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Abstract— In this paper, we focus on L1 gain analysis prob-
lems of linear time-invariant continuous-time positive systems.
A positive system is characterized by the strong property that
its output is always nonnegative for any nonnegative input.
Because of this peculiar property, it is natural to evaluate the
magnitude of positive systems by the L1 gain (i.e. the L1 induced
norm) in terms of the input and output signals. In contrast
with the standard L1 gain, in this paper, we are interested in
L1 gains with weightings on the input and output signals. It
turns out that the L1 gain with weightings plays an essential
role in the stability analysis of interconnected positive systems.
More precisely, as a main result of this paper, we show that
an interconnected positive system is stable if and only if there
exists a set of weighting vectors that renders the L1 gain of each
positive subsystem less than unity. As such, using a terminology
in the literature, the weighting vectors work as ‘separators,’
and thus we establish solid separator-based conditions for the
stability of interconnected positive systems. We finally illustrate
that these separator-based conditions are effective particularly
when we deal with robust stability analysis of positive systems
against both L1 gain bounded and parametric uncertainties.

Keywords: positive system, L1 gain, stability, interconnec-
tion, separator.

I. INTRODUCTION

A linear time-invariant system is said to be positive (or

more accurately, internally positive) if its state and output

are both nonnegative for any nonnegative initial state and

nonnegative input [2], [6]. This property can be seen nat-

urally in biology, network communications, economics and

probabilistic systems. Even though practical systems in these

fields are nonlinear in nature, linear positive system models

are still valid in several applications, ex., in age-structured

population models in demography [2].

Due to the nonnegative property, it would be natural

to evaluate the magnitude of positive systems via the L1

gain (i.e., the L1 induced norm) in terms of the input and

output signals. In general, a properly defined system-gain is

useful for quantitative evaluation of the system performance.

Indeed, it is shown in [3] that the L1 gain of positive system

plays an important role in robust stability analysis against

dynamical and parametric uncertainties. In recent studies

on switched positive systems [9], [10], the L1 gain is also

employed as a performance index to be minimized.

In contrast with the standard L1 gain employed in the

literature, we focus on L1 gains with weightings on the
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input and output signals in this paper. As a preliminary

result, we first show that the L1 gain of a positive system

evaluated with fixed weighting vectors is characterized by

linear scalar inequalities. This is a slight, but still meaningful

extension of known results in [9], [10] where the standard

L1 gain is characterized by linear inequalities as well. Then,

as a main contribution of this paper, we show that the

L1 gain evaluated with weightings plays an essential role

in the stability analysis of interconnected positive systems.

Here, we consider the interconnection among more than

one positive subsystem requiring that the positivity property

is still preserved under the interconnection (we call this

property admissible, whose precise definition is given later).

Then, we prove that an interconnected positive system is

admissible and stable if and only if there exists a set of

weighting vectors that renders the L1 gain of each positive

subsystem less than unity. Namely, the stability condition

is separated into the L1 gain condition for each subsystem,

where they are correlated through the weighting vectors. As

such, using terminology in the literature, we could say that

the weighting vectors work as separators, which has played

an important role in the stability analysis of general linear

systems [4], [5], [7]. Thus, we establish solid separator-

based conditions for the stability of interconnected positive

systems. We emphasize that, in contrast with the case of

general linear system analysis, the separator-based results for

the interconnected positive system hold true irrespective of

the number of the subsystems. These results surely bring new

insights for the stability of linear positive systems.

We finally show that, as expected from [4], [5], [7], the

separator-based conditions are effective particularly when we

deal with robust stability analysis of positive systems against

uncertainties. In the case where the set of uncertainties is

characterized by L1 gain boundedness with known weight-

ings (i.e., separators), we derive a necessary and sufficient

condition for the robust stability in terms of linear scalar in-

equalities (linear programming problems). On the other hand,

in the case where the uncertainties are parametric, we derive

sufficient conditions for the robust stability in which we seek

for appropriate separators. Nevertheless, it is still possible

to ensure their necessity under additional assumptions on

the structure of the uncertainty. The effectiveness of these

approaches is illustrated by an academic numerical example.

We use the following notations. For given two matrices A

and B of the same size, we write A > B (A ≥ B) if Aij >

Bij (Aij ≥ Bij) holds for all (i, j), where Aij (Bij) stands

for the (i, j)-entry of A (B). In relation to this notation, we

also define
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R
n
++ := {x ∈ R

n, x > 0} , R
n
+ := {x ∈ R

n, x ≥ 0} .

We also define R
n×m
++ and R

n×m
+ with obvious modifications.

We denote by ei (i = 1, · · · , n) the i-th standard basis of

R
n. Finally, the all-ones vector in R

n is denoted by 1n.

II. PRELIMINARIES

In this section, we gather basic definitions and fundamen-

tal results for the positive system analysis.

Definition 1 (Positive Linear System): [2] A linear sys-

tem is said to be positive if its state and output are both

nonnegative for any nonnegative initial state and nonnegative

input.

Definition 2 (Metzler Martrix): [2] A matrix A ∈ R
n×n

is said to be Metzler if its off-diagonal entries are all

nonnegative, i.e., Aij ≥ 0 (i 6= j).
Theorem 1: [2] Let us consider the continuous-time LTI

system described by

G(s) :=

[
A B

C D

]
. (1)

Then, this system is positive if and only if A is Metzler,

B ≥ 0, C ≥ 0, and D ≥ 0.

In the sequel, we denote by M
n the set of the Metzler

matrices of the size n. Next theorem summarizes known

conditions for the Hurwitz stability of Metzler matrices.

Theorem 2: [2], [6] For given A ∈ M
n, the following

conditions are equivalent.

(i) The matrix A is Hurwitz stable.

(ii) For any h ∈ R
n
+ \ {0}, the row vector hT A has at least

one strictly negative entry.

(iii) The inverse of A satisfies A−1 ≤ 0.

(iv) There exists h ∈ R
n
++ such that hT A < 0.

In addition to the conditions in the above theorem, the

following simple lemma on the stability of block Metzler

matrices plays an important role in this paper. We omit the

proof due to limited space.

Lemma 1: For given P ∈ M
n, Q ∈ R

n×m
+ , R ∈ R

m×n
+ ,

and S ∈ M
m, the following conditions are equivalent.

(i) The Metzler matrix

Π :=

[
P Q

R S

]

is Hurwitz stable.

(ii) The Metzler matrix P is Hurwitz stable and S−RP−1Q

is Metzler and Hurwitz stable.

(iii) The Metzler matrix S is Hurwitz stable and P−QS−1R

is Metzler and Hurwitz stable.

III. L1 GAIN ANALYSIS

Let us consider the positive system described by

G :

{
ẋ = Ax + Bw, x(0) = 0,
z = Cx + Dw

(2)

where A ∈ M
n, B ∈ R

n×nw

+ , C ∈ R
nz×n
+ , D ∈ R

nz×nw

+ .

For given weighting vectors qz ∈ R
nz

++ and qw ∈ R
nw

++,

we are interested in computing a variant of the L1 gain of

the system G defined by

‖Gqz,qw
‖1+ := sup

‖qT
ww‖1=1, w∈L1+

‖qT
z z‖1. (3)

Here, for v(t) : R → R, we define

‖v‖1 :=

∫ ∞

0

|v(t)|dt

and L1+ is the set of element-wise positive and L1 bounded

signals as in

L1+ := {v(t) : ‖vi‖1 < ∞, vi(t) ≥ 0 ∀t ∈ [0,∞)} .

If we let qz = 1nz
and qw = 1nw

, the definition (3)

reduces to the standard L1 gain and this is employed as

a performance index in recent studies on switched positive

systems [9], [10]. The main contribution of this paper is to

show that the extension of qz and qw to general positive

vectors is surely meaningful. As clarified later on, this

extension leads us to fruitful results, such as separator-based

conditions for stability of interconnected positive systems.

The next theorem shows that the L1 gain ‖Gqz,qw
‖1+ is

characterized by linear inequalities. The proof is omitted due

to limited space.

Theorem 3: Let us consider the positive system G described

by (2). Then, for given qz ∈ R
nz

++, qw ∈ R
nw

++, and γ > 0,

the following conditions are equivalent.

(i) The matrix A ∈ M
n is Hurwitz stable and

‖Gqz,qw
‖1+ < γ.

(ii) There exists h ∈ R
n
++ such that[

hT A + qT
z C hT B + qT

z D − γqT
w

]
< 0. (4)

(iii) The matrix A ∈ M
n is Hurwitz stable and the following

inequality holds:

qT
z G(0) < γqT

w . (5)

Here, G(s) is the transfer matrix of the system G.

The following two corollaries are direct consequences of

the condition (iii) in Theorem 3.

Corollary 1: For the positive system G described by (2)

with A ∈ M
n being Hurwitz stable, the L1 gain ‖Gqz,qw

‖1+

is given by

‖Gqz,qw
‖1+ = min γ subject to qT

z G(0) ≤ γqT
w (6)

or equivalently,

‖Gqz,qw
‖1+ = max

i

(qT
z G(0))i

qw,i

. (7)

Corollary 2: For the positive system G described by (2)

with A ∈ M
n being Hurwitz stable, the L1 gain ‖Gqz,qw

‖1+

is finite for any fixed qz > 0, qw > 0.

In relation to the above corollary, we define ‖Gqz,qw
‖1+ =

∞ for any qz > 0 and qw > 0 if the positive system G is

unstable (i.e, the matrix A ∈ M
n is not Hurwitz stable).

IV. STABILITY ANALYSIS OF

INTERCONNECTED POSITIVE SYSTEMS

In this section, we analyze stability of interconnected

positive systems. It turns out that the L1 gain with weightings

introduced in the preceding section plays an important role.

A. Interconnection of Two Positive Systems

Let us consider two positive systems G1 and G2 repre-

sented by
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G1 :

{
ẋ1 = A1x1 + B1u1,

y1 = C1x1 + D1u1,

G2 :

{
ẋ2 = A2x2 + B2u2,

y2 = C2x2 + D2u2.

(8)

We consider the case where the inputs and the outputs

have compatible dimensions so that the feedback-connection

shown Fig. 1 with u1 = y2 and u2 = y1 is well-defined. For

conciseness, we denote by
2

Ξ
i=1

Gi the interconnected system.

In relation to the well-posedness of the feedback-connection,

we make the next definition.

Definition 3: The interconnected system
2

Ξ
i=1

Gi is said to be

admissible if the Metzler matrix D1D2−I is Hurwitz stable.

In the sequel, we require the admissibility of the intercon-

nected system
2

Ξ
i=1

Gi whenever we analyze its stability. The

meaning of this presupposition, and its rationality as well,

can be explained as follows. If det(D1D2−I) 6= 0, then the

interconnection in Fig. 1 is well-posed, and the state-space

description of the interconnected system is represented by (9)

given at the top of the next page. Thus, if the admissibility

is ensured, we see that

(i) the interconnection in Fig. 1 is well-posed;

(ii) in addition to D1D2 − I , the Metzler matrix D2D1 − I

is Hurwitz as well, and hence (I − D1D2)
−1 ≥ 0 and

(I − D2D1)
−1 ≥ 0 hold. Therefore the matrix Acl in

(9) is Metzler. It follows that the positive nature of G1

and G2, i.e., the positivity of the states x1 and x2, is

still preserved under the interconnection.

Now, we are ready to state the main result of this paper.

In the next theorem, we will show that the admissibility and

stability of
2

Ξ
i=1

Gi can be fully characterized by the L1 gain

defined in the preceding subsection.

Theorem 4: Let us consider the positive systems G1 and

G2 described by (8). Then, the following conditions are

equivalent:

(i) The interconnected system
2

Ξ
i=1

Gi is admissible and

Hurwitz stable.

(ii) The Metzler matrices A1 and A2 are Hurwitz stable,

and there exist q̃1 > 0 and q̃2 > 0 such that

‖G1,eq1,eq2
‖1+‖G2,eq2,eq1

‖1+ < 1.

(iii) There exist q1 > 0 and q2 > 0 such that

‖G1,q1,q2
‖1+ < 1, ‖G2,q2,q1

‖1+ < 1.

(iv) There exist h1 > 0, h2 > 0 and q1 > 0, q2 > 0 such

that

-

u2
G2

y2

�

u1
G1

y1

Fig. 1. Interconnected system
2

Ξ
i=1

Gi.

[
hT

1 A1 + qT
1 C1 hT

1 B1 + qT
1 D1 − qT

2

]
< 0,

[
hT

2 A2 + qT
2 C2 hT

2 B2 + qT
2 D2 − qT

1

]
< 0.

(v) The Metzler matrices A1, A2, and G1(0)G2(0)− I (or

equivalently, G2(0)G1(0) − I) are all Hurwitz stable.

(vi) The Metzler matrix

Π :=




A1 0 0 B1

0 A2 B2 0
C1 0 −I D1

0 C2 D2 −I




is Hurwitz stable.

In this theorem, the equivalence of (ii) and (iii) can be

seen straightforwardly. Indeed, the implication (iii) ⇒ (ii)

is obvious. On the other hand, if (ii) holds, then there exist

γ > 0 such that

‖G1,eq1,eq2
‖1+ < γ, ‖G2,eq2,eq1

‖1+ <
1

γ
. (10)

Here we used Corollary 2 implicitly. From (10), we see that

the condition (ii) surely holds with, ex., (q1, q2) = (
1

γ
q̃1, q̃2)

or (q1, q2) = (q̃1, γq̃2). The equivalence of (iii) and (iv) is

obvious from (ii) of Theorem 3. The equivalence of (iv) and

(v) is a direct consequence of (iii) in Theorem 3. Finally, the

equivalence of (iv) and (vi) also follows immediately from

(iv) of Theorem 2 if we note that the inequalities in (iv) can

be restated equivalently as




h1

h2

q1

q2




T 


A1 0 0 B1

0 A2 B2 0
C1 0 −I D1

0 C2 D2 −I


 < 0.

Therefore, Theorem 4 is verified if we prove (i) ⇔ (vi).

Before moving onto the proof, it should be noted that

Theorem 4 implies that the interconnected system
2

Ξ
i=1

Gi is

stable only if G1 and G2 are both stable. This is consistent

with the well-known fact that, under positivity-preserving

interconnection, the system
2

Ξ
i=1

Gi is stable only if G1 and

G2 are both stable [2], [1].

Proof of (i) ⇔ (vi) in Theorem 4: It is an elementary

fact that the Metzler matrix

[
−I D1

D2 −I

]
is Hurwitz stable

if and only if D1D2 − I is. This is a sub-case of Lemma 1

with −I on the diagonal as well. Therefore the condition (i)

can be restated equivalently as the Metzler matrices
[

−I D1

D2 −I

]

and

Acl =

[
A1 0
0 A2

]
−

[
0 B1

B2 0

] [
−I D1

D2 −I

]−1 [
C1 0
0 C2

]

are both Hurwitz stable. Thus, the equivalence of (i) and (vi)

follows directly from Lemma 1.

We have several remarks on Theorem 4. First of all, the

condition (ii) can be interpreted as a sort of small gain

condition that is quite popular in the community of control

theory. In the literature, the gain is usually defined via the
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[
ẋ1

ẋ2

]
= Acl

[
x1

x2

]
, Acl :=

[
A1 + B1(I − D2D1)

−1D2C1 B1(I − D2D1)
−1C2

B2(I − D1D2)
−1C1 A2 + B2(I − D1D2)

−1D1C2

]
. (9)

=======================================================================================

L2 induced norm and plenty of results have been obtained

for stability analysis of interconnected systems [8]. We have

shown that, if we focus on the interconnection of positive

systems, the small-gain-type condition can be obtained even

if we replace the common L2 gain by the L1 gain with

weightings. On the other hand, if we rewrite (ii) as in (iii) or

(iv), we see that the positive vectors (q1, q2) work as if they

are separators, which again have played a crucial role in

the stability analysis of interconnected systems [4], [5], [7].

We emphasize that the separator-based conditions (ii), (iii)

and (iv) are necessary and sufficient, and this strong result

is far from being easily achievable for general linear system

analysis.

The conditions in Theorem 3 with separators (q1, q2) are

of course of little interest for stability analysis of exactly

known systems. However, they are surely effective for robust

stability analysis, particularly when the uncertain system of

interest is composed of an exactly known positive stable

system G and an uncertain system ∆ as shown in Fig. 2. As

commonly done in the literature discussing separator-based

conditions for general linear systems, there are basically two

strategies for the use of (iv) in Theorem 4:

1. We fix the separators q1 > 0 and q2 > 0 by taking

typical properties of the uncertain component ∆ into

consideration. In this case, robust stability analysis

amounts to examining only the L1 gain condition for

exactly known system, with fixed q1 > 0 and q2 > 0.

2. We jointly seek for the separators q1 > 0, q2 > 0 as

well as for h1 > 0, h2 > 0. Even for those robust

stability analysis problems where direct analysis on the

closed-loop system is difficult, it is often the case that

we can obtain numerically tractable conditions by the

separator-based results in Theorem 4.

- ∆

�G

Fig. 2. Interconnection between exactly known G and uncertain ∆.

In the rest of this subsection, let us focus on the robust

stability analysis along the first line stated above. To this

end, we define the following two sets of uncertainties.

Definition 4: For given q1 ∈ R
l
++ and q2 ∈ R

m
++, we define

∆
dy
q2,q1

and ∆
st
q2,q1

by

∆
dy
q2,q1

:= {∆(s) : positive, stable, and LTI with

‖∆q2,q1
‖1+ ≤ 1} ,

∆
st
q2,q1

:=
{
∆ ∈ R

m×l
+ : ‖∆q2,q1

‖1+ ≤ 1
}

.
By this definition, we characterized uncertainties in terms

of their L1 gain with weighting vectors q1 and q2. In the

following, we analyze robust stability of the closed-loop

system Fig. 2 against these uncertainties. We assume that

the exactly known component G is a positive, stable and

LTI system with coefficient matrices A ∈ M
n, B ∈ R

n×m
+ ,

C ∈ R
l×n
+ , D ∈ R

l×m
+ . Under these preliminaries, we first

show that the following strong theorem holds.

Theorem 5: For given q1 ∈ R
l
++ and q2 ∈ R

m
++, the closed-

loop system in Fig. 2 is admissible and stable for all ∆ ∈
∆

dy
q2,q1

if and only if ‖Gq1,q2
‖1+ < 1 holds, or equivalently,

there exists h > 0 such that[
hT A + qT

1 C hT B + qT
1 D − qT

2

]
< 0. (11)

Proof of Theorem 5: Sufficiency is obvious from (ii)

of Theorem 4. To prove the necessity by contradiction,

suppose (11) does not hold. Then, from the condition (iii) in

Theorem 3, we see that

(qT
1 G(0))j⋆ ≥ q2,j⋆ (12)

holds for at least one index j⋆. If we define

∆⋆ :=
1

q2,j⋆

ej⋆qT
1 ∈ R

m×l
+ ,

it is obvious that ∆⋆
q2,q1

= 1 and hence ∆⋆ ∈ ∆
dy
q1,q2

.

Furthermore, we obtain from (12) that

qT
1 G(0)∆⋆ = (qT

1 G(0))j⋆

1

q2,j⋆

qT
1 ≥ qT

1 .

This clearly shows that that G(0)∆⋆−I is not Hurwitz stable.

From (v) of Theorem 4, this implies that for the closed-loop

system with ∆ = ∆⋆, at least one of the admissibility and

stability requirements is violated.

It is important to note that, in the necessity part of the

above proof, we have shown that the worst-case uncertainty

that destabilizes the closed-loop system and/or violates the

admissibility condition is always chosen as a nonnegative

matrix ∆⋆ ∈ R
m×l
+ (rather than a dynamical positive sys-

tem). The next corollary readily follows from this fact.

Corollary 3: For given q1 ∈ R
l
++ and q2 ∈ R

m
++, the

closed-loop system in Fig. 2 is admissible and stable for

all ∆ ∈ ∆
st
q2,q1

if and only if ‖Gq1,q2
‖1+ < 1.

We note that the sufficiency of this corollary is obvious

from Theorem 5. What is important is that the necessity still

holds even if we restrict the class of the uncertainty from

∆ ∈ ∆
dy
q2,q1

to ∆ ∈ ∆
st
q2,q1

.

B. Interconnection of N Positive Systems

We next consider the interconnection of N(≥ 3) positive

systems. Surprisingly enough, it turns out that we can still

derive a stability condition corresponding to (iii) (and hence

(iv)) in Theorem 4. This is in sharp contrast with the case

where we deal with general (non-positive) linear systems.

In order to deal with general interconnections among N

subsystems while to facilitate our notations, let us assume

that the i-th subsystem Gi is given by

4032



Gi :





ẋi = Aixi +

N∑

j=1

Bijuij ,

yji = Cjixi

(13)

where Ai ∈ M
ni , Bij ∈ R

ni×nuij

+ , and Cji ∈ R
nyji

×ni

+ .

We consider the case where these N subsystems are inter-

connected by uij = yij (i, j = 1, · · · , N). This implies that

nuij
= nyji

hold for the dimension of the signals uij and

yji (i, j = 1, · · · , N).
For example, in the case where N = 3, the state space

realization of G1 is given by

ẋ1 = A1x1 +
[
B11 B12 B13

]



u11

u12

u13


 ,




y11

y21

y31


 =




C11

C21

C31


x1

and the overall interconnected system is represented by



ẋ1

ẋ2

ẋ3


 =




A1 + B11C11 B12C12 B13C13

B21C21 A2 + B22C22 B23C23

B31C31 B32C32 A3 + B33C33







x1

x2

x3


 . (14)

It should be noted that, in (13), we assume that each

subsystem has its own minor feedback. This assumption has

been made just for notational simplicity and hence in practice

we can let Bii = 0 and Cii = 0 (i = 1, · · · , N). We

also note that the admissibility issue does not appear here

since we assume that the direct-feedthrough term of each

subsystem is zero in (13).

If we denote by
N

Ξ
i=1

Gi the interconnected positive system

of interest, we can prove that the next theorem holds.

Theorem 6: Let us consider the N positive systems Gi

given in (13). Then, the following conditions are equivalent:

(i) The interconnected positive system
N

Ξ
i=1

Gi is stable.

(ii) There exists qij ∈ R
nuij

++ (i, j = 1, · · · , N) such that

‖Gi,qi,z,qi,w
‖1+ < 1 (i = 1, · · · , N)

where

qi,z =




q1i

...

qNi


 , qi,w =




qi1

...

qiN


 .

(iii) There exists hi ∈ R
ni

++ (i = 1, · · · , N) and qij ∈

R
nuij

++ (i, j = 1, · · · , N) such that

hT
i Ai +

N∑

j=1

qT
jiCji < 0,

hT
i Bij − qT

ij < 0 (i, j = 1, · · · , N).

(15)

To see the conditions in this theorem more concretely, let

us consider the case N = 3 for example. Then, the conditions

in (ii) can be written as

‖G
1,[ qT

11
qT
21

qT
31 ]

T
,[ qT

11
qT
12

qT
13 ]

T ‖1+ < 1,

‖G
2,[ qT

12
qT
22

qT
32 ]

T
,[ qT

21
qT
22

qT
23 ]

T ‖1+ < 1,

‖G
3,[ qT

13
qT
23

qT
33 ]

T
,[ qT

31
qT
32

qT
33 ]

T ‖1+ < 1.

On the other hand, the conditions in (iii) become

hT
1 A1 +




q11

q21

q31




T 


C11

C21

C31


 < 0, hT

1

[
B11 B12 B13

]
−




q11

q12

q13




T

< 0,

hT
2 A2 +




q12

q22

q32




T 


C12

C22

C32


 < 0, hT

2

[
B21 B22 B23

]
−




q21

q22

q23




T

< 0,

hT
3 A3 +




q13

q23

q33




T 


C13

C23

C33


 < 0, hT

3

[
B31 B32 B33

]
−




q31

q32

q33




T

< 0.

As noted around (14), if Bii = 0 and Cii = 0 (i = 1, 2, 3)
as usual, the above condition can be simplified as

hT
1 A1 +

[
q21

q31

]T [
C21

C31

]
< 0, hT

1

[
B12 B13

]
−

[
q12

q13

]T

< 0,

hT
2 A2 +

[
q12

q32

]T [
C12

C32

]
< 0, hT

2

[
B21 B23

]
−

[
q21

q23

]T

< 0,

hT
3 A3 +

[
q13

q23

]T [
C13

C23

]
< 0, hT

3

[
B31 B32

]
−

[
q31

q32

]T

< 0.

Similarly to the conditions in Theorem 4, the separator-

based conditions in Theorem 6 will be effective when we

deal with robustness issues. In addition to that, we have a

prospect that the conditions in Theorem 6 can be used for

LP-based L1 control system synthesis for large-scale positive

systems. This topic is currently under investigation.

V. ROBUST STABILITY ANALYSIS AGAINST

PARAMETRIC UNCERTAINTIES

In Subsection IV-A, we consider the robust stability of

uncertain system shown in Fig. 2 and derived Theorem 5 and

Corollary 3. There, we assumed that the uncertainties are L1

gain bounded with known weightings q1 and q2, and derived

necessary and sufficient conditions for the stability against

these types of uncertainties. In this section, we consider the

case where the uncertainties are parametric. More precisely,

we focus on the following two classes of uncertainties:

Dynamic Uncertainty ∆dy
α :

∆dy
α (s) :=

[
A(α) B(α)
C(α) D(α)

]
,

[
A(α) B(α)
C(α) D(α)

]
=

L∑

i=1

αi

[
A[i] B[i]

C[i] D[i]

]
.

(16)

Static Uncertainty ∆st
α :

∆st
α :=

L∑

i=1

αi∆[i]. (17)

Here, A[i] ∈ M
en, B[i] ∈ R

l×en
+ , C[i] ∈ R

en×m
+ , D[i] ∈

R
m×l
+ (i = 1, · · · , L) are known matrices. Similarly, ∆[i] ∈

R
m×l
+ (i = 1, · · · , L) are known precisely. On the other

hand, the parameter α ∈ R
L is uncertain, and assumed to

satisfy α ∈ α where

α :=

{
α ∈ R

L
+ :

L∑

i=1

αi = 1

}
.

Similarly to Subsection IV-A, we analyze robust stability of

the closed-loop system Fig. 2 against these uncertainties. As

before, we assume that the exactly known component G is a

positive, stable, and LTI system with coefficients A ∈ M
n,
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B ∈ R
n×m
+ , C ∈ R

l×n
+ , D ∈ R

l×m
+ . If we directly work on

the closed-loop system of the form (9), we have to examine

robust stability of a matrix that depends rationally on the

uncertain parameter α. In this treatment, it is hard, or at least

not easy, to obtain computationally tractable and efficient

conditions for robust stability analysis. However, by means of

the separator-based conditions in Theorem 4, we can easily

obtain tractable linear inequality conditions for the robust

stability analysis.

Theorem 7: The closed-loop system in Fig. 2 with ∆ =
∆dy

α is admissible and stable for all α ∈ α if there exist

hp > 0 and q > 0, qp > 0 such that

qT G(0) − qT
p < 0,[

hT
p A[i] + qT

p C[i] hT
p B[i] + qT

p D[i] − qT
]

< 0
(i = 1, · · · , L).

(18)

The validity of this theorem is easily confirmed from (iv)

of Theorem 4 and (iii) of Theorem 3 with simple convexity

arguments. On the other hand, for the static uncertainty

∆st
α (α ∈ α), we can obtain much simpler robust stability

condition because of the condition (v) in Theorem 4.

Theorem 8: The closed-loop system in Fig. 2 with ∆ = ∆st
α

is admissible and stable for all α ∈ α if there exists q > 0
such that

qT (∆[i]G(0) − I) < 0 (i = 1, · · · , L). (19)

Again, this theorem readily follows from simple convexity

arguments. In general, the linear inequality condition (19) is

conservative and far from necessary. However, if the input

of G is scalar, then the term ∆[i]G(0) in (19) is a scalar as

well, and from simple convexity arguments, we see that the

closed-loop system in Fig. 2 with ∆ = ∆st
α is admissible

and stable for all α ∈ α if and only if (19) holds.

VI. NUMERICAL EXAMPLE

In this section, we illustrate the effectiveness of the results

in this paper via a simple academic example. Let us consider

the interconnection shown Fig. 2. The nominal system G is

a positive and stable system with coefficient matrices

[
A B

C D

]
=




-3.5 0.2 1.0 0.7 0.5

0.5 -3.3 0.8 0.4 0.4

0.9 0.7 -3.3 0.2 0

0.7 0.2 0.9 0 0.8

0.5 0.3 0.9 0.7 0



.

We assume that the uncertainty component ∆ is given in the

form of (16) where L = 2 and

[
A[1] B[1]

C[1] D[1]

]
=




-2.5 0.1 0.8 0 0.2

0.6 -2.8 0.5 0 0.4

0.3 0.1 -2.9 0.2 0.4

0.5 0.1 0.5 0.1 0.1

0.2 0.1 0.3 0.1 0.4



,

[
A[2] B[2]

C[2] D[2]

]
=




-2.7 0.6 0.4 0.1 0.3

0.5 -2.7 0.6 0.3 0.2

0 0.2 -3.0 0.4 0.3

0.1 0.2 0.3 0.1 0.3

0.1 0.4 0.3 0 0.2



.

For robust admissibility and stability analysis of the inter-

connected system, we examined the feasibility of (18). Then,

it turns out to be feasible with

h =




1.07

1.00

1.47


, hp =




1.12

1.00

1.18


, q =

[
1.18

2.15

]
, qp =

[
2.95

1.88

]
.

Therefore, we can conclude that the interconnected system

is robustly admissible and stable.

In this numerical example, the standard L1 gain for each

system is computed as

‖G12,12
‖1+ = 1.43, ‖G[1],12,12

‖1+ = 0.76, ‖G[2],12,12
‖1+ = 0.67.

Since ‖G12,12
‖1+‖G[1],12,12

‖1+ > 1, we cannot draw any

affirmative conclusions from the outset if we employ the

standard L1 gain. However, by jointly searching for the

weighings q and qp, we indeed succeeded in ensuring robust

admissibility and stability. For comparison, the L1 gain with

computed q and qp are given as follows:

‖Gq,qp
‖1+ = 0.92, ‖G[1],qp,q‖1+ = 0.73, ‖G[2],qp,q‖1+ = 0.57.

VII. CONCLUSION

In this paper, we investigated L1 gain analysis problems of

positive systems and applied obtained results to stability of

interconnected systems. In particular, we have shown that the

stability of interconnected systems can be characterized by

L1 gains of subsystems with appropriately selected weight-

ings. These weightings work as separators, and we clarified

that those separator-based conditions are surely effective

particularly when we deal with robust stability analysis

against L1 gain bounded and parametric uncertainties.

The L1 gain condition and separator-based stability con-

ditions in this paper are given in terms of linear inequalities.

We have a strong prospect that these conditions lead us to

LP-based L1 controller synthesis even under the presence of

uncertainties. This topic is currently under investigation.
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