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Abstract— In this paper the control of a horizontal axis
pitch controlled wind turbine using Model Predictive Control is
presented. The multi-blade coordinate transformation is utilized
to turn the rotating frame time-varying system description into
a time-invariant fixed frame system description. Constraints in
the rotating frame of reference are not easily described in the
fixed frame and a Model Predictive Control formulation ac-
commodating this problem is presented. The presented method
is tested with satisfactory results in a numerical simulation.

I. INTRODUCTION

The wind turbine shares properties with other rotating
systems such as helicopters and much of the wind turbine
theory originates from helicopter theory. Multi-blade co-
ordinate (MBC) transformation also denoted the Coleman
transformation [1] is a method to transform the degrees of
freedom on the rotor to degrees of freedom in the fixed frame
of reference.

An example could be wind shear, meaning that the wind
speed near ground is lower than the wind speed at the top
of the wind turbine. As the blades revolve they will alternate
between high and low wind speeds in a periodic manner and
the wind speed felt by each blade is sinusoidal for a linear
wind shear. The MBC transformation of the wind speeds into
the fixed frame results in a degree of freedom describing the
average wind speed, a degree of freedom describing the wind
shear and a degree of freedom describing if the wind speeds
are higher at on side of the rotor compared to the other side.
For linear wind shear the MBC transformed quantities are
constant, turning a time-varying degree of freedom into a
time-invariant degree of freedom.

Another example could be that as the blades revolve they
will apply a force at the root of the blade on the tower
side-side degree of freedom, but depending on the azimuthal
position of the blade, the force will be transferred to the
tower in different ways, resulting in a time-varying system.
Both examples can be seen in Fig. 1. The relationship
between the variables in the rotating frame and in the fixed
frame can be seen in Fig. 2. The MBC transformation applied
to the wind turbine transforms all these periodically time-
varying degrees of freedom and system equations into a time-
invariant system. MBC for dynamical analysis of the wind
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turbine is a strong tool and e.g. [2] and [3] discusses the
subject in much greater depth.

The benefit of MBC when in used control of wind turbines
have previously been documented by e.g. [4]. Another use
of MBC in the field of wind turbine control is found in
[5] where a wind turbulence model in the fixed frame of
reference is also derived. Common for MBC-based control
algorithms is the use of individual pitch of the blades
facilitated by the MBC formulation to mitigate loads on the
wind turbine caused by asymmetric loading such as wind
shear.

Model Predictive Control (MPC) [6], [7] offers a system-
atic way to handle constraints on e.g. pitch rate of the blades.
The authors have previously developed a wind turbine control
framework with MPC [8] and this framework is extended to
include the MBC formulation of the wind turbine in this
paper. Constraints defined in the rotating frame of reference
are not easily translated into the fixed frame of reference and
a solution to this problem is presented in this paper.

The papers outline is as follows: The multi-blade coor-
dinate transformation is discussed in Section II. The wind
turbine model used by the model-based state estimator and
state feedback control algorithms is presented in Section III.
The overall controller setup and the state estimation and
control algorithms are explained in Section IV. Simulation
results demonstrating the constraint handling capabilities of
the controller are presented in Section V. Finally, conclusions
are drawn in Section VI.

II. MULTI-BLADE COORDINATE
TRANSFORMATION

In this section the fundamentals of the multi-blade co-
ordinate (MBC) transformation are introduced in the first
subsection. Following is a subsection describing how the
MBC transformation is applied on the state space model.

A. MBC fundamentals

The MBC transformation enables the transformation from
a rotating frame of reference to a fixed frame of reference.
The azimuth angle φi of blades i = 1, . . . , nblades, assuming
constant rotor speed Ω and equal angular spacing between
the blades, is given by

φi = φ0 + Ωt− (i− 1)π/nblades (1)

and renders the MBC transformation a function of time t
rather than the azimuth angle φ. The azimuth angles can
be combined in a vector, which for a 3-bladed rotor is
φ = [φ1 φ2 φ3]T . The temporal argument of states and
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Fig. 1. Examples of time-varying quantities on a wind turbine. To the
left: The wind shear means that the revolving blades will be subjected
to periodically varying loading conditions. To the right: The forces
transferred from the blades to the tower side-side degree of freedom are
transferred differently depending on the azimuth angle ψi of the individual
blade.
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Fig. 2. Degrees of freedom in rotating frame of reference q transformed
to the fixed frame of reference qf using the multi-blade coordinate
transformation.

transformation matrices in the following has been omitted
to simplify notation. The rotating frame coordinates q and
the fixed frame coordinates qf and their temporal derivatives
have the following relationship

q = M−1qf (2a)

q̇ = Ṁ−1qf + M−1q̇f (2b)

q̈ = M̈−1qf + 2Ṁ−1q̇f + M−1q̈f (2c)

where (2a) is the base transformation and (2b) is derived
from q̇ = d

dt (M
−1qf ) and 2c from q̈ = d

dt (Ṁ
−1qf +

M−1q̇f ). The inverse transformations are given by

qf = Mq (3a)

q̇f = 2
3Ṁ−Tq + Mq̇ (3b)

q̈f = 2
3M̈−Tq + 4

3Ṁ−T q̇ + Mq̈ (3c)

The MBC transformation matrices are

M =




1
31T

2
3 cosφT

2
3 sinφT


 , M−1 =




1T

cosφT

sinφT



T

,

Ṁ−1 = Ω




0T

− sinφT

cosφT



T

and M̈−1 = Ω2




0T

− cosφT

− sinφT



T

where 1 = [1 1 1]T and cosφ = [cosφ1 cosφ2 cosφ3]T

etc.

B. The MBC transformation applied on a state space model

A dynamic system in state space form can be expressed
by an nonlinear ordinary differential equation vector function
and a vector output function as

ẋ(t) = f(x(t),u(t), t) (4a)
y(t) = g(x(t),u(t), t) (4b)

where states x, inputs u, outputs y and the vector functions
f and g are all functions of time. In the following, the
temporal arguments of states, inputs and outputs and vector
functions have been omitted to simplify notation.

First order Taylor expansion around the linearization
(x̄, ū) yields

ẋ = f(x̄, ū) + A(x− x̄) + B(u− ū) (5a)
y = g(x̄, ū) + C(x− x̄) + D(u− ū) (5b)

where the system matrices (A,B,C,D) are functions of
time. The linearization can be rewritten to

ẋ = Ax+ Bu+ δ, δ = f(x̄, ū)−Ax̄−Bū (6a)
y = Cx+ Du+ γ, γ = g(x̄, ū)−Cx̄−Dū (6b)

for typical linear control theory the pair (x̄, ū) is chosen to
be an equilibrium point (such that 0 = f(x̄, ū)), but the
theory is also valid for other choices of (x̄, ū).

A state space system description of a wind turbine with
fixed frame degrees of freedom x1 e.g. tower fore-aft, rotor
speed etc and rotating frame degrees of freedom x2 = [q q̇]
such as blade pitch angle q and blade pitch q̇. Fixed frame
inputs u1 such as generator torque and rotating frame inputs
u2 such as pitch angle reference

x =



x1

q
q̇


 u =

[
u1

u2

]
y =




x1

ẋ1

q
q̇
q̈




(7)

and outputs containing both rotating and fixed frame quan-
tities.

The time-varying combined fixed and rotating frame sys-
tem (7) can be transformed to a fixed frame time-invariant
system where the states, inputs and outputs are transformed
to the fixed frame of reference

xf = Mxx and uf = Muu and yf = Myy. (8)
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The MBC transformations gives the fixed frame system
equations

ẋf = Afxf + Bfuf + δf (9a)

yf = Cfxf + Dfuf + γf (9b)

where

Af = M̃x(AM−1
x − Ṁ−1

x ), Cf = MyCM−1
x ,

Bf = M̃xBM−1
u , Df = MyDM−1

u ,

δf = M̃xδ, γf = Myγ.

The system matrices (Af ,Bf ,Cf ,Df ) are time-invariant,
as are the residual vectors (δf ,γf ) when rotating frame
variables have been averaged in the linearization point

q̄ = mean(q) and ¯̇q = mean(q̇).

The state equation MBC transformation matrices are

M̃x =




I
M

M


 , M−1

x =




I
M−1

Ṁ−1 M−1




and

Ṁ−1
x =




0

Ṁ−1

M̈−1 2Ṁ−1




For control signals and outputs the matrices are

Mu =

[
I

M

]
and My =




I
I

M
M

M




The nonlinear time discrete state progress equation

xf
k+1 = ff (xf

k ,u
f
k ) = xf

k +

∫ tk+1

tk

ẋf (τ)dτ (10)

used in Section IV can be approximated by a linear descrip-
tion

xf
k+1 = Afxf

k + Bfuf
k + δf ,

δf = ff (x̄f , ūf )−Af x̄f −Bf ūf (11)

and [9] gives further details regarding implementation.

III. WIND TURBINE MODEL

The governing equations constituting the control design
model used in Section IV are presented in this section.

The aerodynamic torques and thrust forces of blades i =
1, 2, 3

Qi(Ω, Vrel,i, θi, vn,i) and Ti(Ω, Vrel,i, θi, vn,i) (12)

are, respectively, functions of rotor speed Ω, blade pitch
angle θi, blade-specific relative wind speed Vrel,i and blade-
specific normal induced wind speed v̄n,i. The temporal

dynamics of the blade-specific normal induced wind speed
are governed by first order ordinary differential equations

v̄n,i =
1

τn,is+1
Vrel,iā

QS
n (Vrel,i,Ω, θi) (13)

where the quasi-steady induction factor lookup table āQSn is
calculated offline using blade element momentum theory [8].
The relative wind speed average for each blade due to the
velocity of nacelle displacement ψ̇t is given by

Vrel,i = Vi − ψ̇t (14)

where the effective wind speed Vi of each blade is given by
the wind model presented in the next paragraph. The blade-
specific wind speed are gathered in a vector V = [V1 V2 V3]T

which are related to the fixed frame wind speed vector V f =
[V f0 V fc V fs ]T via the MBC transform

V = M−1V f . (15)

In [5] it has been shown how to derive the wind turbulence
model in fixed frame coordinates. The fixed-frame wind
model for an isotropic rotor is a sum of harmonic compo-
nents with peak frequencies which are multiples of of the
rotor speed multiplied with the number of blades

fn = n3Ω/(2π). (16)

In the present work the harmonic components are approx-
imated by second order ordinary differential equations and
only the first harmonic component (n=1) is included in the
model. The damped frequency of the model is ωd = 3Ω,
giving a natural frequency ωf = ωd/(

√
1− ζ2

f ). The fixed

frame wind speeds V f are the sum of the steady state fixed
frame wind speeds V̄ f and the dynamic fixed frame wind
speeds ∆V̄ f given by

∆V̈ fj + 2ζfωf∆V̇ fj + ω2
f∆V fj = ω2

fwj (17)

for j = (0, c, s) and where is wj zero-mean Gaussian
distributed noise with variance σ2

f,j . The parameter vector
V̄ is updated in each sample and is governed by first order
ordinary differential equations

τ ˙̄V fj + V̄ fj = V̄ fj + ∆V fj , j = (0, c, s) (18)

driven by the wind speeds estimated by the extended Kalman
filter presented in next section.

The drive-train connects the rotor to the generator through
a low speed shaft, a gearbox and a high speed shaft. The
drive-train flexibility is modeled in the low speed shaft
coordinate system

Irφ̈r +Dsφ̇∆ +Ksφ∆ = Q1 +Q2 +Q3 (19a)

IgN
2
g

φ̈g
Ng
−Dsφ̇∆ −Ksφ∆ = −QgNg (19b)

where Ng is the gear ratio, Ir and Ig are the moments of
inertia of the rotor and generator, Ks and Ds are the spring
and damping constants. It should also be mentioned that the
following definitions are introduced: φ̇r ≡ Ω is rotor speed,
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φ̇g ≡ Ωg is generator speed and φ∆ ≡ φr− φg
Ng

is the angular
torsion of the drive-shaft in the low speed shaft coordinate
system. Another significant model component is the fore-aft
motion of the tower

Mtψ̈t +Dtψ̇t +Ktψt = T1 + T2 + T3 (20)

where ψt denotes the nacelle displacement in the fore-aft
direction and is positive in the wind direction, Mt denotes
the tower, rotor and nacelle equivalent mass and Kt and Dt

denotes the tower spring and damping constants.
The actuators are assumed linear under the assumption that

a low level controller, e.g. PID or some type of nonlinear
controller, is operating in closed loop with the actuator
mechanics. The closed loop actuator is described with second
order dynamics, an approximation which under the proper
conditions can be justified

θ̈i + 2ζθωθ θ̇i + ω2
θθi = ω2

θθi,ref (21a)

subject to
[
θmin
θ̇min

]
≤
[
θi
θ̇i

]
≤
[
θmax
θ̇max

]
(21b)

where ωθ and ζθ are the natural frequency and damping ratio
of the actuator and θref is the reference signal from the
controller. The generator torque actuator is assumed to be
described with first order dynamics

Q̇g + τ−1
g Qg = τ−1

g Qgref (22a)

subject to
[
Qg,min
Q̇g,min

]
≤
[
Qg
Q̇g

]
≤
[
Qg,max
Q̇g,max

]
(22b)

where τg is the time constant of the generator torque actuator
and Qgref is the reference signal from the controller.

IV. CONTROLLER

In the following the general control setup is explained
as well as the underlying model-based state estimation and
control methods.

A. Controller Setup

The wind turbine can operate in either partial or full load
conditions. Partial load operation means that the wind speed
is lower than the rated wind speed and the wind turbine is not
able to reach its nominal power production. In partial load
operation the control objective is to maximize power capture.
Full load operation means that the wind speed is above the
rated wind speed and that the wind turbine is able to produce
its nominal power. In full load operation the control objective
is to keep power production at its nominal level.

In the following, several different outputs used by the
control framework will be presented. The generic output
y contains the following specific subsets of outputs: ym
measured outputs used by the extended Kalman Filter. The
remaining outputs are used by the Model Predictive Control
algorithm: yr outputs to track a reference value e.g. gen-
erator speed Ωg and power Pge. yz outputs which should

be minimized by the controller e.g. pitch rate θ̇, tower
fore-aft rate ψ̇t etc. ys outputs which are subject to soft
constraints e.g. pitch rate θ̇. yh outputs which are subject to
hard constraints e.g. pitch reference θref . Soft constraints are
necessary to ensure feasibility of the model predictive control
problem when plant and model does not match exactly due
to e.g. parametric uncertainties, noise etc.

Depending on whether the wind turbine operate in partial
or full load the control objectives change and values and
weights for the various outputs of the controller change
accordingly. The control framework setup can be seen in Fig.
3. An extended Kalman filter has been chosen over a linear
Kalman filter as the wind turbine is a highly nonlinear plant.
Consequently, the model used by the MPC algorithm is re-
linearized in each sample to account for the nonlinearities
of the wind turbine. Further details regarding partial and
full load operation and bumpless switching between the two
modes of operation can be found in e.g. [8].

B. Extended Kalman Filter

The extended Kalman Filter (EKF) is used to estimate
the states, as not all states are available for the the full
state feedback MPC algorithm. Furthermore, the EKF can be
augmented with a disturbance model to achieve offset-free
control [10], [11]. Offset-free methods will not be discussed
further in this paper and the reader is referred to [8] for an
elaboration on the subject.

The a posteriori estimate of the states with the time index
k|k, meaning estimate at time k given by the knowledge
available at time k, is given by

x̂f
k|k = x̂f

k|k−1+

LkMm,k(ym,i − gm(M−1
x,kx̂

f
k|k−1,M

−1
u,ku

f
k )) (23)

Enabling an a priori estimate of the states with the time index
k + 1|k, meaning estimate at time k + 1 given knowledge
available at time k, given by

x̂f
k+1|k = ff (x̂f

k|k,u
f
k ) (24)

where the Kalman gain Lk and output error covariance Ψk

are given by

Lk = Pk|k−1C
fT
m,k|k−1Ψ

−1
k and (25)

Ψk = Cf
m,k|k−1Pk|k−1C

fT
m,k|k−1 + Ry, (26)

respectively. The Kalman gain and output error covariance
matrices are updated by the discrete time recursive Riccati
equation

Pk|k = Pk|k−1 − LkC
f
m,k|k−1Pk|k−1 (27)

Pk+1|k = Af
k|kPk|kA

fT
k|k + Rx (28)

The state estimate used by the full-state-feedback control
algorithm can either be the a posteriori x̂k|k or the a
priori x̂k|k−1. In this work, the latter is used, giving the
computationally expensive MPC algorithm a full sample time
period to compute the control signal.
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Fig. 3. Setup of the hybrid controller. An extended Kalman filter provides estimates of states used by other blocks in the diagram. Supervisor block
provides partial or full load control objectives to controller depending on switching conditions. Reference and reference filter blocks provide references
for the controller to track depending on whether partial or full load operation is active.

C. Model Predictive Control

The control problem, with i being the local time index
within the prediction horizon, can be written as

min

∞∑

i=N

1
2‖r

f − yf
r,i‖

2
Wr

+ 1
2‖y

f
z,i‖

2
Wz

+

N−1∑

i=0

1
2‖r

f − yf
r,i‖

2
Wr

+ 1
2‖y

f
z,i‖

2
Wz

+ 1
2‖σi‖

2
Wσ

(29a)

subject to the following constraints

xf
i = x̂f

k|k−1, i = 0 (29b)

xf
i+1 = Afxf

i + Bfuf
i + δf , i = 0 . . .∞ (29c)

Ch,ix
f
i + Dh,iu

f
i + γh ≤ h, i = 0 . . . N − 1 (29d)

Cs,ix
f
i + γs − σi ≤ s, i = 1 . . . N − 1 (29e)

σi ≥ 0, i = 1 . . . N − 1 (29f)

where Ch,i = ChM−1
x,i , Dh,i = DhM−1

u,i and Cs,i =

CsM
−1
x,i and where the re-linearized model is assumed to

be linear within the prediction horizon. Further details about
the RLMPC can be found in [9].

V. RESULTS

Simulations have been performed in the multi-body aero-
servo-elastic software HAWC2 [12] developed by Risø DTU.
The presented simulation is performed with a mean wind
speed of 15 m/s and the wind turbine operate thus only in full
load conditions. A power law wind shear with coefficient of
0.14 and a Mann [13] turbulence with turbulence intensity of
0.14 as well as a potential flow tower shadow model are used
in the simulation. The wind turbine used in the simulation
is the 5 MW reference wind turbine defined by Jonkman et
al. [14].

The blades pitch individually in order to alleviate the
asymmetric blade load caused wind shear etc. The blade
pitch rate limits have been tightened to ± 4 deg/s to demon-
strate the constraint handling capabilities of the controller.

Fig. 4 depicts the results of the simulation. Fig. 4(a)
shows a point wind speed measured at the wind turbine
hub. As the wind field is spatially distributed, point wind
speeds at different locations in the rotor disc area are less

correlated for greater distances between the point wind
speeds. Accordingly, the depicted point wind speed does
not give the full information about the actual conditions
in which the wind turbine operate. Fig. 4(b) and 4(c)
displays the controllers ability to keep the generator speed
and electrical power close to their nominal values of 122.9
rad/s and 5 MW, respectively. Fig. 4(d) depicts the generator
torque, which effectively is a low pass filtered inverse of the
generator speed as the objective weights of the controller in
the current implementation prioritizes constant power over
constant generator speed. Finally, Fig. 4(e) and 4(f) shows
the individual pitch activity and Fig. 4(f) documents the
capability of the developed controller to honor constraints
defined in the rotating frame of reference.

A close inspection of Fig. 4(f) shows that the limits are
violated slightly, there are several potential causes for this:
One cause could be that the numerical tolerance thresholds
for convergence of the implemented quadratic programming
problem solver are not small enough. Another cause could
be that the pitch rate constraints are formulated as soft
constraints. However, the weights on the soft constraints
are so high, that the constraints act as hard constraints
in most cases. Alternative simulations with even higher
weights on the soft constraint violations did not show any
improvement with regards to the small violations of the
pitch rate limits. A third cause, and the most likely cause,
could be that constraints formulated in the rotating frame of
reference are subject to small errors, when transformed to
fixed frame of reference under the assumption of constant
rotor speed, when in fact the rotor speed varies slightly
within the prediction horizon. The violations are however
relatively small compared to absolute values of the pitch rate
limits and all in all the proposed method shows satisfactory
performance.

VI. CONCLUSIONS AND FUTURE WORKS
The existing wind turbine control framework developed

by the authors, consisting of an extended Kalman Filter
and a Model Predictive Control algorithm as well as higher
level functionality ensuring full wind speed range opera-
tion, has been extended to include multi-blade coordinate
transformation in the control design model used by the
control framework. The use of the multi-blade coordinate
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Fig. 4. Simulation results at mean wind speed of 15 m/s. Pitch rate constrained to be within ± 4 deg/s.

transformation enables a more natural implementation of
individual/cyclic pitch control which could lead to e.g. re-
duction in asymmetric loads caused by wind shear etc.

The Model Predictive Control algorithm has been extended
such that constraints are still formulated in the rotating frame
of reference although the rest of the system description
is formulated in the fixed frame of reference. Numerical
experiments performed in the aero-servo-elastic software
HAWC2 confirms the controllers ability handle constraints
on e.g. the pitch rate of individual blades.

In a broader perspective it would be relevant in future
work to compare fatigue load reductions etc. achieved with
the proposed method as opposed to alternative methods.
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