilibrium, the DT fuel, alpha particle, and energy
densities are no longer changing with respect to time and
the model simplifies to a set of ODEs with respect to the

space coordinate
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where we have written the alpha particle generation as Sα =( nDT
2

)2 〈σν〉 and we use upper bar notation to represent the
equilibrium value of a variable. The equilibrium profiles are
determined by the equilibrium fueling and auxiliary heating
profiles.

In this work, actuation is only considered at the plasma’s
edge and the fueling and heating rates are used only to
define the equilibrium profiles. Writing nα(r, t) = n̄α(r) +
ñα(r, t), nDT (r, t)= n̄DT (r)+ ñDT (r, t), E(r, t)= Ē(r)+Ẽ(r, t),
Sα(r, t) = S̄α(r) + S̃α(r, t), SDT (r, t) = S̄DT (r), Prad(r, t) =
P̄rad(r)+ P̃rad(r, t), and Paux(r, t) = P̄aux(r), the dynamics of
the deviation variables ñα(r, t), ñDT (r, t), and Ẽ(r, t) are given
by
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Noting (14), (15), and (16) and taking into account that
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Recall that S̃α and P̃rad are nonlinear functions of all of the
states. The boundary conditions are written as

∂ ñα

∂ r

∣∣∣∣
r=0

=
∂ ñDT
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The objective of the controller is to force ñα(r, t), ñDT (r, t)
and Ẽ(r, t) to zero using ∆(ñα)r, ∆(ñDT )r, and ∆Ẽr as
actuation at the plasma’s edge.
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Fig. 1. Controller scheme.

IV. BACKSTEPPING TECHNIQUE

A backstepping technique is used to transform the original
system of equations into an asymptotically stable target
system. Figure 1 illustrates the technique.

By defining h = 1
N , where N is an integer, and using the

notation xi(t) = x(ih, t), i = 0,1, ...,N, the discretized version
of (20) - (22) can be written as
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Next, an asymptotically stable target system is considered
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Fig. 2. Block diagram of simulation process.

with Cw,Cm,CF > 0 and the following boundary conditions
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with G > 0. The choice of the target system is motivated by
the need to maintain the parabolic character of the partial
differential equation (to keep the highest order derivatives)
while decoupling and stabilizing the system by removing the
problematic terms. The target system can be discretized as
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0
α , . . . , ñ
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By subtracting (44) from (27) ((45) from (28), (46) from
(29)), the expression ω̇ i−1 = ˙̃ni
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rearranged to obtain
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where ω0 = β 0 = α0 = 0 and ω̇ i−1, β̇ i−1, and α̇ i−1 are
calculated as
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∂ ñk
α

˙̃nk
α (57)

β̇
i−1 =

i−1∑
k=1

∂β i−1

∂ ñk
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Next, subtracting (48) from (31) ((49) from (32), (50) from
(33)) and putting the resulting equation in terms of ωk−1 =
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These equations can then be rewritten as the stabilizing laws
for the α-particle density, DT density, and energy at the
plasma’s edge:

ñN
α =ω

N−1 +
1

(1+Gh)

[
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To show the asymptotic stability of the target system, we
consider the Lyapunov function candidate
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and, because the last six terms in the expression are all
negative semi-definite we can conclude that V̇ ≤ −CV ,
proving the asymptotic stability of the target system.

The control strategy is summarized in Figure 2. First,
a desired set of equilibrium profiles is determined. These
profiles are then used as references by the backstepping
controller, which actuate the ion densities and energy at the
plasma edge in order to achieve the desired profile shapes
and spatial averages for the alpha particle, DT fuel, and
energy density. We will show through simulations in the next
section that measures of the profiles at r = 0.5a are enough
to regulate the plasma profiles.

V. SIMULATIONS

The discretized burning plasma was simulated using an
implicit finite difference scheme. The results shown are for
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an equilibrium described by the spatial averages, diffusivity,
and boundary conditions in Table I and using a particular
set of fueling and heating profiles. Figure 3 shows that
without control, the chosen equilibrium is unstable. In this
case, the initial perturbations in the shape and magnitude
cause a thermal excursion and the system comes to rest
at a higher temperature equilibrium. In other cases, initial
perturbations may cause quenching, in which the temperature
drops. Closed-loop simulation of the system with the same
initial perturbations shows that the proposed controller is
able to reject the initial perturbations and return the system
to the desired equilibrium. Figures 4 through 6 show the
controller’s modulation of the α-particle density, DT density,
and energy at the edge of the plasma. Figures 7 through 9
show the effect of this modulation on the time evolution of
the error in the α-particle, DT, and energy density profiles,
respectively. Figure 10 shows how the spatial averages of
the α-particles, DT ions, and energy return to the desired
equilibrium values.
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Fig. 5. Edge modulation for DT fuel density.
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Fig. 6. Edge modulation for energy.

TABLE I

Simulation Parameters

Parameter Value Parameter Value

〈n̄α〉 2.77×1018 〈n̄DT 〉 1.03×1020

〈Ē〉 4.20×1005 D 0.8
kα 0.085 kDT 0.210
kE 0.287

VI. CONCLUSIONS AND FUTURE WORK

A non-linear feedback controller based on Lyapunov
backstepping that achieves asymptotic stabilization of the
equilibrium ion and energy density profiles in a cylindrical
burning plasma has been designed. The controller uses
actuation of the α-particle, energy, and DT ion fluxes at
the plasma’s edge to stabilize the respective profiles. The
resulting controller holds for any finite discretization in space
of the original PDE model and the simulation in this work
shows that a controller using just one step of backstepping, or
just one measurement from inside the plasma, successfully
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Fig. 7. Time evolution of the α-particle density profile error.
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Fig. 8. Time evolution of the DT density profile error.

controls the density profiles. The feasibility of controlling
kinetic profiles in a burning plasma using boundary control
techniques has been shown. However, more study will be
necessary to find physical methods for the modulation of the
kinetic variables at the edge of the plasma, i.e. achieving the
desired values of ∆(ñα)r, ∆(ñDT )r, and ∆Ẽr. This will have to
be done through modulation of the physical properties of the
scrape-off layer (SOL) such as gas puffing, gas pumping, or
impurity injection. Since the major difficulty is in modulation
of ∆Ẽr, one approach will be the development of a similar
control scheme that avoids boundary actuation of the energy
and instead considers modulation of the heating in the core
of the plasma. Moving forward, model improvements will
be made by including models for the diffusivity and pinch
velocity, as well as models of the SOL in order to apply
more realistic boundary conditions to the system.
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