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Abstract— Recent advances in high-throughput technologies
for biological data acquisition have spurred a broad interest
in the development of mathematical models for biological
phenomena. S-systems, which offer a good compromise be-
tween accuracy and mathematical flexibility, are a promising
framework for modeling the dynamical behavior of genetic
regulatory networks (GRNs), as well as that of biochemical
pathways. In the S-system modeling framework, the number
of unknown parameters is much more than the number of
metabolites and this makes the parameter estimation task a
challenging one. In this paper, a new parameter estimation
algorithm is developed based on the Extended Kalman filter
(EKF) approach. It is first shown that the conventional EKF
approach is not capable of estimating the unknown parameters
of S-systems. To remedy this problem, a new iterative extended
Kalman Filtering algorithm is developed in which the EKF
algorithm is applied iteratively to the available noisy time
profiles of the metabolites. The proposed estimation algorithm
is applied to a generic branched pathway and the Cad system
of E.coli. The simulation results demonstrate the effectiveness
of the proposed scheme.

I. INTRODUCTION

One of the main research activities in modern molecular
biology is to develop mathematical models that can rep-
resent the structure and dynamics of biological pathways
or genetic regulatory networks [1], [2]. Recent advances in
measurement technologies such as mass spectrometry, nu-
clear magnetic resonance, or protein kinase phosphorylation
have provided a wealth of comprehensive time profiles of
metabolites or proteins that can be used for biochemical
pathway modeling and proteomics. These metabolite profiles
are simultaneous measurements of biochemicals which can
be obtained as single snapshots or as a sequence of snapshots
[3]. For example, in vivo nuclear magnetic resonance (NMR)
measurements can provide dense time-sequences of a few
metabolites for a few seconds or minutes [4], [5]. In order to
mathematically represent this information, it is first required
to specify a mathematical modeling framework, and then to
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develop computational methods to fit the measured informa-
tion to the selected modeling framework. In this paper, we
develop an iterative parameter estimation method based on
the Extended Kalman filter (EKF) algorithm to estimate the
parameters of the S-system model representing the biological
phenomena.

S-systems are proposed in [6] as a canonical nonlinear
model to capture the dynamical behavior of a large class
of biochemical pathways. They are characterized by a good
trade-off between accuracy and mathematical flexibility [7].
In this modeling approach, nonlinear systems are approxi-
mated by products of power-law functions, which are derived
from multivariate linearization in logarithmic coordinates. It
has been shown that this type of representation is a valid
description of biological processes in a variety of settings.
For a more elaborate discussion of S-systems, the interested
reader is referred to [6], [8], [9].

The problem of estimating the S-system model parameters
has been addressed by several researchers [10]–[18] using
optimization approaches such as alternating regression, sim-
ulated annealing, Newton-flow, cooperative coevolutionary
algorithm and genetic algorithm. These approaches assume
the availability of noise-free data. Only in the cases of [12],
[16] and [17], even though the developed approaches do not
account for the presence of noise, the effect of noise on
the performance of these approaches has been investigated.
In addition, these three approaches require several data
sets with different initial conditions for estimating S-system
parameters. Recently, an approach that combines genetic
algorithms and linear Kalman filtering has been proposed
in [19] for parameter estimation in gene regulatory networks
modeled by polynomial systems.

In this paper, we adopt a recently developed stochastic
estimation algorithm for nonlinear systems, namely the ex-
tended Kalman filter. To utilize the EKF algorithm for pa-
rameter estimation of nonlinear dynamical systems, unknown
parameters of the system are modeled as a stationary process
with identity state transition that is driven by a process noise
[20], and the nonlinear system is considered as a nonlinear
map parameterized by the vector of unknown parameters.
Then, the EKF algorithm estimates the parameters using the
available measurements. In order to apply the EKF algorithm
for parameter estimation of biological phenomena modeled
using the S-system framework, it is assumed the a priori
knowledge about the metabolic pathways and experimentally
measured time profiles of the metabolites are available. From
the metabolic pathways, one can identify the structure of the
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S-system [8]. Then, the EKF algorithm can be utilized to
estimate the unknown parameters in the identified S-system.

Due to the fact that the number of unknown parameters is
much more than the number of metabolites, the conventional
EKF algorithm is not capable of estimating the unknown
parameters of S-systems. This motivated us to develop a
new iterative EKF (IEKF) algorithm, with a resetting feature,
which can be utilized for parameter estimation within the
S-system framework. In the proposed IEKF algorithm, the
EKF algorithm is applied iteratively to the available time
profiles of the metabolites concentration. The effectiveness of
the proposed scheme is demonstrated using two case studies
in which the unknown parameters of a generic branched
pathway and the Cad system of E.coli are estimated.

The main advantages of the IEKF algorithm with respect
to the aforementioned methods in the literature, which are
used to estimate the S-system model parameters, are 1) many
biological systems have stochastic features and the IEKF
is based on the stochastic estimation framework, so that
stochastic characteristics of the system and the measurement
noise can be incorporated in the estimation algorithm; 2)
due to the iterative feature of the IEKF, only one data
set is sufficient for estimating the parameters of the given
S-system while the proposed methods in [12] and [16]
require several data sets, and 3) the proposed IEKF has
the potential to be extended to deal with the case of partial
measurements where some of the metabolites concentrations
are not measured due to the difficulty or the cost associated
with their measurements.

II. PROBLEM FORMULATION

Suppose that we are interested in identifying a mathe-
matical model of a given biological phenomenon in which
we have 1) a priori knowledge about the metabolic path-
ways, and 2) experimentally measured time profiles of the
metabolites. One possible solution to this model identifi-
cation problem is to obtain an S-system representation of
the given biological system. This problem can be solved
in two steps. First, using the metabolic pathways, one can
obtain the structure of the S-system, which represents the
biological phenomenon of interest following the well-known
steps developed in the literature ( [8], Chapter 3). Then, the
measured time series of the metabolites are used to estimate
the unknown parameters in the S-system. In this paper, we
adopt the extended Kalman filtering approach for parameter
estimation.

Consider the following S-system dynamics,

ẋi = αi

N+m∏
j=1

x
gij

j − βi
N+m∏
j=1

x
hij

j , i = 1, 2, ..., N (1)

where αi > 0 and βi > 0 are rate coefficients and
gij and hij are kinetic orders and there exist N + m
variables xi (genes/metabolites concentration), where
the first N variables are the actual state of the system
and the remaining m variables are independent. It
is assumed that rate coefficients and kinetic orders

are unknown. It is assumed that all the variables
xi, i = 1, ..., N + m are measured. Let us denote w =
[α1, ..., αN , β1, ..., βN , g11, ..., gN,N+m, h11, ..., hN,N+m]T

as the unknown parameter vector and u =
[xN+1, ..., xN+m]T as the vector of independent variables.
The above S-system can be written as,

ẋ = f(x, u, w) (2)

where x = [x1, ..., xN ]T ∈ RN , u ∈ Rm and w ∈ Rq
with q = N(2 + 2(N + m)) as the number of unknown
parameters. It is assumed that the unknown parameter vector
w belongs to a pre-specified set Xw ⊂ Rq , which can be
obtained using any a priori knowledge about the range of
each of the parameters. Using the Euler approximation, we
can write the discrete time representation of equation (2) as,

x[k + 1] = F (x[k], u[k], w) (3)

where F (x[k], u[k], w) = x[k]+Tsf(x[k], u[k], w), Ts is the
sampling time, x[k] is defined as the sampled continuous-
time state x(kTs) and u[k] := u(kTs).

A. S-system Structure Identification

Using the metabolic pathways, one can specify the kinetic
orders that are zero. For instance, if xj does not directly
affect xi, the corresponding kinetic orders gij and hij are
zero. Moreover, based on experience [11], the kinetic orders
gii are set to zero to omit a direct reinforcing effect of a
metabolite on its own production. For example, consider
the generic branched pathway (shown in Figure 1) which
has four dependent variables x1, ..., x4 and one independent
variable x5 [11]. As shown in this figure, the production of
x1 depends on the independent variable x5 with an inhibition
effect exerted by x3. Hence, the kinetic orders g13, g15 and
h11 are only non-zero. Similarly, one can determine for each
metabolite which kinetic orders are non-zero and which are
negative such as g13. For the branched pathway shown in
Figure 1, the following S-system can be obtained [11]:

ẋ1 = α1x
g13
3 xg155 − β1x

h11
1

ẋ2 = α2x
g21
1 − β2x

h22
2

ẋ3 = α3x
g32
2 − β3x

h33
3 xh34

4

ẋ4 = α4x
g41
1 − β4x

h44
4

(4)

where w = [α1, ...., α4, β1, ..., β4, g13, g15, g21, g32, g41, h11, h22

, h33, h34, h44]. Based on the fact that the rate coefficients
αi’s and βi’s and all the kinetic orders except g13 are
positive, the parameter pre-specified set is defined as
Xw = R8

+ × R− × R9
+.

B. Parameter Estimation

Given the measured time series x[k], u[k], k = 0, ..., n, we
can define y[k] = x[k + 1], k = 0, ..., n − 1, and therefore,
equation (3) can be rewritten as the following nonlinear
mapping [20],

y[k] = F (x[k], u[k], w) (5)
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Fig. 1. Generic branched pathway with four dependent variables.

where x[k], u[k] are considered as inputs, y[k] is the output,
and the nonlinear map F is parameterized by the vector w.
For parameter estimation, a new state-space representation is
written as follows:

w[k + 1] = w[k] + r[k]
y[k] = F (x[k], u[k], w[k]) + e[k]

(6)

where the parameters w[k] correspond to a stationary process
with identity state transition matrix, driven by process noise
r[k]. The training data set used in this estimation problem
can be written as {x[k], u[k], y[k]}. In Section III, it will be
shown how the EKF algorithm can be utilized to estimate
the parameter vector w.

III. EXTENDED KALMAN FILTER

In this section, the extended Kalman filter is used to
estimate the unknown parameters in a given S-system. In
EKF algorithm, the state distribution is approximated by a
Gaussian random variable and the “first order” linearization
of the nonlinear dynamics is used for propagation of state
distribution. The EKF parameter estimation equations for
system (6) are as follows [20]:
1. Initialization:

ŵ[0] = E[w]

Pw[0] = E[(w − ŵ[0])(w − ŵ[0])T ]

2. Time update

ŵ−[k] = ŵ[k − 1]
P−w[k] = Pw[k−1] +Rr[k − 1]

where the innovation covariance Rr[k − 1] is set as

Rr[k − 1] = (λ−1
RLS − 1)Pw[k−1]

and λRLS ∈ (0, 1] is often referred to as the forgetting factor.

3. Measurement update equations:

K[k] = P−w[k]C
T
k (CkP−w[k]C

T
k +Re[k])−1

ŵ[k] = Proj
[
ŵ−[k] +K[k](y[k]− F (x[k], u[k], ŵ−[k]))

]
Pw[k] = (I −K[k]Ck)P−w[k]

where Proj[w] is the nearest point on the set Xw to w,
Ck = ∂F (x,u,w)

∂w |ŵ[k] and the covariance matrix Re[k] can
be selected as a fixed matrix.

Due to the fact that the number of unknown parameters
in the S-system (q = N(2 + 2(N + m))) is much more

than number of measured states (N ), the conventional EKF
algorithm is not capable of estimating the parameters of
S-systems with too many unknown parameters. This can
be due to the lack of global observability of the system
(6) when the dimension of w is much more than the
dimension of y. To remedy this problem, we propose the
following iterative EKF algorithm (IEKF) for estimating the
parameters of the S-system.

IEKF Parameter Estimation Algorithm:
1) Set the initial guesses of the parameters and their

covariance, i.e., ŵ[0] and Pw[0] = P0.
2) Set the epoch counter to one, i.e., i = 1.
3) Apply the EKF algorithm to the training set
{x[k], u[k], y[k]} and calculate the last estimate of
parameters ŵ[n] and its covariance Pw[n].

4) Calculate ŷ[k] as

x̂[k + 1] = F (x̂[k], u[k], ŵ[n]), k = 0, ..., n− 1
ŷ[k] = x̂[k + 1]

with initial condition x̂[0] = x[0].
5) Find the root mean square error (RMS) of the gener-

ated response of the S-system x̂[k], k = 0, ..., n− 1 as

e[i] =
√∑n−1

k=0 |y[k]− ŷ[k]|2/n.
6) If e(i) < δE or i > imax, then Stop. If not, re-initialize

the EKF algorithm with the last estimate of parameters
ŵ[n], i.e., ŵ[0] = ŵ[n].

7) If |e[i] − e[i − 1]| < δR, set the covariance of the
parameters to its initial guess (i.e., Pw[0] = P0),
increase the epoch counter i = i+1, and go to step 3.
If not, set Pw[0] = Pw[n], increase the epoch counter
i = i+ 1, and go to step 3.

Here, δE is the desired RMS of the estimation, imax is
the maximum number of epochs, and δR is the covariance
resetting threshold which speeds up the convergence of the
algorithm. In order to tighten the resetting criteria after each
reset, δR can be adjusted as δR = δR0

2j , where j is the
resetting counter, and is incremented after each resetting.

IV. CASE STUDIES

A. A Generic Branched Pathway

In this section, we demonstrate the efficacy of the iterative
EKF parameter estimation algorithm presented in Section III
by applying it to the S-system (4) with typical parameter
values shown in Table 1. It is assumed that the independent
variable x5 is fixed with a value 1; hence, the kinetic order
g15 cannot be estimated and, therefore, we set α1 = 20×1 =
20. The total number of unknown parameters q for the S-
system (4) is 17. Initial guesses of all the parameters are set
to 1 except g13 and the initial guess for g13 is set to −1
due to the a priori information that it is negative. The initial
covariance matrix Pw[0] = 0.1I . The S-system sampling time
is selected as 0.1 second and the S-system (4) is simulated
for 5 seconds. Hence, 50 training points are generated for
parameter estimation. Two different scenarios, namely noise-
free and noisy measurements, are considered here.
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Fig. 2. Estimated parameters for αi’s using IEKF: noise-free measurement
(with covariance resetting) .
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Fig. 3. Estimated parameters for αi’s using EKF: noise-free measurement
(without covariance resetting).

1) Noise-Free Measurement:: In this scenario, it is as-
sumed that there exists no noise in the measurement. The
RMS and resetting thresholds are selected as δE = 0.01 and
δR0 = 0.001. The maximum number of iterations is set as
imax = 50000. Figure 2 depicts the estimated parameters
versus epoch for αi’s. The final estimated values of the
parameters are summarized in Table I. As shown in this
table, the IEKF algorithm is able to perfectly estimate the
parameters for noise-free measurement. In order to show
the advantage of resetting in the proposed IEKF algorithm,
Figure 3 shows the estimated parameters for αi’s without
covariance resetting. By comparing Figures 2 and 3, it can
be clearly seen that covariance resetting significantly helps
speeding up the convergence of estimation.

2) Noisy Measurement: In this scenario, white noise is
added to the time profiles of the metabolites. In order to
investigate the performance of the proposed estimation algo-
rithm in the presence of measurement noise, two different
signal to noise ratio (SNR) values, namely, 20 and 40, are
considered. For each measurable metabolite xi, the signal
to noise ratio (SNRi) is defined as SNRi = σxi

σni
where

σxi
is the variance of metabolite xi and σni

is the variance
of the added white noise to the i-th metabolite. The RMS
and resetting thresholds are selected as δE = 0.1 and
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Fig. 4. Response of the estimated S-system (solid line) versus the training
set (’.’): SNR 20.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 5. Response of the estimated S-system (solid line) versus the real one
(’.’) with initial condition x1(0) = 4, x2(0) = 1, x3(0) = 3, x4(0) = 4:
SNR 20.

δR0 = 0.001. The final estimated values of the parameters
are summarized in Table I. The final mean square errors
between the response of the estimated system and the noise
free response of the actual system are also shown in the
last column of Table I. As expected, the mean square errors
between the response of the estimated system and the noise
free response of the actual system increase as the noise level
amplifies.

Figure 4 compares the response of the estimated S-
system with the training data for the different noise levels.
Moreover, Figure 5 depicts the response of the estimated
S-system for two different sets of initial conditions and
two different SNRs. As shown in these figures, the state
trajectories generated by the identified S-system follow the
trajectories generated with the actual S-system for both cases
with acceptable precision.

B. The Cad system in E.coli

The Cad system is one of the conditional stress response
modules in E.coli, which is induced only at low pH and
a lysine-rich environment [15], [21], [22]. As shown in
Figure 6, the main components of the Cad system are
the enzyme CadA, the transport protein CadB, and the
regulatory protein CadC. The decarboxylase CadA converts
lysine into cadaverine in a reaction which consumes H+.
The transport protein CadB imports the substrate, lysine
and exports the product, cadaverine. Hence, the intracellular
H+ concentration is reduced and the cell returns back to
pH homeostasis. The membrane protein CadC senses the
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TABLE I
ESTIMATIONS OF THE VALUES OF THE PARAMETERS OF THE S-SYSTEM (4)

αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4 Error
True parameter set
x1 20.0 0 0 -0.8 0 10.0 0.5 0 0 0
x2 8.0 0.5 0 0 0 3.0 0 0.75 0 0
x3 3.0 0 0.75 0 0 5.0 0 0 0.5 0.2
x4 2.0 0.5 0 0 0 6.0 0 0 0 0.8
IEKF noise free measurement 0.01
x1 19.9137 0 0 -0.8025 0 9.9392 0.5021 0 0 0
x2 8.0000 0.5000 0 0 0 3.0000 0 0.7500 0 0
x3 2.9527 0 0.7559 0 0 4.9399 0 0 0.5042 0.2015
x4 1.9998 0.5000 0 0 0 5.9997 0 0 0 0.8000
IEKF noisy measurement with SNR 40 0.1466
x1 20.3933 0 0 -0.8337 0 9.8452 0.5071 0 0 0
x2 7.5459 0.5182 0 0 0 2.7021 0 0.7860 0 0
x3 2.5306 0 0.8076 0 0 4.3094 0 0 0.5505 0.2132
x4 2.0357 0.4782 0 0 0 6.0245 0 0 0 0.7880
IEKF noisy measurement with SNR 20 0.4536
x1 21.7684 0 0 -0.5631 0 13.6785 0.4096 0 0 0
x2 8.9980 0.4659 0 0 0 3.6136 0 0.8303 0 0
x3 3.6561 0 0.7949 0 0 6.0291 0 0 0.5113 0.2058
x4 1.5911 0.4291 0 0 0 5.2912 0 0 0 0.8241

external conditions and regulates the stress response by
binding directly to the DNA and activating the transcription
of cadBA. This ensures that CadA and CadB are produced
only under the appropriate external conditions of low pH and
lysine abundance. Moreover, as shown in [22], CadC senses
the external cadaverine and the accumulation of cadaverine in
extracellular medium causes a delayed transcriptional down
regulation of cadBA expression. The available time profile
data set in [15] is used here for parameter estimation of the
S-system model of the Cad system. In this data set, time
profiles of a subset of the Cad system components, namely
CadA, cadBA transcript, external lysine, external cadaverine
and pH are available. Following the approach in [15], the
lack of an appropriate data set for CadC, internal lysine and
internal cadaverine is handled as follows:

• CadC: due to the fact that CadC is the signal protein
which senses pH, external lysine and external cadaver-
ine, one can directly consider the effect of these signals
on the expression of cadBA. It should be mentioned that
the effect of external cadaverine on CadC, and conse-
quently on the expression of cadBA, is not considered
in [15].

• internal lysine and cadaverine: due to the fact that CadA
and CadB are responsible for decarboxylase reaction
of lysine and the transport mechanism of lysine and
cadaverine, one can couple the decarboxylase reaction
and the transport mechanism and consider both CadA
and CadB in a single step. It should be noted that the
level of CadB is proportional to that of CadA since they
are translated from the same mRNA.

Based on the existing qualitative model (Figure 6) and
available pathway information, the following S-system can
be obtained:

d[CadA]
dt

= α1[cadBA]g12 − β1[CadA]h11

d[cadBA]
dt

= α2[Cadav]g23 [Lys]g24 [pH]g25 − β2[cadBA]h22

d[Cadav]
dt

= α3[CadA]g31 [Cadav]g33 [Lys]g34 (7)

d[Lys]
dt

= −β4[CadA]h31 [Cadav]h33 [Lys]h34

As shown in [22], cadaverine represses the Cad module and
hence the cadBA expression, i.e., g23 < 0. The total number
of unknown parameters q for the S-system (7) is 18. Initial
guesses of all the parameters except g23 are set to 0.1 and
initial guess for g23 is set to −0.1. The initial covariance
matrix Pw[0] = 0.01I , and the tuning parameters for the
EKF are assigned as follows: ε = 1e− 2, κ = 3− q = −15,
β = 0 and λRLS = 1. The available time profile has a
sampling time of 0.5 minutes for 10 minutes, i.e., 21 data
samples. Table II summarizes the estimated parameters of the
Cad system using the IEKF algorithm and Figure 7 compares
the response of the estimated S-system with the real data set.
As shown in this figure, our proposed IEKF algorithm can
successfully identify an S-system model that captures the
dynamics of the Cad system.

V. CONCLUSION

In this paper, we have developed a parameter estimation
algorithm based on the extended Kalman filter approach for
biological phenomena modeled using the S-system frame-
work. The proposed estimation algorithm is applied to the
generic branched pathway as well as the Cad system in
E.Coli and the estimation performance looks promising. One
of the main advantages of EKF for parameter estimation is
that it can be used even when only partial measurements of
the states are available. This might be achieved based on the
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Fig. 6. Qualitative Model of the Cad System in E. coli (simplified) [22].
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Fig. 7. Response of the estimated S-system (solid line) versus the real
data set (′4′) for Cad System.

joint extended Kalman filtering approach. However, in this
paper, we focus on the cases where all the states of the S-
system are measurable and the partial measurement case is
left as one of the future research directions of this work.
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TABLE II
ESTIMATED PARAMETERS OF S-SYSTEM (7) OF CAD SYSTEM.

αi gi1 gi2 gi3 gi4 gi5

[CadA] 1.5399 0 1.3966 0 0 0
[CadBA] 0.3411 0 0 -0.7048 0.0638 0.6169
[Cadav] 0.3017 0.1755 0 0.0089 0.0062 0
[Lys] 0 0 0 0 0 0

βi hi1 hi2 hi3 hi4 hi5

[CadA] 0.1573 1.6485 0 0 0 0
[CadBA] 1.7299 0 0.0233 0 0 0
[Cadav] 0 0 0 0 0 0
[Lys] 0.6092 0.7302 0 0.0080 0.2047 0
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