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Abstract— This paper considers the use of optimal control
theory to design circuits for small-scale, single-transducer
vibration energy harvesting applications, in which the external
disturbance is a broadband stochastic process. Specifically,
we investigate the use of a lossless passive two-port network
terminated by a single-directional DC/DC converter, to impose
transducer voltage feedback laws on energy harvesting systems.
Such an implementation requires external power only to gate
one MOSFET in a PWM cycle, and requires no active feedback.
The optimization of harvested energy reduces to the optimal
design of the input admittance Y (s) of the terminated network,
which reduces to a positive-real-constrained, sign-indefinite
H2 optimal control problem. This class of optimization is
nonconvex, and a numerically-efficient means of finding its
global minimum remains an open problem. Here we introduce
conservatism into the problem in such a way as to make the op-
timization practical, albeit still nonconvex, and we illustrate its
solution in the context of a base-excited piezoelectric bimorph
cantilever.

Index Terms— Energy harvesting, Stochastic vibration, Pas-
sive networks, LMIs, SPR-constrained H2 optimal control

I. INTRODUCTION

Over the last decade, significant research activity has
focused on energy scavenging technology to harvest power
from ambient vibration, as a power source for wireless
intelligence systems embedded in smart structures [1]. Fig.1a
shows a conceptual diagram of the transduction mechanism
for such technology, consisting of a passive electromechan-
ical system (with an embedded transducer), transducer ter-
minal with current i(t) and voltage v(t), and an acceleration
input a(t). (In the more general case, multiple transducers
may be considered [2], but here we restrict our attention to
single-transducer systems.) Of the several modes of transduc-
tion available for milliwatt-scale applications, piezoelectric
approaches have received the most attention. Fig.1b shows
the so-called “bimorph” configuration, in which piezoelectric
patches are bonded to the upper and lower surfaces of a
resonant flexible beam.

Although there are some applications for which satis-
factory performance can be achieved by instantaneously
delivering the power generated by the harvester directly to
an electrical load, in many cases the energy generated by the
transducers must be stored for some period of time before it
is used. This is the case, for example, where the harvester is
used to power a system which operates only intermittently.
In such circumstances, power generated by the transducer
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must be used to continuously charge a storage system, such
as a supercapacitor or battery, which is then periodically
drained to facilitate infrequent bursts of comparatively high-
power activity. The simplest way to accomplish this is to
interface the transducer terminals directly with the storage
device through a passive diode bridge rectifier [3], as shown
in Fig. 2a. However, such techniques have slow recharge
times, and also require that the open circuit voltage of v(t)
be greater than the bus voltage VS . Performance can be
enhanced using power electronics. Some of the first investi-
gations into the design of such systems were reported in [4].
That work considered the connection of a PWM-controlled
DC/DC buck converter to the bridge rectifier, as shown in
Fig. 2b. In a follow-up paper [5], the same authors showed
that if that converter is operated in discontinuous conduction
mode with a constant duty cycle, its input resistance is
insensitive to dynamics in its input and output voltages,
and is primarily a function of its duty cycle. Subsequent
investigations by Lefeuvre et al [6] and Kong et al [7]
recognized that if the buck converter is replaced with a buck-
boost topology (shown as the converter in Fig. 2d but without
the insertion of the lossless two-port), the input resistance
theoretically has zero sensitivity to dynamics in the input
and output voltages. This enables the effective resistance of
the converter to be designed for maximal power absorption,
and then for the duty cycle to be found from this resistance
afterward. So designed, the converter duty cycle is constant,
thus eliminating the need for feedback.

In [2], [8], Scruggs investigated the substitution of a
single-directional DC/DC converter for a fully-active H-
bridge converter capable of two-way power flow, as illus-
trated in Fig. 2c. This system can be used to effect explicit
feedback control on transducer current. In those studies, it
was shown that for a(t) modeled as a broadband stochastic
process, the derivation of the optimal effective admittance
(i.e., feedback law) Y (s) relating v(t) to i(t) can be found
as the solution to a related sign-indefinite H2 optimal control
problem. Those studies illustrate that the optimal Y (s) is
not positive-real, and thus cannot be made equivalent to any
passive circuit.

In the theory developed in [2], [8], conductive losses
in the semiconductor electronics are taken into account in
the design process, resulting in a feedback system which
maximizes the power transferral from the base excitation
to the power bus. In [9], this theory is extended to also
account for the gating losses incurred by the MOSFETs in the
electronics, which can be of great relevance at small scale or
small excitation levels. However, there are two issues which
the above theories do not resolve:
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Fig. 1. Generic (a) and PZT bimorph (b) harvesters

a) The gating power necessary to switch the four MOS-
FETs associated with a fully-active H-bridge may ex-
ceed that being extracted by the harvester, resulting in
a net power loss for the total system, and

b) Even if the gating power consumption is acceptable,
the power consumption necessary merely to compute
the optimal voltage feedback law will in general require
the use of either analog active circuitry or a DSP. Either
way, the power consumption associated with the control
intelligence may exceed the power absorbed.

As such, there always exist power and excitation scales, be-
low which active feedback designs will cease to be practical.

The present paper is an investigation of one way to cut
down on these “ancillary” power losses, by using a single-
directional buck-boost converter as discussed in [6], with a
duty cycle D << 1 which causes the converter to operate
in discontinuous conduction. For frequencies well below
the switching frequency, the effective input impedance is
approximately resistive, and has the proporationality RD ∝
D−2. However, the present paper extends these prior works
in two ways. First, we introduce a lossless two-port circuit
(comprised of ideal capacitors, inductors, and transformers)
between the transducer and the converter, as shown in
Fig. 2d. Through proper design of this two-port network,
the motivation is to recover as much of the performance of
active control as possible, subject to the constraints of what
the effectively-passive network can do. Second, we consider
the design in a stochastic context, whereas all prior work
regarding the operation of these converters was for the case
of monochromatic excitation.

II. THE STOCHASTIC ENERGY HARVESTING PROBLEM

A. Dynamic modeling

Consider the general energy harvester in Fig.1. We as-
sume its electromechanical dynamics can be approximated
as linear and finite-dimensional, with state space

ẋh(t) = Ahxh(t) + Bhi(t) + Gha(t) (1a)

v(t) = BT
hxh(t) (1b)

We assume that the harvester is a passive system, which
implies that there always exists a realization such that Bh

has dual participation in both equations above [10]. More
specifically, we assume that the driving point impedance
of the harvester, as seen from its electrical terminals, can
be realized by an asymptotically-stable equivalent circuit
consisting of ideal capacitors, inductors, and resistors. This
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Fig. 2. Various energy harvesting circuit topologies

is equivalent to stating that this impedance has the Weakly-
Strict Positive-Real (WSPR) property, which implies that
there exists a realization for the above state space for
which there exists a matrix C with full row rank, such that
Ah + AT

h = −CTC, and for which (Ah,C) constitutes an
observable pair [11]. The power extracted from the harvester,
by the electronics, is just Pe(t) = −i(t)v(t).

As an example, consider the bimorph piezoelectric beam
shown in Fig.1. For this example, the model was taken
directly from [12]. Using standard Rayleigh-Ritz techniques
to arrive at a finite-dimensional beam model, and imposing
classical mechanical damping, the state space can be parti-
tioned as

xh =
[
q1 q̇1 · · · qN q̇N p

]T
(2)

where {qk, q̇k} are generalized mechanical position and
velocity coordinates of vibratory mode k, and where p is
normalized piezo voltage. With appropriate normalizations,
a realization exists for which

Ah =

[
Ω Θ

−ΘT −1/τ

]
Bh =

[
0
β

]
Gh =

[
N
0

]
(3)

and where the further partitionings are made in modal form;
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TABLE I
EXAMPLE HARVESTER PARAMETERS

ω1 241rad/s ω2 1510rad/s ω3 4220rad/s
η1 −0.0820

√
kg η2 −0.0454

√
kg η3 −0.0267

√
kg

θ1 65.8s−1 θ2 −228s−1 θ3 375s−1

ζ1 0.010 ζ2 0.0435 ζ3 0.121

τ 2s β 1770
√

Ω/s R 10Ω
ωa 249rad/s ζa 1 σa 9.81m/s2

i.e.,:

Ω = diag
k=1..N

{[
0 ωk

−ωk −2ζkωk

]}
(4)

Θ = col
k=1..N

{[
0
θk

]}
, N = col

k=1..N

{[
0
ηk

]}
(5)

For the numerical example considered in this paper, the
parameters {ωk, ζk, θk, ηk, β, τ} are given in Table I. These
correspond to the transducer studied in [12] with the excep-
tion of τ , which was assumed to be infinite in that study and
is given a finite value here to reflect finite dielectric leakage
of the transducer.

We assume the disturbance a is modeled as white noise,
sent through a finite-dimensional strictly-proper, minimum-
phase filter; i.e.,

ẋa(t) = Aaxa(t) + Baw(t) (6a)
a(t) = Caxa(t) (6b)

where w is white noise with spectral intensity of 1. For
the purpose of example, we further assume this filter to be
second-order, with the matrices

Aa =

[
0 ωa

−ωa −2ζaωa

]
Ba = CT

a =

[
0
b

]
(7)

where wa and ζa determine the passband of the noise, and
parameter b is chosen such that a has a given standard
deviation σa, which may be found as b =

(
4ζaωaσ

2
a

)1/4
.

Augmenting the system and disturbance dynamics as x =[
xT
h xT

a

]T ∈ Rn, the system dynamics are then

ẋ(t) = Ax(t) + Bi(t) + Gw(t) (8a)

v(t) = BTx(t) (8b)

with A, B, and G appropriately defined.

B. Energy harvesting as a control objective

Our objective is to design a feedback law Y : −v → i as
the synthetic linear admittance which optimizes the expec-
tation on generated power. As such, our control objective is
to maximize

P̄gen = E {−iv − Pd} (9)

where Pd is the transmission dissipation in the electrical
network. This dissipation function is typically quite compli-
cated, and will depend on the hardware used to realize Y (s),
as well as the manner in which this hardware is operated
(e.g., its switching frequency, bus voltage, MOSFET gating
voltage, and so forth). However for our purposes we will
make the simplifying assumption that Pd is in fact modeled
as a simple resistive loss associated with the current extracted

from the transducer; i.e., Pd(t) = i2(t)R. This assumption
is made primarily because it yields the most straight-forward
analysis which still accounts for transmission dissipation in
some way. Use of more complicated models for Pd can be
viewed as augmenting the theory discussed here.

With these assumptions, we have that an equivalent prob-
lem is to find the Y (s) which minimizes

J = −P̄gen =
1

2
E

{[
x
i

]T [
0 B

BT 2R

] [
x
i

]}
(10)

which is a nonstandard (i.e., sign-indefinite) H2 problem. In
general, this problem would not be well-posed (i.e., J would
have no minimum) but it turns out that if the harvester is
WSPR then J has a unique, finite, and negative minimum.
The following theorem is proved in [8].

Theorem 1: Let the system in (1) be WSPR, and let the
augmented system x ∈ Rn be as in (8). Then for any causal,
stabilizing mapping from v to i, we have that

P̄gen = − 1
2GTPG−R E

{
(i−Kx)

2
}

(11)

where P is the solution to the nonstandard Riccati equation

0 = ATP + PA− 1
2R (P + I) BBT (P + I) (12)

and
K = − 1

2RBT (P + I) (13)

Furthermore, P < 0 and A + BK is Hurwitz.
The above theorem leads directly to the following corol-

lary, the proof of which is standard.
Corollary 1: For the feedback law î(s) = −Y (s)v̂(s)

with realization

Y (s) ∼
[

AY BY

CY DY

]
(14)

of order nY = n, P̄gen > − 1
2GTPG−Rγ where

γ = GTSG (15)

0 > CTC + SA+ATS , S = ST > 0 (16)

C =

[
(K +DY BT + CY )T

(DY BT + K)T

]T
, G =

[
0
G

]
(17)

A =

[
0 I
I −I

] [
A−BDY BT BCY

−BY BT AY

] [
I I
I 0

]
(18)

III. SPR-CONSTRAINED H2 DESIGN

Consider again the harvesting system in Fig. 2d. Because
the two-port is lossless, optimization of the power it absorbs
is equal to that delivered to the converter. We wish to confine
the domain of Y (s) : −v → i to include only those transfer
functions realizable with with this particular network.

Lemma 1: An internally asymptotically-stable, rational
admittance Y ∈ H∞ is realizable with a lossless two-port
terminated by a resistance RD > 0, in series with a resistance
R > 0, if and only for any minimal state space realization
as in (14), ∃T = TT > 0 satisfying AT

Y T + TAY (sym)
BT

Y T −1
2RCY (2RDY − 1) −1

 6 0 (19)
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Proof: Let the input admittance at the terminals of the
two-port network be Y2(s) = (Y (s)−1 − R)−1. In 1931,
Darlington proved in [13] that Y2(s) is realizable with a
lossless two-port, terminated by a resistance, if and only if
it is positive-real (i.e., passive); i.e.,∫ T

0

(v(t) +Ri(t)) i(t)dt 6 0 , ∀v ∈ L2, T > 0 (20)

For R > 0, this is quivalent to∫ T

0

(v(t) + 2Ri(t))
2
dt 6

∫ T

0

v(t)2dt , ∀v ∈ L2, T > 0

(21)
which, for Y : −v → i and Y ∈ H∞, is equivalent to ‖1−
2RY ‖H∞ 6 1. Via the Kalman-Yakubovic-Popov lemma
[14], this is equivalent to (19) if Y (s) is finite-dimensional
and internally asymptotically stable.

We thus arrive at what we will call Design Problem 1:

DP1 : Problem data: A, B, G, R, nY = n
Minimization: γ = (15)
Variables: AY , BY , CY , DY , T, S
Constraints: (16), (19), S > 0, T > 0

Constraint (19) is more conservative than a positive-real
(PR) constraint, and its imposition in DP1 is only super-
ficially different from the imposition of a PR constraint.
Moreover, strengthening the inequality to be strict in (19)
makes it more conservative than a strictly positive-real (SPR)
constraint, and in this paper, we will henceforth assume this.

Standard SPR-constrained H2 problems have been inves-
tigated by numerous researchers over the years. In 1988,
Lozano-Leal and Joshi showed that under certain conditions
on problem data, unconstrained H2 controllers turn out to
be SPR implicitly [10]. Their result was subsequently used
by Kishimoto et al to design H2 controllers which are
guaranteed to be SPR [15], [16], as well as by Haddad et al
in closely related problems involving the design of H2 con-
trollers with an associatedH∞ bound [17]. In 1997, Geromel
and Gapski [18] found a way of conservatively framing the
SPR-constrained H2 problem as a (convex) LMI problem,
and showed that their approach recovered the earlier results
in [10] as a special (nonconservative) case. Shimomura and
Pullen [19] proposed a related approach to the optimization,
which is less conservative than the approach in [18], but
which is also nonconvex and must be approached by iterative
convex over-bounding BMI solution methods [20], [21]. In
an apparently separate research thread, MacMartin and Hall
[22] discovered a novel way of imposing a PR constraint
on a feedback law, through the imposition of a related
closed-loop H∞ constraint. Although they did not explicitly
pursue it in their paper, their constraint could be used in
the context of SPR-constrained H2 optimal control. All the
aforementioned approaches implicitly presume nY (usually
the same as the order of the plant, with the exception of
[22] for which it is twice that), and all successful constrained
optimization approaches have also introduced conservatism
in the optimization domain by assuming some form of con-
troller/observer separation. Most recently, however, Damaren

[23] approached the problem from a direct optimization
approach, placing no restrictions on the controller except
its order. For the SISO controller case, he then solved
the problem for various controller orders, as a nonlinear
optimization with linear inequality constraints. The optimal
performance he obtained was very close to that of the
(suboptimal) method in [19].

Our present analysis is closest to that of [19]; we intro-
duce conservatism in the form of an assumed parametrized
structure for Y (s). This is done primarily to make the
optimization more tractable. Because the design is conser-
vative, the resultant Y (s) will be sub-optimal over all PR
admittances. However, we will require that its peformance
exhibit an important bound which justifies the proposed
approach. For single-transducer systems such as the one
under consideration, it is straight-forward to design a static
admittance Y (s) = M , and optimize M for maximum
P̄gen. While nonconvex, the optimization of M can be done
through a simple line search on M ∈ R+, with performance
evaluated via

0 = AMS + SAT
M + GGT (22)

P̄gen = BTSB
(
M −RM2

)
(23)

where AM = A − BMBT . Any dynamic Y (s) design
should be required to perform at least as well as the optimal
static case.

We assume Y (s) has the Luenberger observer structure

−Y (s) ∼
[

A + BK + LBT −L
K +MBT −M

]
(24)

where gain matrix L is a design parameter. For this system,
it is straight-forward to verify that γ can be expressed as

γ = GTU−1G (25)

where U > 0 obeys the Lyapunov inequality ( UAT
M + AMU

+LBTU + UBLT

)
(sym)

(K +MBT )U −1

 < 0 (26)

Also (19) becomes (with V = T−1),
( VAT

K + AKV
+LBTV + VBLT

)
(sym)

LT −1
2R(K +MBT )V (2RM − 1) −1

 < 0

(27)
where AK = A + BK, and where we have strengthened
this to a strict inequality, as discussed.

Thus we arrive at what we will call Design Problem 2:

DP2 : Problem data: A, B, G, R
Minimization: γ = (25)
Variables: L, U, V, M
Constraints: (26), (27), U > 0, V > 0

This problem is nonconvex, due to bilinear multiplicative
terms involving U, V, L and M . There is no known way
to recover convexity for DP2 without introducing additional
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UAT + AU UKT (U−Uk)B L− Lk −B(M −Mk)

−1 0 M −Mk

−w1 0
(sym) −w−11

+

 Bk ([UB
0

]
,

[
L−BM

M

])
0

0 0

 < 0 (28)


VAT

K + AKV L VKT 2R L− Lk (V −Vk)B
−1 2RM − 1 0 0

−1 2R(M −Mk) 0
−w2 0

(sym) −w−12

+

 Bk
 L

0
2RM

 ,
VB

0
0

 0

0 0

 < 0 (29)

conservatism, so some form of nonconvex optimization algo-
rithm must be used. Our approach here is analogous to those
in [21], [20], as well as [24]. Let {Lk,Uk,Vk,Mk} be any
set of (suboptimal) design parameters which are feasible in
DP2. Let γk be the corresponding performance as in (25).
Furthermore, for two compatible matrices {E,F}, define the
linearization function Bk(E,F) as

Bk(E,F) , EFT
k +FkET +EkFT +FET

k −EkFT
k −FkET

k

(30)
Then we have the following theorem, which we will not
prove here, but which follows along the same lines the results
in the above-mentioned references.

Theorem 2: Let {w1, w2} ⊂ R+ be arbitrary weights, and
let θ > 0. Then any set of variables {L,M,U,V} satisfying
U > 0, V > 0, along with (28), (29) and[

θ GT

G U

]
> 0 (31)

is feasible and satisfies γ < θ. Furthermore, there always
exists a feasible set {L,M,U,V, θ} such that θ < γk, except
at stationary points in the parameter domain.

The above theorem suggests an iterative approach to the
solution of DP2. Prior to the execution of the algorithm,
we first find K. At iteration k = 0, we start by instantiating
initial conditions L = L0 and M = M0 in (26) and (27), and
finding U0 and V0 which minimize γ. (With L and M fixed,
this becomes a convex optimization.) With these variables
found, solve the following convex LMI sub-problem for
iteration k:

DP2k : Problem data: A, B, G, R
Lk, Mk, Uk, Vk

Minimization: θ
Variables: L, M , U, V, θ
Constraints: (28), (29), (31) U > 0, V > 0

Then, for the optimal solution variables {Lo,Mo,Uo,Vo},
set Lk+1 ← Lo, Mk+1 ←Mo, Uk+1 ← Uo, Vk+1 ← Vo,
and advance to iteration k ← k + 1.

As such, the overall problem we solve here (DP2) is
not guaranteed to converge to a global optimum, as it is
a nonconvex algorithm. However on each iteration k, sub-
problem DP2k is convex, does not fix any of the optimization
variables, and is guaranteed to yield an improved solution
unless it is initiated at a stationary point. The weights
{w1, w2} can be chosen arbitrarily, but their choice can have
a strong influence on the speed of the algorithm, especially

in early stages. One useful technique is to redesign these
weights upon each iteration, in addition to the other design
variables. To do this, the inverses of the weights must be
conservatively replaced with linearizations; i.e., −w−1i <
−2w−1ik + w−2ik wi. For the example in the next section, this
is what is done.

IV. NUMERICAL EXAMPLE

We now execute the above-described optimization for the
model described in Sec. II, and the parameters in Table I. One
of the difficulties of the optimization is choosing an initial
condition. The obvious choice would be to set M0 equal
to the optimal static admittance, and set L0 = 0. Theoreti-
cally, this would be a feasible initial condition. Furthermore,
since each subsequent design {Lk,Mk} is guaranteed to
improve upon the performance of the previous design, the
algorithm would immediately begin to improve upon the
static admittance case. However, this approach has numerical
problems, because performance is extremely insensitive to L
when it is initiated at this value, and the algorithm tends to
converge (falsely) to the static admittance case. Additionally,
for low R it is often the case that the optimal dynamic
admittance parameters are far from the static parameters,
and can involve a much lower value of M . By starting the
algorithm at the static admittance, it may converge to a local,
less-favorable minimum. For this example, M0 was chosen
to be 1/10 its optimal static value, and L0 was chosen by first
designing it to be the Luenberger gain LL for an observer
with poles evenly placed in the range (−100,−1000), and
then obtaining L0 = αLL, where α ∈ (0, 1) was chosen to
be sufficiently small so as to make the resultant controller
in (24) adhere to constraint (27). Although not as elegant
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theoretically, this approach appears to be more numerically
well-conditioned at the outset of the optimization.

For the algorithm initiated as such, the frequency response
for the optimized Y (s) is shown in Fig. 3, together with
the optimal static Y (s) = M , for reference. The optimized
design parameters are M = 4.112× 10−11 and

L =
[
0.0607 0.2155 0.0510 − 0.0025 − 0.0262

...− 0.0012 − 0.3041 0.3736 − 6.3610
]T

(32)

The optimal static admittance is M = 8.232× 10−5.
Power generation for various design cases are listed below:

Active state feedback: : 1.440 mW
Static admittance: : 0.8212 mW
Optimal {M,L}: : 1.162 mW

As such, through the introduction of the lossless two-port
network, we can recover 24% of the performance of the
active case, beyond what can be attained by connecting the
harvesting converter directly to the transducer terminals.

V. COMMENTS & CONCLUSIONS

The purpose of this paper has been to illustrate that, with
appropriate adaptation, concepts from SPR-constrained H2

optimal control can be used to design the dynamics of passive
networks for optimization of harvested energy from vibratory
disturbances. The paper has proposed one possible algorithm
for synthesizing the optimized feasible admittance of the
passive network, using an LMI approach.

There are many avenues for extension of the ideas pro-
posed in this paper. Most immediately, as was noted by
Damaren in [23], the nature of the optimal controller for
SPR-constraind H2 control, and related problems, remains
an open issue. There is in general no proof that the opti-
mal controller even approximately adheres to a separation
principle, which was the assumption which gave rise to the
controller structure in (24). Similar optimizations to those
performed in this paper, but evaluated over a less-constrained
domain, remain an item for future work.

In this paper, we have not discussed the actual synthesis
of the passive two-port network, from the optimal Y (s).
The technique for accomplishing this, which is the classical
Darlington synthesis, is a standard result. However, the
synthesized network will in general have ideal transformers,
which may be challenging to approximate in practice for
broadband applications. In general there is no known way
to avoid the use of these transformers, without further
restriction of the domain for Y (s), and without introduction
of additional resistances into the passive network (beyond
the single resistance representing the DC/DC converter). The
optimization of Y (s), subject to the constraint that it be
realizable with a lossless two-port network as in Fig. 2d,
but with the additional restriction that no ideal transformers
be used in the realization, is a challenging, open problem.
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