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Abstract— The release of a gaseous substance into the at-
mosphere can pose a significant risk, whether intentional or
accidental. The tracking and localization of the tracer as
it moves throughout the domain in real time can provide
information on how to minimize subsequent harm. This work
investigates the state estimation and real time detection of a con-
tinuous source in a 3D environment through a Lyapunov based
gradient ascent approach. A set of simulations demonstrate
the behavior of the proposed estimator and guidance scheme
with different source trajectories. Real time computational
results are attained through the use of state reduction and grid
adaptation techniques.

Index Terms— Plume dispersion; moving source; mobile sen-
sors; PDEs; grid adaptation; source tracking; state estimation

I. INTRODUCTION

The release of a gaseous substance from a land or aerial

based source can prose a significant threat. Several ap-

proaches have been taken to investigate the detection of

a source with mobile sensor networks [1], [2], [3], [4],

[5], [6]. Much of the time, these tracking schemes only

provide information on the source location. Information on

the concentration profile of the material that has already been

released can be vary useful in minimizing its impact.

This work builds on previous results [3], [7], [8], [9] by

embedding the sensor’s dynamic motion into the Lyapunov

based guidance scheme. The guidance is determined with

a set of desired torques which provide a desired heading

and thrust for the mobile sensing agent. The domain is also

expanded to a third dimension to account for vertical motion

of the source and sensor as well as the vertical motion of the

contaminant in the domain. State dependent grid adaptation

is used to increase the resolution in the area of interest, while

allowing the state estimation to be completed in real time.

Under reasonable stability conditions, the atmospheric

advection diffusion equation may be used to model release of

an airborne contaminant in the atmosphere. The time varying

parameters of the field are assumed known to the model

based estimation scheme. This estimation approach has the

advantage over other detection schemes through providing

an estimate of the entire process state.

Much work has also been done on source localization with

extremum seeking (ES) control [10], [11], [12]. Recent work

on ES control assumes a single stationary source is to be
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Fig. 1. Proposed Method: moving source detection with a mobile sensing
agent.

located. As the ES algorithm runs, the velocity of the agent

is tuned with the extremum seeking algorithm to provide

an estimate of the gradient of the map. As the results are

presented, the agent travels along the highest gradient, and

is driven towards the location of the maximum. The current

work is different in that it seeks to provide an estimate of

the concentration over the entire map instead of just driving

the sensor to the location of a maximum within the domain.

There are however a couple areas where ES could benefit

this work. Instead of using the ES to drive the agent to a

maximum concentration, the agent could be driven to areas

of higher state estimation error. Also, the tuning element

technique from [11] could be applied to the current work to

provide the gradient measurement information required by

the guidance scheme presented.

The paper presents the control algorithm and estimation

scheme as well as the numerical implementation of the

approach. Realistic values are used for the atmospheric

parameters and mobile agent motion and numerical simu-

lations are provided to demonstrate the performance of the

estimation scheme with various realistic source trajectories.

II. PHYSICAL MODELING

The transport of a contaminant through the troposphere in

a 3D domain Ω = [0, LX ]×[0, LY ]×[0, LZ ] can be modeled

with the atmospheric advection diffusion equation [13], [14],

[15]. The evolution of the concentration c(X,Y, Z, t) of a
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trace species in the domain can be described by
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where W (X,Y, Z, t) are the wind velocity, κ(X,Y, Z, t)
are the eddy diffusivities, and S(X,Y, Z, t) is the source

term. The initial concentration over the domain is assumed

zero c|∂Ω = 0. The source term can be represented as the

product of the release rate f(t) and the spatial distribution

b(X,Y, Z). A simple point source is assumed in this work

with a time varying centroid at (Xc(t), Yc(t), Zc(t)) and is

modeled as a 3D Delta function [16], [17].

b(X,Y, Z, t) = δ(X −Xc(t))δ(Y − Yc(t))δ(Z − Zc(t)) (2)

A. Mobile sensing agent modeling

A mobile agent equipped with sensing capabilities is used

to measure the process state at desired locations. The sensor

is assumed to measure the concentration c(X,Y, Z, t) at a

single point in the domain.

y (t) = c (t,Xs, Ys, Zs) =

∫ LX

0

∫ LY

0

∫ LZ

0

δ(X −Xs)δ(Y − Ys)δ(Z − Zs)c(t,X, Y ) dX dY dZ
(3)

Numerous sensor types are available for measuring atmo-

spheric parameters [18], [19], [20], [21], [22] . Concentration

sensors typically provide sensor readings at intervals to

account for the transient effects and integration time of

the sensor. A specific sensor is not modeled for this work,

however a reasonable time between measurements of 2s is

used. The sensor model also takes into account the fact

that any given sensor has a limited range. A maximum

and minimum concentration threshold are enforced on the

sensing capabilities.

cS(Θs) =





0 c(Θs) < cmin
c(Θs) cmin < c(Θs) < cmax
cmax c(Θs) > cmax

(4)

where Θs(t) = (Xs, Ys, Zs) is the time varying centroid of

the sensing agent.

B. Mobile sensing agent motion

In this work, the MSA is assumed to be a fixed wing aerial

vehicle that is equiped with a low level autopilot [23], [24],

[25], [26]. The kinematic motion of the agent may be ex-

pressed in a three dimensional space with (X(t), Y (t), Z(t))
representing the position and φ, θ, ψ are the attitude angles of

the craft. Fixed wing aircrafts have several limitations in their

kinematic motion. Finite control forces limit the forward

velocity vmax as well as the turning velocities ωφ,θ,ψmax of

the aerial vehicle. To maintain enough lift, the aerial vehicle

must also maintain a minimum forward velocity vmin [27],

[28], [23].{
0 < vmin ≤ v ≤ vmax

−ωφ,θ,ψmax ≤ ωφ,θ,ψ ≤ ωφ,θ,ψmax
(5)

φ   Roll Angle

ω   Roll Moment

v     Forward Velocity

F     Axial Force

v     Vertical Velocity

F     Normal Force

ψ   Yaw Angle

ω   Yaw Moment

θ   Pitch Angel

ω   Pitch Moment

v     Lateral Velocity

F     Side Force
φ

θ

ψ

BX

BX

BY

BY

BZ

BZ

Fig. 2. Sketch of the MSA body coordinate system in 3D.

Although it is not the case for all fixed wing aircrafts,

this work assumes the roll φ and pitch θ angles of the agent

are limited as shown in equation (6). This will prevent the

guidance scheme from driving the aircraft into positions that

are not common or desirable in flight

−φmax ≤ φ ≤ φmax, −θmax ≤ θ ≤ θmax (6)

In this work, the dynamic motion of an aircraft in 3D can

be expressed in body coordinates as [29], [30], [28]




ẌB(t) = FXB (t)/M − θ̇(t)ŻB(t) + ψ̇(t)ẎB(t)

ŸB(t) = FYB (t)/M − ψ̇(t)ẊB(t) + φ̇(t)ŻB(t)

Z̈B(t) = FZB (t)/M − φ̇(t)ẎB(t) + θ̇(t)ẊB(t)

φ̈(t) = (IY − IZ) θ̇(t)ψ̇(t)/IX + l(t)/IX

θ̈(t) = (IZ − IX) ψ̇(t)φ̇(t)/IY +m(t)/IY

ψ̈(t) = (IX − IY ) φ̇(t)θ̇(t)/IZ + n(t)/IZ

(7)

where FXB , FYB , FZB represent the input force in each of

the body cartesian directions. On a fixed wing aerial vehicle,

the primary force would be the thrust component that is

realized in the axial XB direction. The motion of the aircraft

expressed in an inertial, or global, frame can be obtained with

a coordinate transformation as

v = ST vB

where v is the velocity vector (Ẋ, Ẏ , Ż) in the inertial frame

and vB is the velocity vector in the body coordinate system.

The transformation matrix ST is expressed as




(CψCθ) (CψSθSφ − SψCφ) −CψSθCφ − SψSφ
(SψCθ) (SψSθSφ + CψCφ) −SψSθCφ + CψSφ
(−Sθ) (CθSφ) (−CθCφ)




where S and C represent the sine and cosine of the angles

respectively [30].
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The dynamic equations of motion given in equation (7)

have six possible inputs, FXB , FYB , FZB , l,m, n. On a stan-

dard fixed wing aircraft, the forces FYB (t) and FZB (t) are

not induced by the aircraft, but rather wind loading and

aircraft weight. For this work, it will be assumed that the

low level autopilot applies the correct control forces to adjust

them. The remaining four terms are used as control inputs

U = [u1, u2, u3, u4]. The thrust component is the longitu-

dinal force FXB (t) and l(t),m(t), n(t) are the aerodynamic

moments created by the control surfaces of the aerial vehicle.

The resulting input is then U = [v̇, ω̇φ, ω̇θ, ω̇ψ].




v̇ = τBX
M

, ω̇φ = l
Iφ

ω̇θ =
m
Iθ
, ω̇ψ = n

Iψ

(8)

III. STATE ESTIMATION WITH A MOBILE AGENT

A. Model based estimator

The estimator developed in [7] is modified to include three

dimensional motion and to account for the dynamics of the

sensing aerial vehicle. The estimated concentration profile

x̂(t) throughout the entire domain is calculated as

˙̂x(t) = (A− γC∗(θs(t))C(θs(t))) x̂(t)

+γC∗(θs(t))y(t; θs(t))
(9)

The state error e(t) = x(t)− x̂(t) is the difference in the

actual concentration and the estimated concentration and will

be used along with the gradient of the state error for part of

the guidance scheme. The error dynamics are then given by

ė(t) = (A− γC∗(θs(t))C(θs(t))) e(t)

+B(θc(t))f(t),

e(0) = e0 ∈ X .

(10)

B. Mobile sensing agent dynamic guidance

The Lyapunov function used in [7] provides a gradient

ascent policy that directs the sensing agent in the direction

of the maximum state error in the domain by providing a

set of desired velocities. The guidance signal is calculated

based on the state error e(t,X, Y ) as well as the gradient

of the state error (eX(t,X, Y ), eY (t,X, Y )), at the spatial

location of the sensor Θs(t) = (Xs(t), Ys(t)). In this work,

that guidance policy is expanded to include a third dimension

as well as the kinetic and potential energy of the mobile

sensing vehicle and will guide the sensor with input forces.

The Lyapunov equation is modified to include the energy

of the system.

V = −〈x(t), Acl(X(t), Y (t), Z(t))x(t)〉+ PE +KE

Considering the motion of the MSA in 3D, the energy of

the system is added to the Lyapunov function as

V = −〈x,Acl(X,Y, Z)x〉+
1
2MẊ2 + 1

2MẎ 2

+ 1
2MŻ2 + 1

2Iφφ̇
2 + 1

2Iθ θ̇
2 + 1

2Iψψ̇
2 +MgZ

(11)

where ǫ is the state error, ǫX , ǫY , ǫZ are the gradient of the

state error, and g is the gravitational acceleration.

V̇ = −2 |Acl(X,Y, Z)x| − ǫǫXẊ − ǫǫY Ẏ − ǫǫZŻ

+M [ẊẌ + Ẏ Ÿ + ŻZ̈] + Iφφ̇φ̈+ Iθ θ̇θ̈ + Iψψ̇ψ̈ +MgŻ
(12)

The three terms dealing with the angle may be neglected

since the orientation of the MSA will not change the sensor

readings, just the spatial location of the sensor’s centroid.

Making the appropriate substitution for the dynamics with

equation (7) and focusing on the part of the Lyapunov

derivative equation to be made negative definite yields

−ǫǫXẊ +MẊ
[
τX
M

− θ̇v sin(θ) + ψ̇v cos(θ) sin(ψ)
]

−ǫǫY Ẏ +MẎ
[
τY
M

− ψ̇v cos(θ) cos(ψ) + φ̇v sin(θ)
]

−ǫǫZŻ +MŻ
[
τZ
M

− φ̇v cos(θ) sin(ψ)+

θ̇v cos(θ) cos(ψ) + g
]

(13)

where τX(t), τY (t), τZ(t) are the components of the thrust

vector in each Cartesian direction. The guidance scheme is

then chosen to be




τX = k1ǫǫX + k3M
[
θ̇v sin(θ)− ψ̇v cos(θ) sin(ψ)

]

τY = k1ǫǫY + k3M
[
ψ̇v cos(θ) cos(ψ)− φ̇v sin(θ)

]

τZ = k2ǫǫZ + k3M
[
φ̇v cos(θ) sin(ψ)

−θ̇v cos(θ) sin(ψ)− g
]

(14)

where k1, k2, k3 > 0 are user defined constant guidance

gains. Since the state error, error gradient, and velocity of

the sensor are a function of time, the contribution of each

portion of the guidance scheme will change over time. For

this reason, the constant value of k3 is chosen so that the

dynamics portion of the controller is of the same order of

magnitude as the state error portion.

The Lyapunov based guidance scheme developed provides

a set of desired Cartesian force components τdX , τ
d
Y , τ

d
Z . Due

to holonomic constraints, the MSA is unable to implement

them directly. Instead, they are implemented as a desired

thrust component τdl and set of attitude angles φd, θd, ψd.

The thrust is the magnitude of the desired component forces.

τdl =
√
(τdX)2 + (τdY )

2 + (τdZ)
2 (15)

The desired yaw and pitch angles come from the angle

created by the desired cartesian velocities as

θd = tan−1


 τdZ√(

τdX
)2

+
(
τdY

)2


 , ψd = tan−1

(
τdY
τdX

)

(16)

The sensor measurements are not affected by the roll

angle, so the desired and commanded roll angle will be

chosen to be zero. Since the SAV is able to have any yaw
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angle, ψc = ψd. The commanded pitch angle is chosen as

the saturated value of the desired pitch angle, −θmax ≤ θ ≤
θmax. The desired input to control the MSA can then be

built following Equation (8). The first desired input is the

thrust term ud1 = τdl from equation (15). The three angular

torque inputs are chosen to drive the MSA attitude to the

desired attitude from equation (16) as quickly as possible.

The desired yaw force is calculated as

τdψ = (ψc − ψa − ωψ∆t)
IZ
∆t2

(17)

The desired roll and pitch input torques are calculated in

the same manner. The desired inputs Ud are then adjusted

to account for the physical limitations of the MSA with a

saturation function. The commanded control signals U c are

−Umax ≤ U c ≤ Umax (18)

where the maximum values are due to the physical limita-

tions of the MSA.

IV. NUMERICAL IMPLEMENTATION AND STATE

DEPENDENT GRID ADAPTATION

A. Plant simulation

To run the estimator, the forward problem is simulated

to generate sensor data. The domain Ω is taken to be a

rectangular prism with one surface parallel to the ground.

All boundaries are held constant at a zero concentration. The

atmospheric advection diffusion equation is solved with a

structured finite volume approach. The conservative form of

the advection diffusion equation is rewritten in the flux form

and integrated over the control volumes [31], [32], [33], [34].

Following the approach by Gatsonis et al. [34], a four stage

Runge Kutta scheme is used to explicitly solve equation (19).

Due to the fact that the forward problem is replacing

atmospheric measurement data, a relatively high number of

cells are used. This ensures a smooth solution profile that

provides sensor readings. The domain is discretized with

a uniform grid. At each numerical time step, the entire

concentration profile is saved so ”sensor readings” can be

taken by the estimation scheme.

B. Finite dimensional approximation of estimator

The infinite dimensional state estimator given in equation

(9) is approximated as a finite dimensional system as

˙̂x
n
(t) =

(
A− γCT (Θs(t))C(Θs(t))

)
x̂n(t)

+γCT (Θs(t))y(t; Θs(t))
(20)

where x̂n(t) is the finite dimensional representation of the

estimated state and A,C are the finite dimensional rep-

resentation of the infinite dimensional operators A, C. In

order to estimate the state, the estimation scheme assumes

knowledge of the domain parameters such as the boundary

conditions, wind profile (WX ,WY ,WZ), and eddy diffusiv-

ities (κX , κY , κZ) in the domain (LX , LY , LZ) of interest.

The state estimator uses significantly fewer computational

nodes than the forward problem. This allows the estimator
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Fig. 3. Typical sensor patrol path

computations to be carried out much faster than the forward

problem, since real time calculations are important. The

reduced dimension also avoids the ”inverse crime” [35]

problem that can be encountered in inverse problems, which

arise when the simulated forward and inverse problems are

of the same dimension.

C. MSA patrolling behavior

Although this state estimation and source localization ap-

proach can apply to numerous scenarios, this work assumes a

scenario where a MSA is tasked with patrolling a fixed area

until a non-zero sensor reading is registered. Numerous patrol

paths and approaches are possible. However, to minimize

the number of agents required to patrol a given region, each

agent should patrol as much area as possible. For an agent

to patrol the entire domain, a lot of time would be required.

Instead, the agent uses knowledge of the domain and patrols

a smaller, downwind region of the domain in a circular path

with increasing and decreasing altitude, as shown in Figure 3.

This search strategy will increase the chance of detecting

an intruder in the domain, but is not assumed optimal.

Upon detection of an elevated concentration measurement,

the agent ceases patrolling and follows the guidance scheme

outlined in equation (14).

D. Sensor measurements and guidance from numerical

model

The estimation scheme assumes state and gradient mea-

surement data is available at the sensor location. From the

simulation of the forward problem, sensor data is available

in the stored data file. With a point sensor assumption, the

measured concentration is simply the concentration in the

finite volume at that location.

c(X,Y, Z) = ci,j,z
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(19)

An approximation of the local gradient is calculated from a

central differencing approach presented in [31]

∂c(X,Y, Z)

∂X
=

ci+1,j,k − ci−1,j,k

Xi+1,j,k −Xi−1,j,k

∂c(X,Y, Z)

∂Y
=

ci,j+1,k − ci,j−1,k

Yi,j+1,k − Yi,j−1,k

∂c(X,Y, Z)

∂Z
=

ci,j,k+1 − ci,j,k−1

Zi,j,k+1 − Zi,j,k−1

(21)

E. Sensor-based grid adaptation and switching

For the state estimation scheme to be useful in the out-

lined applications, real time implementation is necessary.

A reduced dimensional state estimator is utilized, which

allows a significant reduction in computational power at the

expense of solution accuracy. One technique used to increase

accuracy while keeping required computational power low is

the application of grid adaptation [36], [37]. Many different

techniques are available depending on the problem of interest

and usually involve increasing the grid density in areas of

interest. In this work, the area of interest is time dependent,

suggesting the use of a stretched grid approach.

When working with stretched grids, the spatial operators

must be adjusted for each new grid. If the grid is potentially

changing throughout the entire simulation, this can become

computationally expensive. To avoid this computational cost,

a limited number of computational grids is used. Each grid

has the same number of computational nodes that can be

redistributed to one of twenty seven (33) possible grid

layouts. Three possible grid configurations are shown in

Figure 4. Choosing the available grids before the estimation

scheme is started allows the spatial operators as well as the

prolongation and restriction matrices to be calculated a priori

and stored for faster computations at grid switching intervals.

Simulation of a continuous time process with the discrete

grid switching results in a hybrid dynamical system. A state

dependent switched system [38] is developed based on the

spatial location of the estimated source location Θc. As the

estimated source location moves throughout the domain, the

grid adapts to increase the resolution in that area. The mesh

is distributed so that 1/8th of the computational domain has

a fine resolution and the rest is coarse. The specific location

of the mesh has 3 possible locations in each of the Cartesian

directions to account for the equal probability of the area of

interest being located anywhere in the domain.

The 27 possible grids produce a family of matrices

{Ai , i ∈ I}. The function σ : [0,∞) → I is a piecewise

Fig. 4. Three possible grid configurations with the finest resolution volumes
highlighted.

switching signal for the spatial operator based on the grid

switches. The output matrix Ci(Θs) will also change as the

grid changes since it contains the spatial information of the

sensor location. The resulting state estimator is then

˙̂x(t) =
(
Ai − γCTi (Θs(t))Ci(Θs(t))

)
x̂(t)

+γCTi (Θs(t))y(t; Θs(t)).
(22)

V. NUMERICAL SIMULATION RESULTS

Two source trajectories are examined to evaluate the

performance of the proposed estimation scheme in a 3D

domain. In both simulations, a domain size of 4km ×4km

×1km is used. The flow is evolved in 3D with a constant

eddy diffusivity κXX = κY Y = 15m2/s, κZZ = 5m2/s,

and constant advection, WX = 5m/s,WY = 5m/s,WZ =
0.5m/s. Material is released from the source at a constant

rate of 1kg/s. The sensor’s velocity is limited to 10m/s

≤ vs ≤ 30m/s. While patrolling, the sensor is kept at a

constant 15m/s.

A. Stationary Source

A single source is placed in the center of the domain

and is releasing material at a constant rate. The sensor

begins patrolling and after approximately 60s detects the

contaminant and begins the estimation process. The guidance

scheme quickly drives the sensor to the middle of the plume

where the concentration is highest. The agent then continues

to move upwind, heading towards the location of maximum

state error.

Figure 5 shows a representative concentration slice at

440s. The entire sensor and source trajectory is also overlaid.

Since the source is stationary, it is just a single point.

Due to the fact that the source is continuously releasing

material, a local state error will remain in that location. This

becomes an area of interest for the guidance scheme, causing

the sensor to continue flying around in this area. Figure (6)

shows the distance between the location of the maximum
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Fig. 5. Estimated source profile slice at 440s and Z = 500mfor a
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Fig. 6. Distance between sensor and source as a function of time.

state error and the sensor over time. A distance is not given

for times before the estimation scheme is started.

B. Diagonal Source Trajectory

A simple moving source is simulated in which the source

passes through the diagonal of the domain at about 10m/s.

Similar to the stationary case, the sensor patrolled a given

area of the domain until the contaminant was detected, then

began estimating the state of the domain. In this case, the

results are a bit more interesting. The sensor travels into the

plume, passing completely through it, causing a local state

error to be eliminated. The sensor then reverses direction,

following another state error maximum, until it is again

directly in the plume. This time, the sensor travels upwind

of the plume until it comes very close to the source. It then

meanders down wind of the source for the remaining 150s.

Figure 7 shows a representative concentration slice at 499s

with a source and sensor trajectory overlay. The trajectories

for the sensor and source are very close near the end of the

simulation, indicating that the sensor is following the source.

Due to the fact that this source is continuously releasing

material, a local state error will remain near the source

location. The guidance scheme will drive the sensor into that
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source trajectory with source and sensor trajectory overlay.
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Fig. 8. Distance between sensor and source over time for a diagonal source.

region. Figure 6 shows the distance between the location of

the maximum state error and the sensor over time. A distance

is not given for times before the estimation scheme is started.

VI. CONCLUSIONS AND FUTURE WORK

This paper demonstrates the ability of the model-based

estimation scheme for source detection and state estimation.

The guidance scheme is shown to drive the sensor in the

direction of a higher state error. As the local maxima state

errors are reduced, the guidance scheme steers the sensor in

the direction of another maximum.

For the case of a continuous source, the guidance scheme

not only provide an estimate of the state of the domain,

but also an estimate of the location of the source. This

information can be very valuable since it can be used to both

minimize the impact of the contaminant that has already been

released as well as neutralizing the source to prevent more

material from being released.

One of the main goals of this work is to provide the state

estimate in real time. The simulations presented in this work

are based on a mesh of 42× 42× 18 cells. This allows the

estimation scheme to compute 5x faster than real time on a

2.33Ghz CPU running Linux with Intel’s Fortran complier.
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Since computational time is below real time, there is room

for expansion in increasing the domain size or adding more

features to the code.

The current sensor model is an idealized and simpli-

fied approach. The sensor assumes noiseless measurements,

which would not be available in application. The sensor also

assumes state and gradient data is instantaneously available

at the sensor location. Atmospheric sensors have a transient

response that is affected by their motion, which will be

accounted for in future work.

This work provides the state estimation of a contaminant

in a three dimensional domain with a single sensor. The use

of multiple sensors simultaneously can significantly enhance

the state estimation ability of the scheme with a negligible

increase in computational requirements.

Many other source behaviors are available for inves-

tigation. Two continuous sources have been investigated,

however pulsed and instantaneous sources are also provided

and can provide significant insight into the capabilities of the

estimation scheme.

REFERENCES

[1] M. A. Demetriou, “Centralized and decentralized policies for the
containment of moving source in 2D diffusion processes using sen-
sor/actuator network,” in Proc. of the 2009 American Control Conf.,
St. Louis, MO, June 10-12 2009.

[2] M. A. Demetriou and N. A. Gatsonis, “Scheduling of static sensor
networks and management of mobile sensor networks for the detection
and containment of moving sources in spatially distributed processes,”
in Proc. of the 17th Mediterranean Conference on Control and

Automation, Thessaloniki, Greece, June 24-26 2009.

[3] M. A. Demetriou, “Power management of sensor networks for detec-
tion of a moving source in 2-D spatial domains,” in Proc. of the 2006

American Control Conference, Minneapolis, Minnesota, USA, June
14-16 2006.

[4] M. E. Alpay and M. H. Shor, “Model-based solution techniques for the
source localization problem,” IEEE Transactions on Control Systems

Technology, vol. 8, no. 6, November 2000.
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