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Abstract— A method for bias compensation in model based
estimation utilizing model augmentation is developed. Based
on a default model, that suffers from stationary errors, and
measurements from the system a low order augmentation is
estimated. The method handles models described by differential
algebraic equations and the main contributions are necessary
and sufficient conditions for the preservation of the observabil-
ity properties of the default model during the augmentation.

A characterization of possible augmentations found through
the estimation, showing the benefits of adding extra sensors
during the design, is included. This enables reduction of
estimation errors also in states not used for feedback, which is
not possible with for example PI-observers. Beside the estimated
augmentation the method handles user provided augmentations,
found through e.g. physical knowledge of the system.

The method is evaluated on a nonlinear engine model where
its ability to incorporate information from additional sensors
during the augmentation estimation is clearly illustrated. By
applying the method the mean relative estimation error for the
exhaust manifold pressure is reduced by 55 %.

I. INTRODUCTION

Accurate information of the internal state of systems is
important for fulfilling the increasing demands on control
accuracy and fault detection. At the same time the overall
cost has to be kept as low as possible, which often implies
that it is insufficient to rely upon only physical sensors. As a
consequence, model based estimation has attracted attention.

A common situation is that models based on first principles
exist and it is desirable to be able to use them for observer
design. However, these models often have undesired properties
that prevent them from being directly applicable for estimation
in embedded systems, such as engine control units (ECU).
One such deficiency is that, even if the system dynamics is
well described, the models can suffer from stationary errors,
or biases [1]. Figure 1 illustrates this with experimental data
from an engine where the model captures dynamics well
while there is a bias in estimate.

The number of models described by differential algebraic
equations (DAE) are increasing, partly due to modern
modeling tools such as DYMOLA and SIMSCAPE that often
deliver DAE models and since DAE:s are a way of describing
systems with both fast and slow dynamics. The latter arise
when approximating fast dynamics with algebraic constraints,
i.e. instantaneous dynamics. DAE applications range from
electrochemical and reactive distillation processes [2] to
combustion engines [3], [4].

The objective is to develop a method that enables usage of
biased default models for estimation with reduced estimation
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Fig. 1. Biased estimates for intercooler pressure in a heavy duty diesel engine.
Left: Measured and estimated intercooler pressure. Right: Normalized
histogram of the corresponding EKF estimation error which clearly is biased.

bias where the reduction is achieved using model augmenta-
tion. Central in the method is preservation of the observability
properties of the, biased, default model. The method is as an
extension of the method developed for ordinary differential
equations (ODE) in [5] to systems described by DAE:s.

II. PROBLEM FORMULATION AND SOLUTION OUTLINE

Designing an observer based on a model that predicts the
system dynamics well but suffers from stationary errors will
result in biased estimates [1]. Common ways to reduce bias
in observers are; i) to use so called PI-observers [6], [7]
that introduce integrators for the feedback signals, ii) by
physical knowledge introduce extra states to compensate for
known model deficiencies [8], or iii) to estimate a minimal
augmentation that reduces the bias [5].

The objective is to reduce bias in estimates for observers
based on DAE:s in a systematic manner without involving
extensive modeling efforts in a similar way as for ODE:s in
[5]. The starting point is a default, semi-explicit, DAE model

ẋ = f(x̄, u) (1a)
0 = g(x̄, u) (1b)
y = h(x̄, u), (1c)

where x̄ = ( x
z ) ∈ Rnx̄ , x and z denote differential and

algebraic variables respectively, and measurements, (u, y),
y ∈ Rny , u ∈ Rnu . The method generally handles DAE:s

of differential index 1, i.e. systems where
∂( g

h )
∂z have full

column rank. For index 1 DAE:s, without loss of generality,
it is henceforth assumed that ∂g

∂z has full column rank. It is
assumed that the model described by (1) captures the system
dynamics well but suffers from stationary errors, i.e. the model
is biased. A possible solution is obtained by considering the
bias as an offset error during stationary operation of the
system.
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A way to compensate for stationary errors is to adjust the
default states of the system according to (x̄−Aqq), where q
is a bias state and Aq is its effect on the default states. By
introducing q as new states with constant derivatives, q̇ = 0,
and driving noise, it is possible to describe a bias that varies
with operating point. It is desirable to have as few bias states
q as possible and the method describes a way to estimate a
low order augmentation Aq from measurement data.

The objective is then to design an observer based on the
augmented model,

ẋ = f(x̄−Aqq, u) (2a)
0 = g(x̄−Aqq, u) (2b)
q̇ = 0 (2c)
y = h(x̄, u), (2d)

where q ∈ Rnq , denoted Aug., which will have better
stationary estimation accuracy than an observer based on
the default model. The observer design used is the discrete
time extended Kalman filter (EKF) [9] and specifically the
for DAE:s modified version presented in [2].

III. EKF FOR DAE SYSTEMS

The EKF algorithm used originates from [2]. It is similar
to the standard EKF; it consists of two steps, prediction and
measurement update. The differential part of the DAE fits
nicely into the standard EKF. To enable use of the standard
EKF for both differential and algebraic states the linearized
algebraic subsystem is differentiated once

ẋ = Atx+Btz

0 = Ctx+Dtz
⇒

ẋ = Atx+Btz

ż = −D−1
t Ctẋ,

(3)

as in [2]. In [2], the partial derivatives(
At Bt

Ct Dt

)
=

(
∂f
∂x

∂f
∂z

∂g
∂x

∂g
∂z

)
,

evaluated in (xt, zt, ut), are assumed constant.
The algorithm used is summarized in Algorithm 1, where

Ḡt|t is a result of the differentiation in (3) and implies that
system noise is present in the differential variables of the DAE
only and (4) is the linear approximation of the corresponding
transition matrix φ = eĀt|tTs .

IV. OBSERVABILITY OF THE AUGMENTED MODEL

In estimation the concept of observability, or detectability,
is used to analyze the estimators’ ability to provide consistent
estimates that asymptotically converge to the true states. This
section addresses the observability of the augmented model (2)
given the observability properties of the default model (1),
i.e., which Aq:s are allowed, given that the observability
of the default model must not be compromised. Since the
observability of a linearization in a stationary operating
point is a sufficient condition for local observability of the
nonlinear system [10, Theorem 6.4], the observability analysis
is conducted on model linearizations.

Algorithm 1 Extended Kalman Filter for DAE:s
1. Initialization:(

x̂0|0
ẑ0|0

)
=

(
x0

z0

)
and P0|0 = Π0,

where ( x0
z0

) is the initial state estimate and Π0 = cov ( x0
z0

).
Let t = 0.

2. Prediction:

x̂t+1|t = f̃(x̂t|t, ẑt|t, ut)

0 = g(x̂t+1|t, ẑt+1|t)
⇒

(
x̂t+1|t
ẑt+1|t

)
P̄t+1|t = Āt|tP̄t|tĀ

T
t|t + Ḡt|tQḠ

T
t|t,,

where the implication indicates solving x̂t+1|t and ẑt+1|t
from the system of equations,

Āt|t = I + Ts

(
At|t Bt|t

−D−1
t|t Ct|tAt|t −D−1

t|t Ct|tBt|t

)
, (4)

Ts the sampling time, and

Ḡt|t =

(
I

−D−1
t|t Ct|t

)
,

from (3).
3. Measurement update:

St+1 = H̄t+1|tP̄t+1|tH̄
T
t+1|t +R

K̄t+1 = P̄t+1|tH̄
T
t+1|tS

−1
t+1

x̂t+1|t+1 = x̂t+1|t + K̄t+1

(
yt+1 − h(x̂t+1|t, ẑt+1|t, ut+1)

)
0 = g(x̂t+1|t+1, ẑt+1|t+1) ⇒ ẑt+1|t+1

P̄t+1|t+1 = P̄t+1|t − P̄t+1|tH̄
T
t+1|tS

−1
t+1H̄t+1|tP̄t+1|t,

where

H̄t+1|t =
(
∂h
∂x

∂h
∂z

)∣∣
( xz )=( x̂ẑ )

t+1|t
.

4. Let t = t+ 1 and repeat from 2.

A. DAE Observability

Before presenting the main results an overview of defini-
tions and theorems used to assess observability for systems
described by differential algebraic equations is given.

For DAE:s there exist several concepts of observability, i.e.
complete observability, observability within the reachable set,
and impulse observability [11], [12], [13].

Definition 4.1 (C-observable): The system

F (t, x, ẋ, u) = 0

y −H(t, x) = 0,
(5)

is completely observable if the zero output of the descriptor
system with u = 0 implies that this system has the trivial
solution x = 0 only.

Generally, descriptor systems are not C-observable since
they contain algebraic constraints that force the solution
and output, onto a specific manifold. For this reason the
observability within the reachable set, i.e. R-observability,
is introduced. This concept needs an appropriate projection
of the dynamical part of the system, sometimes referred
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to as the slow sub-system, onto a manifold defined by the
algebraic equations, or fast sub-system. For linear time-
invariant systems

Eẋ = Ax+Bu

y = Cx,
(6)

that are regular, i.e. that det (αE − βA) 6= 0 for some
(α, β) ∈ C2, this can be expressed in terms of the system
matrices E, A, and C.

Definition 4.2 (R-observable): The system (6) is called
observable within the reachable set if the zero output of the
descriptor system with u = 0 implies that all solutions of
this system satisfy Prx = 0, where Pr denotes the projection
onto the right deflating sub-space corresponding to the finite
eigenvalues of λE −A.

A last observability definition concerns the problem that
arises when descriptor systems that are not strangeness-free
[14], i.e. have differentiation index larger than 1, are driven
by inputs that are only piecewise continuous [11]. Then, since
the solution may depend on the derivative of the input, any
classical solution may not exist.

Definition 4.3 (I-observable): The system (6) is called
impulse observable if the output is continuous when a step
is used as input.

In the linear time-invariant case, (6), these concepts can
be characterized algebraically in terms of E, A, and C, see
for example [12] for theorems and proofs.

Theorem 4.1: The system (6) is
1) C-observable if and only if(

αE − βA
C

)
has full column rank for all (α, β) ∈ C2\{(0, 0)}.

2) R-observable if and only if(
λE −A
C

)
has full column rank for all λ ∈ C.

3) I-observable if and only if E
KT

ETA
C


has full column rank, where the rows of KET span
KerET .

Note that the system (6) is C-observable if and only if it is

R-observable and
(
E
C

)
has full column rank. Furthermore,

a descriptor system (6) with a regular pencil λE − A with
differentiation index less than two is I-observable [11], [12].

B. Possible Augmentations

Based on the theory presented in Section IV-A, necessary
and sufficient conditions for preserving the observability
properties of the default model throughout the augmentation,
are now given and proven.

Using Theorem 4.1 it is possible to characterize the
allowable model augmentations for a descriptor system,

Eẋ = A (x−Aqq) +Bu

q̇ = 0

y = Cx,

(7)

i.e. augmentations Aq that preserve the observability of the
default model (6).

Theorem 4.2: The observability of (6) is preserved during
model augmentation according to (7) if and only if

A
(
Aq NC

)
,

has full column rank, where the columns of NC span KerC.
Worth noting is that even though there are three observabil-

ity concepts, there is only one requirement. This due to the
structure of the augmented system with Ē = ( E 0

0 I ) which
gives full column rank of the augmented subsystem.

Proof: The different observability properties of (7) are
preserved if and only if x = 0, q = 0 is the only solution to
the corresponding algebraic conditions in Theorem 4.1.

Rewriting the augmented system according to

Ē︷ ︸︸ ︷(
E 0
0 I

) ˙̄x︷︸︸︷(
ẋ
q̇

)
=

Ā︷ ︸︸ ︷(
A −AAq

0 0

) x̄︷︸︸︷(
x
q

)
+

(
B
0

)
y =

(
C 0

)︸ ︷︷ ︸
C̄

(
x
q

) (8)

and applying Theorem 4.1 to the augmented system (8):
R-observability is preserved if and only if x = 0, q = 0 is

the only solution to

(λE −A)x+AAqq = 0 (9a)
λIq = 0 (9b)
y = Cx (9c)

for all λ ∈ C. For λ 6= 0 it is immediate from (9b) that
q = 0. Then the assumption that (6) is R-observable
together with (9a), (9c) and Theorem 4.1 gives that
x = 0. Thus only λ = 0 needs further investigation.
For λ = 0 in (9) the augmented model is R-observable
if and only if x = 0, q = 0 is the only solution to

−Ax+AAqq = 0, (10a)
Cx = 0. (10b)

Let the columns of NC be a basis for KerC, then,
from (10b), x = NCξ for some arbitrary ξ and R-
observability is equivalent to q = 0, ξ = 0 being the
only solution to

−A (NCξ −Aqq) = 0,

which is equivalent to the matrix

A
(
NC Aq

)
having full column rank.
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C-observability is equivalent to R-observability with the
additional requirement that(

Ē
C̄

)
=

E 0
0 I
C 0

 (11)

has full column rank [12]. The fact that the rank of a
block diagonal matrix is equal to the sum of the ranks
of the blocks [15] and the assumption that(

E
C

)
has full column rank now gives that also C-observability
is preserved if and only if

A
(
NC Aq

)
has full column rank.

I-observability is preserved if and only if Ē

KT
ĒT Ā

C̄

 =


E 0
0 I

KT
ETA −KT

ETAAq

C 0


has full column rank. The Kernel of Ē is equal to the
Kernel of E, padded with zeros to the dimension of Ē.
Again using that the rank of a block diagonal matrix is
the sum of the ranks of the blocks and the assumption
that  E

KT
ETA
C


has full column rank the preservation of the I-
observability follows.

V. AUGMENTATION ESTIMATION

After establishing a theoretical basis for all possible
augmentations that preserve the default model observability
properties, the method of estimating a low order model
augmentation is presented.

The augmentation estimation procedure is divided into two
steps; i) estimate the bias, and ii) compute a basis for the
bias space. The bias estimation is performed by augmenting
the default model fully, that is introduce as many bias states
as possible without compromising the observability criteria
in Theorem 4.2. That is, full column rank of

A
(
NC Aq

)
,

with dimension nx̄×(nx̄ − ny + nq), i.e. nx̄−ny +nq ≤ nx̄.
This means that the augmentation Aq can have at most
as many columns as there are measurements, nq ≤ ny.
Also, from Theorem 4.2, these columns have to be linearly
independent of the columns of NC and can not lie in KerA.

A simple way to construct such an augmentation is to
use C†, where † denotes the Moore-Penrose inverse [15,
Exercise 5.1.7 and Proposition 12.8.2], and exclude the
columns that become zero when multiplied by A from the

left. Based on the fully augmented model, an observer that
estimates both x̂ and q̂, enabling the computation of bias
estimates,

βt = C†q̂t,

can be constructed.
Central in the bias estimation is that the entire operating

region of the system is spanned, otherwise the estimated bias
samples might not represent the actual bias for all operating
points.

Given bias estimates, a basis for the bias is computed
using a singular value decomposition (SVD) [15] of the
bias estimates. To increase the computational efficiency and
allow easier weighting of the biases from different stationary
operating points, the average of the bias samples from each
operating point is computed. These averaged bias samples
from N operating points are collected

β̄nx̄×N =
(
w1β1 · · · wNβN

)
,

N∑
1

wi = 1,

for which the corresponding SVD is computed

β̄ = UΣV ∗, (12)

where βi indicates the averaged bias in operating point i,
and wi is the corresponding importance weight. In (12) the
columns of U contains orthonormal vectors spanning the
bias space and Σ the corresponding singular values. The
augmentation dimension can be found by analyzing the
singular values and pick out the most significant ones. Then
Âq is constructed by assembling the corresponding columns
of U .

A. Augmentation Properties

In Section IV-B the set of possible augmentations is
analyzed, and it is apparent that the measurement equation
plays a central role in which augmentations that are possible
to find. This is also given by the bias estimation in Section V,
i.e. that β = C†q̂.

From an engineering perspective this is interesting since it
means that it is possible to, temporarily augment the measure-
ment equation in for example a development environment, to
increase the set of possible augmentations. Increasing the set
of possible augmentations like this gives the possibility to
reduce bias also in states not used for feedback in the final
application.

Also note that, even though the main idea with the method
is to estimate an augmentation using system measurements, it
is possible to provide an augmentation found through physical
knowledge or engineering intuition, as long as it fulfills
Theorem 4.2.

VI. EXPERIMENTAL EVALUATION

The method is evaluated on a heavy duty Scania diesel
engine with exhaust gas recirculation (EGR), variable ge-
ometry turbocharger (VGT), and intake manifold throttle.
The evaluation is based on experimental data collected in an
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Fig. 2. Schematics of the diesel engine used in the evaluation, showing the
differential states (pim, pem, Tem, and ωt), algebraic state (pic), inputs (uegr,
uvgt, uδ , uth, and ne), and flows between components (Wc, Wth, Wegr, Wei,
Weo, and Wt).

engine test cell. The model used, presented with states, mass-
flows, inputs, and outputs in Figure 2, originally developed
in [16]. The modifications are twofold; i) removal of actuator
dynamics, and ii) elimination of the intercooler pressure
state with fast dynamics, both with the aim to improve
the computational efficiency of the resulting EKF. By the
latter modification the original model, described by ODE:s,
is transformed into a system of DAE:s.

Designing a standard EKF on the default model directly
gives biased estimates which is obvious from Figure 4, where
the normalized estimation error histograms for all states are
biased, i.e., the solid histograms are not centered at zero. The
objective is to use the proposed method from Section V to
reduce the estimation bias of all system states except the
exhaust manifold temperature, using only measurements of
intake manifold pressure, intercooler pressure, and turbine
speed. The reason for not including Tem in the evaluation is
that there is no reference measurement for that state available.

A. Augmentation Estimation

The model augmentation, Aq, is computed using a mea-
surement sequence containing a large number of different
stationary operating points, spanning the whole operating
region of the engine. In the experimental environment of
the engine test cell, the sensor setup is larger than in the
intended customer application which is used to improve the
augmentation. That is, extra sensors during the augmentation
estimation allows bias compensation of also non-measured
states, recall the discussion in Section V-A. In the studied
example the application includes measurements of the states
ωt, pim, and pic while the experimental setup also allows
measurement of pem, which is utilized in the augmentation
estimation.

Bias estimates, estimated according to Section V, from
42 stationary operating points is used to find a low order
augmentation Aq . In this case each operating point is weighted
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Fig. 3. SVD singular values presented with the corresponding singular
vector used for determining the augmentation, Aq . The vector components,
from top to bottom, correspond to ωt, pem, pim, and pic.

equally, i.e. wi = 1
N since no information of a suitable

distribution is available. The resulting singular values and
vectors used to determine the augmentation are presented
in Figure 3. The construction of Aq,i, where i indicates
augmentation dimension, is done by assembling the i singular
vectors that have the largest singular values, e.g.,

Aq,3 =

−0.013 −0.023 0.071
−0.555 −0.485 −0.676
−0.431 −0.528 0.729
−0.712 0.697 0.084

.

Three augmented observers, Aq,1, Aq,2, and Aq,3, are de-
signed, where the maximal dimension, i.e. dimAq,3 = 3, is
limited by the three dimensional measurement equation in
the EKF.

B. Estimation Performance

The estimation performance is evaluated by comparing
the observers with different augmentation dimension and an
observer based on the default model using data from a WHTC
[17]. As performance measures the mean relative error, and
the normalized estimation error histogram, are used. Together
these measures capture both estimation bias and variance.
The results are presented in Table I and Figure 4.

Figure 4 shows that with a one dimensional augmentation,
Aq,1, a significant reduction of the estimation error is achieved
for the states where feedback is available, i.e. ωt, pim, and
pic. A further indication of the performance of the augmented
observer is given by the estimation error of the observer
output that is not explicitly used for feedback, i.e. pem.
Table I clearly shows that in this case a mean estimation error
reduction of approximately 55 % is achieved for pem using
a three dimensional augmentation, Aq,3. This shows a clear
advantage of the proposed method compared to for example
normal PI-observers [6] that have integrators affecting the
feedback variables only, i.e. the PI-observers have no ability to
incorporate information from extra sensors during the design.

VII. CONCLUSIONS

A method for estimating a low dimension model augmenta-
tion for bias compensation given a default model and system
measurements that is applicable to models described by
DAE:s, is developed. A theorem that characterizes all possible
augmentations that preserve the observability properties of
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Fig. 4. Normalized histogram for the estimation errors during a WHTC. It is obvious that all outputs that are compensated through feedback, i.e. pim, pic,
and ωt, benefit from any choice of augmentation dimension. For pem however, a three dimensional augmentation is required to achieve a significant bias
reduction.

TABLE I
MEAN REL. ERROR FOR THE DEFAULT AND AUGMENTED OBSERVERS.

ALL WITH FEEDBACK FROM pIM , ωT , AND pIC ONLY.

Outputs
Mean relative error – [%]

Def. Aq,1 Aq,2 Aq,3

ωt -2.1 0.1 0.3 0.5
pem 6.8 5.6 8.5 3.0
pim -1.6 -1.5 -0.1 -0.2
pic 0.1 0.06 -0.09 0.07

the default model is given, and a characterization of the
augmentations that are possible to estimate is presented.
Common for both are that they are mainly limited by the
available measurements. Beside the estimated augmentation
the method allows user defined augmentations.

A main advantage of the proposed model augmentation
method, compared to for example PI-observers, is its ability
to incorporate information from additional sensors during the
design to estimate an augmentation that can also reduce the
estimation errors in states not used for feedback.

The method is applied to a heavy-duty diesel engine with
EGR, VGT, and intake throttle, using a nonlinear default DAE
and measurements from an engine test cell. The data used is
collected during a WHTC. It is shown that a one dimensional
augmentation significantly reduces the mean estimation error
for states where feedback is available. It is also shown that a 3
dimensional augmentation reduces the mean estimation error
by as much as 55 % for the non-measured exhaust manifold
pressure.
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