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Abstract— This paper develops a filtering approach for dis-
tributed fault detection of a class of interconnected continuous-
time nonlinear systems with modeling and measurement uncer-
tainties. A distributed fault detection scheme and corresponding
thresholds are designed based on filtering certain signals so
that the effect of high frequency measurement uncertainty
is diminished. The analysis of the proposed distributed fault
detection scheme shows that the derived thresholds guarantee
that there are no false alarms and characterizes quantitatively
the class of detectable faults.

I. INTRODUCTION

The smooth and reliable operation of large-scale dis-
tributed systems is a key requirement in the modern tech-
nological world. Examples of such systems include man-
ufacturing systems and critical infrastructure systems such
as telecommunication networks, electric power systems and
water distribution networks. The need for early detection
of developing faults before they lead to major failures is
of crucial importance. The problem of Fault Detection and
Isolation (FDI) is not new and there are many important
survey papers [1]–[3] and books [4]–[6] relying on the
model-based analytical redundancy approach.

In the last years significant research has been conducted
for FDI based on adaptive approximation methods [7], [8].
Most approaches for fault detection and accommodation so
far have been based on a centralized architecture, where
information about the state of the system is gathered and
processed centrally. Motivated by advances in wireless com-
munications, computing devices and software, there has
recently been significant interest in distributed and hierar-
chical fault diagnosis methods [9]–[14]. An important issue
that is often overseen is the presence of high frequency
measurement uncertainty. In most real world applications
such measurement uncertainty may influence significantly
the performance of fault detection schemes by causing false
alarms. The primary task of this paper is to fill the gap for the
case of uncertain state measurements in addition to modeling
uncertainty by using a distributed fault detection scheme for
a class of interconnected continuous-time nonlinear systems.

In order to accomplish this task, the state measurements
which are corrupted by measurement uncertainty are filtered
by p-th order low pass filters. The filtering is important
because it dampens the effect of high-frequency noise but at
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the same time it imposes some new challenges such as how
to properly design the estimator and derive the corresponding
thresholds.

In this paper, by assuming that the filtering extinguishes
the measurement uncertainty, adaptive fault detection thresh-
olds are obtained under a rigorous analytical framework
guaranteeing no-false alarms. Further on, a fault detectability
condition is derived that characterizes the class of detectable
faults. The distributed fault detection scheme is based on
local fault filtering schemes with each one assigned to
monitor one subsystem. Each local fault detection scheme
receives the input and output measurements of the subsys-
tem it monitors and also the output measurements of all
the interconnected subsystems that influence the subsystem
under consideration. Finally, the local fault detection scheme
provides a decision regarding the health of the subsystem it
monitors. The implementation of the scheme is presented in
detail, along with practical issues and potential solutions.

The paper is organized as follows: in Section II, a problem
formulation for distributed fault detection of a class of non-
linear dynamical systems with modeling and measurement
uncertainties is presented. In Section III the design of the dis-
tributed fault detection scheme based on a filtering approach
is presented in detail. In Section IV the implementation of
the proposed scheme is demonstrated and a practical issue
is discussed along with a proposed solution. In Section V
the fault detectability condition that characterizes the class
of faults detectable by the proposed methodology is derived,
and finally, Section VI provides some concluding remarks.

II. PROBLEM FORMULATION

Consider a large scale distributed nonlinear dynamic sys-
tem which is comprised of N subsystems ΣI , I ∈ {1, ..., N}
and each subsystem is described by the following differential
equation:

ΣI :


ẋI = fI(xI , uI) +

N∑
J=1
J 6=I

hI,J(xI , xJ , uI)

+ηI(xI , uI , t) + βI(t− T0)φI(xI , uI) (1)
yI(t) = xI(t) + ξI(t) (2)

where xI ∈ RnI , uI ∈ RmI and yI ∈ RnI are the state, input
and measured output vectors of the I-th subsystem respec-
tively, fI : RnI × RmI 7→ RnI is the nominal function dy-
namics of the I-th subsystem, ηI : RnI ×RmI ×R+ 7→ RnI

is the modeling uncertainty, ξI ∈ RnI is the measurement
uncertainty and hI,J : RnI ×RnJ ×RmI 7→ RnI represents
the interconnection functions between the I-th and J-th
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subsystem, J ∈ {1, ..., N}\I . The term βI(t−T0)φI(xI , uI)
characterizes the fault function dynamics affecting the I-th
subsystem including its time evolution. More specifically, the
term φI : RnI × RmI 7→ RnI is the fault function and the
term βI(t− T0) : R 7→ R+ determines the time evolution of
the fault, where T0 is the time of the fault occurrence. The
fault time profile βI(t−T0) can be used to model abrupt or
incipient faults using a decaying exponential type function:

βI(t− T0) ,

{
0 if t < T0

1− e−bI(t−T0) if t ≥ T0
(3)

where bI > 0. Large values of bI indicate abrupt faults,
whereas smaller values of bI indicate slowly developing
faults (incipient faults).
The objective is to design and analyze a distributed fault
detection scheme, where for each subsystem ΣI , corresponds
a local fault detection algorithm, which receives local mea-
surements and information from interconnected systems. In
this paper the interconnection functions hI,J are considered
known. In the case of sparsely interconnected systems most
of the interconnection functions will be zero. The fault func-
tions φI are unknown and the fault occurrence time T0 is also
unknown. It is assumed that there exist feedback controllers
for selecting uI such that some desired control objectives are
achieved. In this paper, we do not deal explicitly with the
control problem, but instead consider the fault detection issue
in the presence of faults φI , modeling uncertainties ηI and
measurement uncertainties ξI . The following assumptions are
used throughout the paper:

Assumption 1: For each subsystem ΣI , I ∈ {1, ..., N}
the local state variables xI and the local inputs uI remain
bounded before and after the occurrence of a fault.

Assumption 1 is required for well-posedness since in this
work we address the fault detection problem, not the control
design and fault accommodation problem.

Assumption 2: The modeling uncertainty ηI in each
subsystem is unstructured and possibly unknown nonlinear
function of xI , uI and t but bounded by a known functional
η̄I , i.e.,

|ηI(xI , uI , t)| ≤ η̄I(yI , uI), ∀(xI , uI) ∈ DI ,∀t ≥ 0, (4)

where η̄I(yI , uI) ≥ 0 is a known bounding function and
DI ⊂ RnI × RmI is some region of interest.

Assumption 2 characterizes the class of modeling uncer-
tainties considered. In practice, the system is sometimes more
accurately modeled in certain regions of the state space.
Therefore, the fact the bound η̄I is a function of yI and
uI (as opposed to a constant) provides more flexibility by
allowing the designer to take into consideration any prior
knowledge of the system.

In order to minimize the effect of measurement uncertainty
ξI(t), each measured state variable y(k)I (k-th component of
yI ) is filtered by a p-th order low-pass filter with transfer
function:

Hp(s) =
αp

(s+ α)p
. (5)

Generally, the values of α and p can be different for each
subsystem and for each state variable, but in this paper
without loss of generality we consider them to be the same
for all the output variables in order to simplify the notation
and presentation. The order p of the low-pass filter regulates
the damping effect of the high frequency noise, whereas the
value α of the filter determines the cutoff frequency at which
the damping begins. In the rest of the paper, the notation y(k)I,j

indicates the measurement of the k-th state variable of the
I-th subsystem after being filtered by j first order filters.
Moreover, the operator Di indicates the i-th time derivative
operator:

Di ,
di

dti
. (6)

For example, D0y ≡ y,D1y ≡ ẏ, D2y ≡ ÿ, etc.
Assumption 3: There exists a p-th order filter of the form

Hp(s) such that the output of the filtered measurement
uncertainty ξI(t) is zero, that is ξ(k)I,p(t) = 0, or equivalently:

y
(k)
I,p(t) = x

(k)
I,p(t). (7)

It is important to note that filtering the output measure-
ments is crucial to the proposed fault detection scheme as it
helps dampening the effect of noise and therefore the derived
detection thresholds are less conservative. In addition, the
filtering results in noise-free residuals and therefore the case
of false alarms due to the noise is avoided. At this point,
we must stress that although the method is particularly
tailored to the case of uncertain state measurements, it can
also be applied to the case of error-free measurements as it
was assumed in earlier work, since Assumption 3 holds by
default. In that case, the order p of the filter used can be set
to p = 1 and the value of α can be somewhat larger in order
to reduce the detection time.

III. DISTRIBUTED FAULT DETECTION

By filtering each output signal y(k)I (t) with the p-th order
low-pass filter given by (5) we obtain the filtered output
y
(k)
I,p(t), given by:

y
(k)
I,p(t) = Hp(s)

[
y
(k)
I (t)

]
. (8)

By using standard polynomial expansion, (8) can be written
as:

y
(k)
I,p =

αp

p∑
i=0

cisi

[
y
(k)
I

]
, where ci =

(
p

i

)
αp−i. (9)

By rearranging terms we obtain:

Dpy
(k)
I,p = −

p−1∑
i=0

ciDiy
(k)
I,p + αpy

(k)
I . (10)

Identically, the same holds for the state variables x(k)I :

Dpx
(k)
I,p = −

p−1∑
i=0

ciDix
(k)
I,p + αpx

(k)
I . (11)
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In this work, the residual ε(k)I (t) to be used for fault detection
is defined as:

ε
(k)
I (t) , D1y

(k)
I,p(t)− z(k)I (t), (12)

where z(k)I (t) will be specified below. This residual consti-
tutes the basis of the fault detection scheme and it is readily
measurable as it will be shown later on. The detection of
a fault in the large-scale system is made when

∣∣∣ε(k)I (t)
∣∣∣ >

ε̄
(k)
I (t), for at least one component k in any subsystem ΣI ,

where ε̄(k)I (t) is the detection threshold (to be specified). The
first term D1y

(k)
I,p of the residual is simply the difference of

the input-output signals of the last first order filter multiplied
by the coefficient α, as it can be seen from Figure 1 or
mathematically from Lemma 1. The signal z(k)I (t) is given
by:

z
(k)
I (t) = Hp(s)

[
f
(k)
I (yI(t), uI(t))

+

N∑
J=1

J 6=I

h
(k)
I,J(yI(t), yJ(t), uI(t))

]
.

(13)

with zero initial conditions for the filter Hp(s), i.e.
Diz

(k)
I (0) = 0, i = 0, 1, . . . , p − 1. Similarly to (10) and

(11), the signal z(k)I can be rewritten in the following form:

Dpz
(k)
I =−

p−1∑
i=0

ciDiz
(k)
I

+ ap
(
f
(k)
I (yI , uI) +

N∑
J=1

J 6=I

h
(k)
I,J(yI , yJ , uI)

)
.

(14)

By successively differentiating p−1 times the residual signal
given by (12) we obtain:

D1ε
(k)
I = D2y

(k)
I,p −D1z

(k)
I

...

Dp−1ε
(k)
I = Dpy

(k)
I,p −Dp−1z

(k)
I .

(15)

Equations (12) and (15) can be represented collectively as:

Diε
(k)
I = Di+1y

(k)
I,p −Diz

(k)
I , i = 0, 1, . . . , p− 1, (16)

where y(k)I,0 , y
(k)
I .

By using (7) and (11), the last equation of (15) becomes:

Dp−1ε
(k)
I = −

p−1∑
i=0

ciDix
(k)
I,p + αpx

(k)
I −Dp−1z

(k)
I (17)

By differentiating (17) one more time it becomes:

Dpε
(k)
I = −

p−1∑
i=0

ciDi+1x
(k)
I,p + αpẋ

(k)
I −Dpz

(k)
I (18)

Then, by using (14), equation (18) becomes:

Dpε
(k)
I = −

p−1∑
i=0

ci

(
Di+1x

(k)
I,p −Diz

(k)
I

)
+ αp

(
ẋ
(k)
I − f

(k)
I (yI , uI)−

N∑
J=1

J 6=I

h
(k)
I,J(yI , yJ , uI)

)
.

(19)

Finally, by using (7) and (16), equation (19) can be rewritten
as:

p∑
i=0

ciDiε
(k)
I =

αp
(
ẋ
(k)
I − f

(k)
I (yI , uI)−

N∑
J=1

J 6=I

h
(k)
I,J(yI , yJ , uI)

)
.

(20)

Prior to the fault, equation (20) can be written as:
p∑
i=0

ciDiε
(k)
I = αpχ

(k)
I (t), (21)

where

χ
(k)
I (t) , ∆f

(k)
I (t) + ∆h

(k)
I,J(t) + η

(k)
I (xI , uI , t) (22)

∆f
(k)
I (t) , f

(k)
I (xI , uI)− f (k)I (yI , uI) (23)

∆h
(k)
I,J(t) ,

N∑
J=1

J 6=I

(
h
(k)
I,J(xI , xJ , uI)− h(k)I,J(yI , yJ , uI)

)
.

(24)

According to (21):

ε
(k)
I (t) = Hp(s)

[
χ
(k)
I (t)

]
, (25)

where χ(k)
I (t) is the total uncertainty term given by (22). In

this case the initial conditions are nonzero. Seen differently,
(21) is an ODE with initial conditions:

Diε
(k)
I (0) = Di+1y

(k)
I,p(0), i = 0, 1, . . . , p− 1. (26)

These initial conditions can be calculated based on the
following lemma:

Lemma 1: Let y
(k)
I,j (t) = Hj(s)

[
y
(k)
I (t)

]
. Then, the

following recursive equation holds:

Diy
(k)
I,j = −αDi−1y

(k)
I,j + αDi−1y

(k)
I,j−1 (27)

Proof: Using the definition of y(k)I,j , we obtain:

y
(k)
I,j (t) =

(
α

s+ α

)j [
y
(k)
I (t)

]
=

α

s+ α

(
α

s+ α

)j−1 [
y
(k)
I (t)

]
=

α

s+ α

[
y
(k)
I,j−1(t)

]
.
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Fig. 1. Filtering architecture and calculation of Diy
(k)
I,j signals for p = 3

Therefore,

D1y
(k)
I,j = −αy(k)I,j + αy

(k)
I,j−1.

By successively differentiating the last equation we obtain
the recursive equation (27).
To simplify the notation and without loss of generality, the
initial conditions of all the first order filters are chosen to be
zero, that is:

y
(k)
I,j (0) = 0, j = 1, . . . , p (28)

and thus the initial values of the signals Diy
(k)
I,j become

Diy
(k)
I,j (0) =

{
αiy

(k)
I (0) if i = j

0 if i 6= j
(29)

where i = 1, . . . , p, j = i, . . . , p.
Therefore, the initial conditions (26) of the ODE (21)

become:

Di−1ε
(k)
I (0) =

{
αpy

(k)
I (0) if i = p.

0 if i = 1, 2, . . . , p− 1.
(30)

Figure 1 illustrates how the equations (27), (28) and (29)
come together for the case p = 3. This “full version” of the
filtering scheme will be compacted later on in the implemen-
tation of the residual signal ε(k)I (t) (by decomposing it into
a series of a p− 1 and a first order filter; see Figure 2) but
it is considered important at this point to be demonstrated in
a complete way to make things more clear.

Now, the solution of (21) can be written as the sum of the
zero input response ε(k)ziI

(t) (due to initial conditions) and the
zero state response ε(k)ziI

(t) (due to input):

ε
(k)
I (t) = ε

(k)
ziI

(t) + ε(k)zsI (t). (31)

The zero input response term is obtained from the solution

of the homogeneous equation
p∑
i=0

ciDiε
(k)
I = 0. Therefore

ε
(k)
ziI

(t) =

p−1∑
i=0

Ait
ie−αt, (32)

where the coefficients Ai are obtained by solving a linear
system of equations so that the initial conditions (30) are
satisfied. After some algebraic manipulation, we obtain that
the coefficients Ai are given by

Ai =

{
0 if i = 0, 1, . . . , p− 2.

1
(p−1)!α

py
(k)
I (0) if i = p− 1.

(33)

The zero state response term is simply the response of
an LTI system with transfer function Hp(s) (and zero initial
conditions) to the input χ(k)

I (t). Mathematically:

ε(k)zsI (t) =
αp

(s+ α)p

[
χ
(k)
I (t)

]
. (34)

Finally, by combining equations (31)-(34) the residual
becomes:

ε
(k)
I (t) =

1

(p− 1)!
αpy

(k)
I (0)tp−1e−αt

+
αp

(s+ α)p

[
χ
(k)
I (t)

]
.

(35)

By using the triangle inequality the previous equation
becomes: ∣∣∣ε(k)I (t)

∣∣∣ ≤ 1

(p− 1)!
αp
∣∣∣y(k)I (0)

∣∣∣ tp−1e−αt
+

αp

(s+ α)p

[∣∣∣χ(k)
I (t)

∣∣∣] . (36)

Based on (36), a suitable detection threshold ε̄(k)I (t) is given
by:

ε̄
(k)
I (t) =

1

(p− 1)!
αp
∣∣∣y(k)I (0)

∣∣∣ tp−1e−αt
+

αp

(s+ α)p

[
χ̄
(k)
I (t)

]
,

(37)

where χ̄
(k)
I (t) is the bound on the total uncertainty term

χ
(k)
I (t); i.e.,

0 ≤
∣∣∣χ(k)
I (t)

∣∣∣ ≤ χ̄(k)
I (t). (38)

Using Assumption 2, the bound χ̄(k)
I (t) is defined as:

χ̄
(k)
I (t) , sup

ξI∈RnI

∣∣∣∆f (k)I (t)
∣∣∣+ sup

ξI∈RnI

sup
ξJ∈RnJ

∣∣∣∆h(k)I,J(t)
∣∣∣

+ η̄
(k)
I (yI , uI).

(39)

Following the preceding mathematical analysis, in the
absence of any faults the absolute value of the residual signal
ε
(k)
I (t) is always bounded by the detection threshold ε̄(k)I (t)

given by (37). Therefore, this guarantees that there will be
no false alarms, which is stated formally in the following
lemma.

Lemma 2: Consider a distributed system comprised of N
subsystems ΣI given by (1). In the absence of any faults, the
absolute values of the residual signals ε(k)I (t) given by (12),
where the signals D1y

(k)
I,p(t) and z(k)I (t) are given by (27) and

(13) respectively, are bounded by the detection thresholds
ε̄
(k)
I (t), given by (37), thus guaranteeing no false alarms.
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Fig. 2. Local Filtered Fault Detection Scheme

IV. IMPLEMENTATION OF DISTRIBUTED FAULT
DETECTION SCHEME

Next we proceed with the implementation of the residual
signals and thresholds and the discussion of certain practical
issues. Figure 2 illustrates the implementation of the local
filtered fault detection scheme for the I-th subsystem. It is
important to note that we do not need the whole filtering
structure as in Figure 1 but rather a simplified filtering
scheme using a series of a p − 1 and a first order filter as
shown in Figure 2.

In general, the distributed fault detection scheme will
comprise of N local filtered fault detection modules, one
for each subsystem ΣI . The implementation of the I-th
fault detection module requires the measurements yJ of all
subsystems ΣJ that are influencing ΣI . Therefore, there is
the need of communication between the fault detection mod-
ules depending on their interconnections. Figure 3 illustrates
the distributed fault detection scheme for the case of two
subsystems Σ1, Σ2 where Σ1 influences Σ2.

 1u t

 1y t

1 2 2u t

 2y t

2

2

1

1

Fig. 3. Distributed fault detection scheme for the case of two subsystems
Σ1, Σ2 where Σ1 influences Σ2.

A practical issue that requires consideration is the deriva-
tion of the bound χ̄

(k)
I (t) given in (39). Specifically, the

derivation of χ̄(k)
I (t) requires the bounds on ∆f

(k)
I (t) and

∆h
(k)
I,J(t). Using (23), the bound on ∆f

(k)
I (t) is given by

sup
ξI∈RnI

∣∣∣∆f (k)I (t)
∣∣∣ = sup

ξI∈RnI

∣∣∣f (k)I (xI , uI)− f (k)I (yI , uI)
∣∣∣

An approach for deriving the bound is to consider a local
Lipschitz assumption:∣∣∣f (k)I (xI , uI)− f (k)I (yI , uI)

∣∣∣ ≤ Lf(k)
I

|xI − yI | = L
f
(k)
I

|ξI |
(40)

where L
f
(k)
I

is the Lipschitz constant for the function

f
(k)
I (xI , uI) with respect to xI . Therefore, if we have a

bound ξ̄I on the measurement uncertainty, then we can obtain
a bound on ∆f

(k)
I (t). A similar approach can be followed

for the interconnection functions ∆h
(k)
I,J(t).

V. FAULT DETECTABILITY

The design and analysis in the previous two sections
was based on the derivation of suitable thresholds ε̄(k)I (t)

such that the absolute values of the residual signals ε(k)I (t)

are bounded by ε̄
(k)
I (t) in the absence of any fault. In

the presence of a fault, an important question is what
type/magnitude of fault can be detected. This is referred to
as fault detectability analysis. In this section the detectability
condition of the aforementioned fault detection scheme is
presented. This condition constitutes a theoretical result that
characterizes quantitatively the class of faults detectable by
the proposed scheme.

Theorem 1: Consider the distributed fault detection
scheme described in (12), (14), (37). A fault in the I-
th subsystem is detectable if the fault function φI(xI , uI)
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satisfies the following inequality:∣∣∣∣ ∫ t

T0

1

(p− 1)!
(t− τ)p−1e−α(t−τ)

αp
(

1− e−bI(τ−T0)
)
φ
(k)
I (xI , uI) dτ

∣∣∣∣ > 2ε̄
(k)
I (t)

(41)

Proof: In the presence of a fault that occurs at t = T0,
equation (21) becomes:

p∑
i=0

ciDiε
(k)
I = αpχ

(k)
I (t) + αpβI(t− T0)φ

(k)
I (xI , uI).

(42)

Following a similar procedure as in the derivation of (35),
the solution of (42) satisfies

ε
(k)
I (t) =

1

(p− 1)!
αpy

(k)
I (0)tp−1e−αt

+
1

(s+ α)p

[
αpχ

(k)
I (t)

]
+

1

(s+ α)p

[
αpβI(t− T0)φ

(k)
I (xI , uI)

]
.

(43)

By using the triangle inequality and equation (38), equation
(43) becomes:∣∣∣ε(k)I (t)

∣∣∣ ≥− 1

(p− 1)!
αp
∣∣∣y(k)I (0)

∣∣∣ tp−1e−αt
− 1

(s+ α)p

[
αpχ̄

(k)
I (t)

]
+

∣∣∣∣ 1

(s+ α)p

[
αpβI(t− T0)φ

(k)
I (xI , uI)

]∣∣∣∣
≥− ε̄(k)I (t)

+

∣∣∣∣ 1

(s+ α)p

[
αpβI(t− T0)φ

(k)
I (xI , uI)

]∣∣∣∣ .
(44)

For fault detection
∣∣∣ε(k)I (t)

∣∣∣ > ε̄
(k)
I (t) must hold, so the final

fault detectability condition is obtained:∣∣∣∣ 1

(s+ α)p

[
αpβI(t− T0)φ

(k)
I (xI , uI)

]∣∣∣∣ > 2ε̄
(k)
I (t). (45)

This can be rewritten based on (3) in the integral form (41)
of the Theorem.

The above fault detectability theorem provides a measure
of the type of faults that can be detected with the proposed
distributed fault detection scheme. Clearly, the fault functions
φI(xI , uI) are typically unknown and therefore this condi-
tion cannot be checked apriori. However, it provides useful
intuition about the type of faults that are detectable.

VI. CONCLUSION

In this paper a distributed fault detection filtering approach
for a class of interconnected, continuous-time, nonlinear
systems with modeling and measurement uncertainty is pre-
sented. Under certain assumptions, a distributed estimation
scheme is designed, suitable adaptive detection thresholds
are derived analytically and the fault detectability condition
is obtained that characterizes quantitatively the class of

faults that can be detected by the proposed scheme. The
implementation requires each subsystem to be monitored by
a distinct module called local fault detection scheme. Each
module requires the input and output measurements of the
subsystem that is monitoring and also the measurements
of all the subsystems that are influencing the subsystem
that the specific module is monitoring. Further on, in order
to deal with a practical issue regarding the bound of the
total uncertainty term a method was proposed, considering a
Lipschitz assumption. Appropriate choices should be made
regarding the filters’ coefficients α and order p since they
have a great effect in the fault detection scheme. Future
research will be devoted to the investigation of the higher
order filtering effects, to the extension of the methodology
in the case of unknown interconnection functions by utiliz-
ing adaptive approximation and also to the application of
the results demonstrating the effectiveness of the proposed
scheme.
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