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Abstract—Existing synthesis methods for LPV systems often
result in controllers of high complexity. So far, there is no
efficient and systematic remedy to this issue as there exists
no convex formulation of the problem of finding a solution of
reduced complexity to the general case LPV synthesis problem.
In this paper, the specific case is considered when parameter-
dependent signals are measured. It is proven that these measures
can be exploited so that the problem of reduced-complexity
controller synthesis can be written as an LMI optimization
problem. A complete procedure for the controller construction
is provided. The interest of the result is discussed in relation
with nonlinear methods. First, an interpretation of the controller
strategy is proposed with regard to the feedback linearization
method. Second, it is proven that a nonlinear controller ensuring
the closed loop incremental properties can be constructed.

I. INTRODUCTION

A. Motivation

To deal with nonlinear systems, gain-scheduling methods

are popular [1]. However, although widely and often suc-

cessfully used, traditional gain-scheduling procedures are in

fact heuristic [2]. A rigorous alternative was proposed by

the linear parameter-varying (LPV) methods [1], which were

developed by extending the H∞ problem to the LPV context.

LPV methods proved to be promising tools for the design

of nonlinear systems. Indeed, not only can they result in

nonlinear controllers but also, in contrast with traditional

nonlinear methods [3], they can take explicitly into account

uncertainties, thanks to the H∞-like framework.

Yet, despite significant achievements, the LPV practice

remains limited. A major disappointment is caused by the

fact that LPV controllers seem to vary little with respect to

the parameters so that their strategy does not seem to corre-

spond to classical nonlinear strategies. This phenomenon was

sometimes attributed to the intrinsic conservatism of LPV

methods [4], but some recent encouraging results suggest that

the choice of the information structure plays a key role [5].

In this paper is shown that with an adequate information

structure, the LPV controllers strategy can be interpreted in

terms of nonlinear methods.

Another critical issue is the actual obtention of the nonlin-

ear controller. Recall that the real purpose of LPV methods

is the obtention of incremental controllers [2]. A rigorous

utilisation involves the design of an LPV controller from

an LPV system corresponding to non stationary lineariza-

tions of the nonlinear system along a trajectory, and not to

an embedding of the nonlinear system itself (quasi-LPV).

The next step, which consists in constructing the nonlinear

controller by integration of the LPV controller, turns out

to be difficult. To our best knowledge, there is currently

no systematic procedure to solve the incremental synthesis

problem. In this paper, a practical method is proposed for the

first time to get a nonlinear controller ensuring incremental

properties.

Another main criticism addressed to LPV methods is that

they usually lead to controllers of high complexity: even

for the simplest methods, relying on invariant Lyapunov

matrices, the controller complexity typically equals the plant

complexity, see [6], [7] (polytopic systems), [8], [9], [10],

[11] (rational systems). For methods involving parameter-

dependent Lyapunov functions [12], [4], [13], the controller

complexity is even higher. Unfortunately, in general, there

exist only non convex formulations of the problem of seeking

directly a controller of reduced complexity [9], [10]. Here is

proven that there are realistic cases when the problem of

finding directly a controller of reduced complexity can be

formulated as a convex problem and moreover, the existence

of a controller is equivalent to the existence of a reduced-

complexity controller.

B. Proposed approach

The discussion relies on a technical result concerned with

the LPV reduced-complexity synthesis problem. It is proven

that the information structure can be exploited to turn the

generally non convex reduced-complexity synthesis problem

into a convex problem. The considered LPV system state-

space matrices are supposed to depend rationally on the

parameters, thus admitting a linear fractional transform (LFT)

representation:






ẋ(t)
p(t)
z(t)
y(t)






= M







x(t)
q(t)
w(t)
u(t)






, p(t) = ∆(t)q(t),

where M is a constant matrix, ∆(t) is a repeated scalar

parameter diagonal structure and p(t) ∈ R
k is the vector

of parameter-dependent signals. The main technical result

can be stated as follows: if l ≤ k components of p(t) are
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measured, then the synthesis problem with the extra condition

that the controller parameter block should be of dimension

k − l can be written as an LMI optimization problem. This

particular controller structure has interesting implications

in the context of nonlinear control. First, this simplified

structure can be interpreted as involving a cancellation of

the parameter-dependent terms, comparable to a linearizing

feedback [3]. A second remarkable interest is the ability

to provide an elegant answer to the incremental synthesis

problem.

C. Relation to previous work

In a different context, a sub case of the technical result

presented here can be found in [14], [15]. There, the special

case is considered when all parameter block outputs are

supposed measured and the class of parameters is particular.

The interpretation of the result differs from ours as there, the

practical interest is only to provide a case in which either

[14] the robust LTI synthesis problem is convex or [15]

the optimal LPV l1 synthesis problem is convex. In another

context, a comparable technique has also been used to obtain

directly reduced-order solutions to LTI or LPV synthesis

problems involving full or partial state-feedback in [16], [9],

[17]. The resolution of our problem is more challenging due

to the general parameter characterization used to reduce the

conservatism.

D. Structure of the paper

The paper is structured as follows. Section II defines

the problem. The main technical result is stated in Section

III. Section IV discusses how the method can be used to

solve the incremental synthesis problem and proposes an

interpretation of the controller strategy with regard to the

linearizing feedback method.

E. Notations

The identity matrix of R
n×n is denoted In and the zero

matrix of Rn×m is denoted 0n×m. The subscripts are omitted

when obvious from context. For two operators A and B,

diag(A,B) denotes the operator
[

A 0
0 B

]

. For a full-rank

matrix U , U⊥ denotes an orthogonal complement of U , i.e.,

UU⊥ = 0 and
[

UT U⊥
]

is of maximal rank, while U+

denotes the Moore-Penrose inverse of U . For X ∈ R
n×m and

k ≤ l ≤ n, r ≤ s ≤ m X[k:l][r:s] denotes the matrix extracted

from X made of its lines from k to l and columns from r to

s. For a square matrix M , M > 0 and M ≥ 0 mean respec-

tively positive and semi-positive definiteness. The symbol
∫

denotes the integration operation. For a signal w(t), its L2

norm is denoted ||w||2 whenever it is defined. For a matrix

M partitioned as
[

M11 M12
M21 M22

]

and an operator ∆, the nota-

tion Fu(M,∆) stands for M22 +M21∆(I −∆M11)
−1M12

and Fl(M,∆) stands for M11 + M12∆(I − ∆M22)
−1M21

whenever they exist.

II. SETUP AND PRELIMINARY RESULTS

Here, the general (or full-complexity) LPV synthesis prob-

lem is defined for the considered system and sufficient exis-

tence conditions of a solution existence are given as an LMI

feasibility problem. The LPV reduced-complexity problem is

then introduced, for which sufficient existence conditions of

a solution are given as a non convex optimization problem

given by LMI conditions coupled with a rank constraint.

A. Considered system

General LPV systems can be defined by the following

state-space equations:
{

ẋ(t) = A(δ(t))x(t) +B1(δ(t))w(t) +B2(δ(t))u(t)
z(t) = C1(δ(t))x(t) +D11(δ(t))w(t) +D12(δ(t))u(t)
y(t) = C2(δ(t))x(t) +D21(δ(t))w(t) +D22(δ(t))u(t),

(1)

where x(t) ∈ R
n is the state, w(t) ∈ R

nw the external

input, z(t) ∈ R
nz the external output, u(t) ∈ R

nu the

controlled input, y(t) ∈ R
ny the measure and δ(t) =

[

δ1(t) · · · δr(t)
]T

∈ R
r is called the parameter vector. For

any i ∈ {1, · · · , r}, the parameter δi(t) is supposed to be a

real time-varying scalar measured in real time and belonging

to a given interval that can be either closed: δi(t) ∈ [δi, δi]
or open: δi(t) ∈ [δi,+∞[. Without loss of generality, every

interval is supposed to contain 0. This paper focuses on LPV

systems described by the state-space equations (1) where

the matrices are rational functions of the parameters. Such

systems can be modeled by an LFT on a parameter block

structure [10]:






ẋ(t)
q(t)
z(t)
y(t)






=

[

M Mu

My 0

]







x(t)
p(t)
w(t)
u(t)






, p(t) = ∆(t)q(t), (2)

and M ∈ R
(n+k+nz)×(n+k+nw), Mu ∈ R

(n+k+nz)×nu ,

My ∈ R
ny×(n+k+nw) are constant matrices, ∆(t) is called

the parameter block and q(t) and p(t) ∈ R
k are respectively

the input and the output of the parameter block where p(t)
is also called the vector of parameter-dependent signals. The

following notation is used:

[

z(t)
y(t)

]

= Fu

(

Fu

(

[

M Mu

My 0

]

,

∫

In

)

,∆(t)

)

[

w(t)
u(t)

]

(3)

and the state-space matrices are defined as:

[

M Mu

My 0

]

=





A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12

C2 D20 D21 0



 .

The parameter block is a block-diagonal matrix: ∆(t) =
diag(∆1(t), · · · ,∆r(t)), where each sub-block is ∆i(t) =
δi(t)Iki

such that k =
∑r

i=1 ki. The dimension k of

the parameter block is also called the system complexity

(with respect to the parameters). The following notation

is used: S(∆i) = {Si ∈ R
ki×ki |Si = ST

i > 0},

G(∆i) = {Gi ∈ R
ki×ki |Gi = −GT

i } and S(∆) = {S|S =
diag(S1, · · · , Sr)}, G(∆) = {G|G = diag(G1, · · · , Gr)}.

It can be shown [10] that the parameter block ∆ satisfies a

family of quadratic constraints of the form:

[

q(t)
p(t)

]T

Φ
[

q(t)
p(t)

]

≥ 0, (4)
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where:

Φ =

[

aS bS +G

bS +GT cS

]

(5)

with S ∈ S(∆), G ∈ G(∆), a = diag(a1, · · · , ar), b =
diag(b1, · · · , br), c = diag(c1, · · · , cr) and:

• if δi(t) ∈ [δi, δi], ai = −2δiδi, bi = δi + δi, ci = −2;

• if δi(t) ∈ [δi,+∞[, ai = −2δi, bi = 1, ci = 0.

For a, b, c as above, let ã, b̃, c̃ be such that:
[

a b

b c

] [

−c̃ b̃

b̃ −ã

]

= I and define for i ∈ {1, · · · , r} Γi =
√

b2i − aici and Γ = diag(Γ1, · · · ,Γr).

B. Preliminary result: the LPV synthesis problem as an LMI

existence test

First, let us state the standard LPV control problem. As the

plant admits an LFT representation, the controller is supposed

to be represented by an LFT of same complexity.

Problem 2.1 (General LPV control problem):

Given γ > 0 and the LPV plant defined by
[

z(t)
y(t)

]

= Fu

(

Fu

([

M Mu
My 0

]

,
∫

In
)

,∆(t)
) [

w(t)
u(t)

]

(3),

find, if they exist, kK ≤ k, nK ≤ n and a constant

matrix K ∈ R
(nK+kK+nu)×(nK+kK+ny) such that there

exists ∆K(t) = diag(δ1(t)IkK1
, · · · , δr(t)IkKr

) ∈ R
kK×kK

ensuring that with the controller defined by:

u(t) = Fl

(

Fu

(

MK ,

∫

InK

)

,∆K(t)

)

y(t) (6)

the closed loop system is stable and ||z||2 < γ||w||2. ◦
In this paper, a method using a constant Lyapunov matrix is

considered to solve this problem. Thus, adapted from [10],

the following theorem holds.

Theorem 2.2: There exists a solution to the general LPV

control problem 2.1 if there exists a solution to the LMI

feasibility problem 2.3 stated below. •
Opt. problem 2.3 (Full-complexity existence test): Find,

if they exist, matrices P = PT , Q = QT ∈ R
n×n,

S, T ∈ S(∆) and G, H ∈ G(∆) such that:

M⊥
T

y

[

M

In+nw

]T
M

[

M

In+nw

]

M⊥

y < 0, (7)

MT⊥T

u

[

MT

In+nz

]T

N
[

MT

In+nz

]

MT
u

⊥ < 0, (8)
[

P I
I Q

]

> 0, (9)

where:

M =

















0 P

aS bS + G

γ−1Inz 0

P 0

bS + GT cS
0 −γInw

















,

N =

















0 Q

ãT b̃T + H

γ−1Inw 0

Q 0

b̃T + HT c̃T

0 −γInz

















.

◦
The skew-symmetric matrices G and H can be enforced

to be zero to simplify the conditions. The LMI opt. problem

2.3 becomes then the following one.

Opt. problem 2.4 (Simplified full-complexity existence test):

Find, if they exist, matrices P = PT > 0, Q = QT > 0 ∈
R

n×n and S, T ∈ S(∆) such that (7), (8), (9) and:

[

S I
I T

]

≥ 0. (10)

◦
Notice that under this assumption, the problem is simplified

at the expense of conservatism since decision variables are set

to zero. Next, this assumption is made in one case to obtain

convex conditions for the reduced-complexity problem.

C. Problem formulation

Here, the problem of reduced-complexity synthesis is

stated.

Remark 2.5: Let {P, Q, S, G, T, H} be a solution of

the LMI problem 2.3. Then there exists a solution to the

general LPV synthesis problem 2.1 such that:

• the controller order (number of states) nK equals the

rank of I − PQ;

• the controller complexity (parameter block dimension)

kK equals the rank of I − (S + Γ−1G)(T + ΓH). ⊲

See [10] for a proof. Clearly, a controller of reduced com-

plexity is a particular solution of the general LPV control

problem 2.1. The test of existence of a reduced-complexity

controller can thus be stated as the following optimization

problem.

Opt. problem 2.6 (Reduced-complexity existence test):

Let l be an integer such that l ≤ k. Find, if they exist,

matrices P = PT , Q = QT ∈ R
n×n, S, T ∈ S(∆) and

G, H ∈ G(∆) such that the LMIs (7), (8) and (9) hold,

along with the additional rank constraint:

rank
(

(I − (S + Γ−1G)(T + ΓH)
)

≤ k − l. (11)

◦
If the skew-symmetric matrices G and H are enforced to be

zero, the opt. problem 2.6 becomes the following one:

Opt. problem 2.7 (Simplified red.-complexity existence test):

Let l be an integer such that l ≤ k. Find, if they exist,

matrices P = PT , Q = QT ∈ R
n×n, S, T ∈ S(∆) and

G, H ∈ G(∆) such that the LMIs (7), (8), (9) and (10)

hold, along with the additional rank constraint:

rank(I − ST ) ≤ k − l. (12)

◦
Yet in general, the opt. problem 2.6, resp. 2.7, is not convex

because of the rank constraint (11), resp. (12). Moreover, the

existence of a solution to the (full-complexity) opt. problem

2.3, resp. 2.4, does not imply the existence of a solution to

the (reduced-complexity) opt. problem 2.6, resp. 2.7.

III. SOLUTION OF REDUCED COMPLEXITY

In this section, cases are studied when the non convex

rank constraints associated with reduced-complexity synthe-

sis problems can be removed so that the opt. problems 2.6,

resp. 2.7, reduce to LMI optimization problems. It is proven
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that in these cases, the existence of a solution to the full-

complexity opt. problem 2.3, resp. 2.4, is in fact equivalent

to the existence of a solution to the reduced-complexity

opt. problem 2.6, resp. 2.7. Construction methods for the

corresponding reduced-complexity controllers are provided.

A. Convex test of existence of a reduced-complexity solution

Two particular classes of parameters are studied, charac-

terized by the quadratic constraint (4) where either (i) or (ii):

(i) Φ =
[

S 0
0 −S

]

where S = ST > 0 ∈ R
k×k , correspond-

ing to the case in which the parameters vary between

−1 and 1. The description does not take into account the

fact that the parameters are real, which would require the

addition of skew-symmetric scalings [10]. Nevertheless

it is a simple and common description [9].

(ii) Φ =
[

0 X

XT 0

]

where X ∈ R
k×k is such that X+XT >

0, corresponding to the case in which the parameters are

real and positive.

The main result is given in the following theorem.
Theorem 3.1: Given γ > 0, consider the LPV system (3)

with parameters characterized by a quadratic constraint (4)

with either (i) or (ii). Suppose that besides y(t), l ≤ k outputs

of the plant parameter block are measured. There exists a

solution to the problem 2.3, resp. 2.4, if and only if there

exists a solution to the problem 2.6, resp. 2.7. •
It remains to give a method to find a reduced-complexity

controller. Without loss of generality, we assume the mea-

sured parameter block outputs are the l ≤ k last ones i.e., the

measures are: y(t), pk−l+1(t), · · · , pk(t), and note: D̂00 =
D00[1:k][1:k−l]

, D̂10 = D10[1:nz][1:k−l]
, B̂0 = B0[1:n][1:k−l]

,

M̂y =
[

C2 D20[1:ny][1:k−l]
D21

]

, M̂
⊥

y =
[

M̂⊥
y 0

0 Inz+k

]

.

Theorem 3.2: For the setup of Theorem 3.1 and the case

(i), consider the LMI optimization problem of finding, if they

exist, matrices P = PT , Q = QT ∈ R
n×n, T = T T > 0 ∈

R
k×k , S1 = ST

1 > 0 ∈ R
(k−l)×(k−l) such that the LMIs

(13), (8), (9), (14) hold, where:

M̂
⊥

T

y









AT P + PA P
[

B̂0 B1
]

[

CT
0 CT

1

]

[

B̂T
0

BT
1

]

P −

[

S1 0
0 γI

]

[

D̂T
00 D̂T

10
DT

01 DT
11

]

[

C0
C1

] [

D̂00 D01
D̂10 D11

]

−

[

T 0
0 γI

]









M̂
⊥

y < 0 (13)

[

S1

[

Ik−l 0
]

[

Ik−l
0

]

T

]

> 0. (14)

If there exists a solution {P,Q, S1, T } to this LMI optimiza-

tion problem then there exist matrices S2 and S3 such that

{P,Q, S, T } is a solution to the non convex opt. problem

2.7, where S =
[

S1 S2
ST
2 S3

]

. •

Theorem 3.3: For the setup of Theorem 3.1 and the case

(ii), consider the LMI optimization problem of finding, if they

exist, matrices P = PT , Q = QT ∈ R
n×n, Y ∈ R

k×k with

Y + Y T > 0, X1 ∈ R
(k−l)×(k−l) with X1 + XT

1 > 0 and

X3 ∈ R
l×(k−l)such that the LMIs (15), (8), (9) hold, where:

M̂⊥T

y













AT P + PA PB̂0 PB1
B̂T

0 P 0 0

BT
1 P 0 −γI






+







CT
0

D̂T
00

DT
01







[

X1
X3

]





0
I
0





T

+

+





0
I

0





[

X1
X3

]T







CT
0

D̂T
00

DT
01







T

+







CT
1

D̂T
10

DT
11






γ−1







CT
1

D̂T
10

DT
11







T








M̂⊥
y < 0.

(15)

If there exists a solution {P,Q,X1, X3, Y } to this LMI

optimization problem then there exist matrices X2 and X4

such that {P,Q, S,G, T,H} is a solution of the non convex

opt. problem 2.6, where S = 1
2(X+XT ), G = 1

2(X−XT ),

T = 1
2(Y + Y T ), H = 1

2(Y − Y T ) and X =
[

X1 X2
X3 X4

]

. •

B. Proofs

1) Preliminary completion lemmas: Before proving the

main result on reduced-complexity synthesis involving pa-

rameter block outputs measurements, some preliminary re-

sults on matrix completion are stated.

Lemma 3.1: Let two matrices R = RT > 0 ∈ R
k×k

and S3 = ST
3 > 0 ∈ R

(k−l)×(k−l) be such that :
[

R

[

0
Ik−l

]

[

0 Ik−l

]

S3

]

≥ 0. Then for any matrix S2 ∈ R
l×(k−l)

there exists a matrix S1 = ST
1 > 0 ∈ R

l×l such that the

matrix S defined by S =
[

S1 S2
ST
2 S3

]

satisfies (a) and (b):

(a) rank(I −RS) = k − l,

(b)
[

R I

I S

]

≥ 0. •

Lemma 3.2: Let matrices X1 ∈ R
(k−l)×(k−l) and Y ∈

R
k×k be such that X1 + XT

1 > 0 and Y + Y T > 0. Then

for any matrix X3 ∈ R
l×(k−l) there exist matrices X2 ∈

R
(k−l)×l and X4 ∈ R

l×l such that the matrix X defined by

X =
[

X1 X2
X3 X4

]

satisfies (a) and (b):

(a) rank(I −XY ) = k − l,

(b) X +XT > 0. •

2) Proof of Theorems 3.1, 3.2 and 3.3: Let us suppose

that the l ≤ k last outputs of the plant parameter block

are measured and that the parameters are characterized by

the quadratic constraint (4) with either (i) or (ii). The

technical results follow from the exploitation of the special

nature of the measurements y(t), pk−l+1(t), · · · , pk(t).

Now My =
[

C2 D20[1:ny ][1:k−l]
D20[1:ny ][k−l+1:k]

D21

0 0 Il 0

]

so

that M⊥
y = [ W1 W2 0 W3 ]

T
where [ W1 W2 W3 ]

T =

[ C2 D20[1:ny ][1:k−r]
D21 ]

⊥
. Then the conditions of the opt.

problem 2.3, resp. 2.4, can be simplified. Some decision

variables become degrees of freedom and can therefore

be chosen to satisfy the non convex rank constraint (11).

Computational details are given below.

• if (i): consider the setup of the problem 2.4. Then because

of the zero line in M⊥
y , (7) is simplified. Introducing the

notation S =
[

S1 S2
ST
2 S3

]

where S1 ∈ R
(k−l)×(k−l), (7) thus

becomes:

M̂
T

y







AT P + PA PB̂0 PB1 CT
0 CT

1

B̂T
0 P −S1 0 D̂T

00 D̂T
10

BT
1 P 0 −γI DT

01 DT
11

C0 D̂00 D01 −S−1 0

C1 D̂10 D11 0 −γI






M̂y < 0. (16)

On the other hand, according to Packard’s Lemma 6.2 [8],

(10) implies that there exist matrices R ∈ R
k×l, U ∈ R

l×l

such that the matrix
[

T R

RT U

]

is symmetric positive definite

and S−1 = T − RTU−1T . Replacing and applying Schur’s

Lemma yields (16) if and only if:

Ψ+ΦT
1 RΦ2 +ΦT

2 R
TΦ1 < 0 (17)
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where, with M
⊥

y = diag(M
⊥

y , Ik),

Ψ =
ˆ
M

⊥
T

y









AT P + PA PB̂0 PB1 0 CT
0 CT

1

B̂T
0 P −S1 0 0 D̂T

00 D̂T
10

BT
1 P 0 −γI 0 DT

01 DT
11

0 0 0 −U 0 0

C0 D̂00 D01 0 −T 0

C1 D̂10 D11 0 0 −γI









ˆ
M

⊥

y ,

Φ1 = [ 0 0 0 0 Ik 0 ] , Φ2 = [ 0 0 0 Ik 0 0 ] .

The Elimination Lemma [18] implies that there exists R

such that (17) holds if and only if:

Φ⊥

1

T
ΨΦ⊥

1 < 0, (18)

Φ⊥

2

T
ΨΦ⊥

2 < 0. (19)

Developing, we obtain that (19) implies (18) and reads in

fact (13). On the other hand, since S3 only still appears in

(10), the Elimination Lemma implies that there exists S3 such

that (10) holds if and only if (14). Now S2 and S3 no longer

being constrained in the resulting LMI optimization problem,

they can be chosen freely and Lemma 3.1 implies that they

exist such that rank(I − ST ) = k − l and (10). This proves

Theorem 3.1 in the case (i) and Theorem 3.2.

• if (ii): consider the setup of the problem 2.3. The

particular structure of M⊥
y is exploited to simplify the

LMI (7). With the notation X =
[

X1 X2
X3 X4

]

where X1 ∈
R

(k−l)×(k−l) and X4 ∈ R
l×l, (7) becomes (15). Suppose

that {P,Q,X1, X3, Y } is a solution to the LMI problem

(15), (8), (9). Now X2 and X4 no longer being constrained

in this LMI problem, they can be chosen freely and Lemma

3.2 implies that they exist such that rank(I −XY ) = k − l

and X +XT > 0. This proves Theorem 3.1 in the case (ii)

and Theorem 3.3.

C. Controller construction

A systematic procedure for constructing the state-space

matrices of a reduced-complexity controller is proposed next.

Proposition 3.4: Consider an LPV plant (3), γ > 0 and

the parameter block characterized by a quadratic constraint

(4) with conditions either (i) or (ii) being satisfied.

• − if (i): find a solution {P,Q, S1, T } to the LMI optimiza-

tion problem (13), (8), (9), (14) and find S2, S3 such that

rank(I−ST ) = k− l and S = ST > 0 where S =
[

S1 S2
ST
2 S3

]

.

Construct S ∈ R
(2k−l)×(2k−l) such that S =

[

S RS
RT

S
I

]

,

where RS ∈ R
k×kR is such that S − T−1 = RSR

T
S . Let

T = S
−1

.

− if (ii): find a solution {P,Q,X1, X3, Y } to the LMI

optimization problem (15), (8), (9) and X2, X4 such

that rank(I − XY ) = k − l and X + XT > 0,

where X =
[

X1 X2
X3 X4

]

. Construct X ∈ R
(2k−l)×(2k−l)

such that X =
[

X NB

M B

]

, where N ∈ R
k×kR ,

M ∈ R
kR×k are such that X − Y −1 = NM and

B = 4
(

NT (X +XT )−1N
)−1 (

I −NT (X +XT )−1MT
)

.

Let Y = X
−1

and define S = 1
2(X + X

T
) and T =

1
2(Y + Y

T
).

• Define nK = rank(I − PQ), if (i): kK = rank(I − ST )

and if (ii): kK = rank(I −XY ).

• Find P =
[

P RP
RT

P I

]

, where RP ∈ R
n×nR is such that

P −Q−1 = RPR
T
P .

• Solve the reduced-complexity Bounded Real Lemma LMI

problem for matrix MK ∈ R
(nK+nu+kK)×(nK+ny+kK):

Ψ+DuMKDy +DT
y M

T
KDu < 0, where:

Ψ =

[

AT P + PA PB CT

BT P −

[

S 0
0 γI

]

DT

C D −

[

T 0
0 γI

]

]

, Du =
[

PB2
0

D12

]

, DT
y =

[

CT
2

DT
21
0

]

and the bold matrices are defined by:

[

A B B2
C D D12

C2 D21

]

=











A 0 0 B0 B1 InK
0 0

0 0 0 0 0 0 B2 0

0 0 0 0 0 0 0 IkK
C0 0 0 D00 D01 0 D02 0
C1 0 0 D10 D11 0 D12 0

0 InK
0 0 0

C2 0 0 D20 D21
0 0 IkK

0 0











.

Partition ∆(t) = diag(∆K(t),∆r(t)) where ∆K(t) ∈
R

kK×kK . Then u(t) = Fl

(

Fu

(

MK ,
∫

InK

)

,∆K(t)
)

y(t) is

a solution of the general LPV synthesis problem 2.3.

The procedure implemented in Matlab was completed in a

few seconds for the studied examples.

IV. INTERPRETATION OF THE CONTROLLER STRATEGY

Let us assume now that all the parameter-dependent terms

(all the components of p(t)) are measured. Recall that the

method of Section III then yields an LPV controller of com-

plexity zero, i.e., an LTI controller: u(s) = Ky→u(s)y(s) +
Kp→u(s)p(s). Being actually LTI, this LPV controller is

integrable so a nonlinear controller can be easily obtained.

This means that if the LPV system corresponds to the

non stationary linearizations of the nonlinear system, then

the nonlinear controller ensures the nonlinear closed loop

incremental properties. This method provides thus for the

first time a solution to the incremental synthesis problem [2].

Moreover, there are cases when the controller strategy can

be interpreted in terms of feedback linearization [3]. Next,

both aspects are illustrated using an example. Consider the

nonlinear system:

u = G(y) :
{

ẋ = 10 sin x(t) + 10u(t)
y(t) = x(t) (20)

and suppose the only specification is that y(t) tracks a

reference yr(t). The nonlinear feedback method [3] yields

a controller canceling the nonlinearity: u(t) = − sinx(t) +
K(yr(t) − y(t)) where K is a linear operator chosen for

performance, typically an H∞ controller. Performance can

be tuned through a weighting function We (see in Figure 1)

and here is chosen: We(s) =
s+ 0.1226

0.01s+ 0.1751 .

Next, the method of Section III is used to get a nonlinear

controller. First, an LPV model corresponding to a non

stationary linearization of the nonlinear system is obtained:






˙̃x(t) = 10p̃(t) + 10ũ(t)
q̃(t) = x̃(t)
ỹ(t) = x̃(t)

, p̃(t) = δ(t)q̃(t) (21)

and δ(t) ∈ [−1, 1]. The trajectory δ(t) = cosx0(t) corre-

sponds to the linearization of (20) in x0(t). Next, suppose

3408



that both the tracking error ỹr(t) − ỹ(t) and the parameter-

dependent term p̃(t) are available (l = 1). Notice that

the assumption that p̃(t) is known is not stronger that the

assumption needed to construct the linearizing feedback.

Using the previously defined weighting function We leads

to the L2 criterion of Figure 2. The method of Section

III is now applied to get an LPV controller of complexity

kR = k − l = 0, that is to say, an LTI controller, hence

integrable. Recalling that p̃(t) = cosx0(t)x̃(t), a nonlinear

controller for (20) is thus simply of the form:

u(t) = K(ỹr−ỹ)→ũ(yr(t)− y(t))+Kp̃→ũ(sinx(t)). (22)

This nonlinear controller is then a solution to the incremental

synthesis problem [2]. Figure 3 (left) shows that K(ỹr−ỹ)→ũ

coincides with the linearizing feedback cancellation term −1.

Actually, a realistic design must take into account un-

certainties. It was proven that in the LPV context robust-

ness can be achieved by introducing a weighting function

Wu as in Figure 2 (dotted). Here is chosen Wu(s) =
s+ 1.994 · 10−3

3.994s+ 0.3 · 10−6 . Running the procedure yields a non-

linear controller having the same structure (22). On the other

hand, the feedback linearizing method does not take explicitly

into account robustness. To become compatible with Wu (see

Figure 1, (dotted)), and therefore, to ensure robustness, the

cancellation term can be filtered. The nonlinear feedback

thus becomes u(t) = −F (sinx(t)) +K(y(t)− yr(t)) where

F is a filter such that F (s) ≈ 1 in low frequency and

F (s) ≈ W−1
u (s) in high frequency. Figure 3 (right) displays

the Bode plots of F (full line) and Kp̃→ũ (dashed line),

emphasizing their similarity. Thus, here, the transfer Kp̃→ũ

can be interpreted as a filtered cancellation term.

V. CONCLUSION

In this paper, a practical method is given to obtain di-

rectly reduced-complexity controllers for LPV systems in

the case in which parameter-dependent signals are supposed

measured. The result shows interesting features for nonlinear

control. First, there are cases in which the strategy of the

reduced-complexity controller can be interpreted as a filtered

G

Wu

yr − yyr +

- K

We

z1 z2

u y+

+

−1

sinx

Fig. 1. Example - Criterion for linearizing feedback synthesis

Fu(M̃,
∫

I)

Wu

ỹr − ỹỹr

p̃ q̃

+

-

δ(t)

Fu(M̃K ,
∫

I)

We

z1 z2

ũ ỹ

p̃

Fig. 2. Example - Criterion for LPV synthesis
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cancellation of the parameter-dependent terms, suggesting

a conciliation of LPV methods and traditional nonlinear

methods. Second, it gives a practical method to solve the

incremental synthesis problem.
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