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Abstract— The aim of this paper is to determine quantum
master and filter equations for systems coupled to continuous-
mode single photon fields. The system and field are de-
scribed using a quantum stochastic unitary model, where the
continuous-mode single photon state for the field is determined
by a wavepacket pulse shape. The master equation is derived
from this model and is given in terms of a system of coupled
equations. The output field carries information about the system
from the scattered photon, and is continuously monitored. The
quantum filter is determined with the aid of an embedding
of the system into a larger system, and is given by a system
of coupled stochastic differential equations. An example is
provided to illustrate the main results.

I. INTRODUCTION

In recent years single photon states of light have be-
come increasingly important due to applications in quantum
technology, in particular, quantum computing and quantum
information systems, [1], [2], [3], [4], [5]. For instance, the
light may interact with a system, say an atom, quantum
dot, or cavity, and this system may be used as a quantum
memory, [1], or to control the pulse shape of the single
photon state [2]. Note that in practice one can consider
different types of ‘single photon states’, including the single
photon state of a single mode of light confined inside an
optical cavity [1], or a single photon state superposed over
a continuum of modes of a travelling field (i.e., colloquially,
a “flying” single photon state) referred to as a continuous-
mode or multimode single photon state [6], [7], [2]. In
this paper we will be interested exclusively with the latter
kind of single photon state and therefore from this point
on when we say ‘single photon’ state we specifically mean
the continuous-mode single photon state of a travelling field.
When light interacts with a quantum system, information
about the system is contained in the scattered light. This
information may be useful for monitoring the behavior of the
system, or for controlling it. The topic of this paper concerns
the extraction of information from the scattered light when
the incoming light is placed in a single photon state, denoted
|ξ〉, as illustrated in Figure 1.

The problem of extracting information from continuous
measurement of the scattered light is a problem of quantum
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Fig. 1. System G coupled to a field in a continuous-mode single photon
state |ξ〉 defined by the wavepacket ξ. The output field is continuously
monitored by homodyne detection (assumed perfect) to produce a classical
measurement signal Y (t).

filtering, [8], [9], [10], [11], [12], [13], [14], [15]. The current
state of the art for quantum filtering considers incoming
light in a vacuum or other Gaussian state, with quadrature
or counting measurements. Single photon states of light are
highly non-classical, and are fundamentally different from
Gaussian states. At present, to the best of our knowledge,
there are no filtering results for systems driven by single
photon fields. In view of the increasing importance of single
photon states of light, the purpose of this paper is to solve
a quantum filtering problem for systems driven by single
photon fields. As a by-product, we obtain a master equation
for the system. A significant feature of the master equation
and the quantum filter is that they are both given by a system
of coupled equations, not a single equation as in the vacuum
case. This reflects the non-Markovian character of systems
driven by single photon fields.

The paper is organized as follows. The filtering problem
to be solved is formulated in Section II. The master equation
is derived in Section III using the model presented in Section
II. This leads naturally to Section IV, where the system
is embedded in a larger Markovian model, using a signal
generator model. The single photon filter is presented in
Section V, and an example is discussed in Section VI.

Notation: We use the standard Dirac notation |ψ〉 to denote
state vectors (vectors in a Hilbert space) [16], [17]. The
superscript ∗ indicates Hilbert space adjoint or complex
conjugate. The inner product of state vectors |ψ1〉 and |ψ2〉 is
denoted 〈ψ1|ψ2〉. The expected value of an operator X when
the system is in state |ψ〉 is denoted Eψ[X] = 〈ψ|X|ψ〉. For
operators A and B we write 〈A,B〉 = tr[A∗B].

II. PROBLEM FORMULATION

We consider a quantum system G coupled to a quantum
field Bin, as shown in Figure 1. The interaction of Bin with
G produces the output field Bout. The input field is placed
in a single photon state, denoted using Dirac’s notation
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as |ξ〉, where ξ is a complex valued function such that∫∞
0
|ξ(s)|2ds = 1. As illustrated in Figure 1, the wavepacket

|ξ〉 interacts with the quantum system G, and the results of
this interaction provide information about the system that
may be obtained through continuous measurement of an
observable Y (t) of the output field Bout(t). The filtering
problem of interest in this paper is to determine the condi-
tional state from which estimates X̂(t) of system operators
X may be determined at time t based on knowledge of the
observables {Y (s), 0 ≤ s ≤ t}.

In what follows the system G is assumed to be defined on
a Hilbert space HS , with an initial state denoted |η〉 ∈ HS .
The input field Bin is described in terms of annihilation
B(ξ) and creation B∗(ξ) operators defined on a symmetric
(Boson) Fock space F, [18, Chapter II], [14, Section 4].
The continuous-mode single photon state is defined on the
symmetric Fock space by [6, sec. 6.3], [7, Section 14.2], [2,
eq. (9)]

|ξ〉 = B∗(ξ)|φ〉, (1)

where |φ〉 is the vacuum state of the field. Expression (1)
says that the single photon wavepacket is created from the
vacuum using the field operator B∗(ξ).

The Hilbert space for the composite system is

H = HS ⊗ F = HS ⊗ Ft] ⊗ F(t,

where here we have exhibited the continuous temporal tensor
product decomposition of the Fock space F = Ft]⊗F(t into
past and future components, which is of basic importance
in what follows. We use the notation E to denote quantum
expectation, usually with a subscript to denote the state being
used. In particular, we write

E11[X ⊗ F ] = 〈ηξ|(X ⊗ F )|ηξ〉 = 〈η|X|η〉〈ξ|F |ξ〉 (2)

for the expectation with respect to the product state |ηξ〉,
where the field is in the single photon state. Here and in what
follows X is a bounded system operator acting on HS , and F
is a field operator acting on the Fock space F. Similarly, we
may define the expectation when the field is in the vacuum
state,

E00[X ⊗ F ] = 〈ηφ|(X ⊗ F )|ηφ〉 = 〈η|X|η〉〈φ|F |φ〉. (3)

We will also have need for the cross-expectations

E10[X ⊗ F ] = 〈ηξ|(X ⊗ F )|ηφ〉,
E01[X ⊗ F ] = 〈ηφ|(X ⊗ F )|ηξ〉. (4)

A crucial difference between the single photon state and
the vacuum state is that the later state factorizes |φ〉 = |φt]〉⊗
|φ(t〉 with respect to the temporal factorization F = Ft]⊗F(t

of the Fock space, with |φt]〉 ∈ Ft] and |φ(t〉 ∈ F(t, while
the former does not. Rather, we have

|ξ〉 = B∗(ξ)|φ〉 = |ξt]〉 ⊗ |φ(t〉+ |φt]〉 ⊗ |ξ(t〉, (5)

where

|ξt]〉 = B−∗t (ξ)|φt]〉, and |ξ(t〉 = B+∗
t (ξ)|φ(t〉, (6)

and B−t (ξ) = B(ξχ[0,t]), B+
t (ξ) = B(ξχ(t,∞)), B(ξ) =

B−t (ξ)+B+
t (ξ). Here, χ[0,t] is the indicator function for the

time interval [0, t]. Note that while |ξ〉 has unit norm, we
have

‖ |ξt]〉 ‖2=
∫ t

0

|ξ(s)|2ds, and ‖ |ξ(t〉 ‖2=
∫ ∞
t

|ξ(s)|2ds.
(7)

A consequence of the additive decomposition (5) is the
following. Let K(t) be a bounded operator acting on the
full Hilbert space H that is adapted, i.e. K(t) acts trivially
on F(t, the field in the future. Then the expectation with
respect to the single photon field may be expressed in terms
of the vacuum state as follows:

E11[K(t)] = E00[B−t (ξ)K(t)B−∗t (ξ) + w(t)K(t)](8)

where w(t) =
∫∞
t
|ξ(s)|2ds.

The dynamics of the system will be described using the
quantum stochastic calculus, [19], [20], [18], [21], [14].
Quantum stochastic integrals are defined in terms of fun-
damental field operators B(t), B∗(t) and Λ(t), [18, Chapter
II], [14, Section 4].1 The non-zero Ito products for the field
operators are

dB(t)dB∗(t) = dt, dB(t)dΛ(t) = dB(t),
dΛ(t)dΛ(t) = dΛ(t), dΛ(t)dB∗(t) = dB∗(t). (9)

The dynamics of the composite system is described by a
unitary U(t) solving the Schrödinger equation, or quantum
stochastic differential equation (QSDE),

dU(t) = {(S − I)dΛ(t) + LdB∗(t)− L∗SdB(t)

−(
1
2
L∗L+ iH)dt}U(t), (10)

with initial condition U(0) = I . Here, H is a fixed self-
adjoint operator representing the free Hamiltonian of the
system, and L and S are system operators determining
the coupling of the system to the field, with S unitary. In
this paper, for simplicity we assume that the parameters
G = (S,L,H) are bounded operators on the system Hilbert
space HS .

A system operator X at time t is given in the Heisenberg
picture by X(t) = jt(X) = U(t)∗(X⊗I)U(t) and it follows
from the quantum Ito calculus that

djt(X) = jt(S∗XS −X)dΛ(t) + jt(S∗[X,L])dB(t)∗

+jt([L∗, X]S)dB(t) + jt(G(X))dt, (11)

where
G(X) = LL(X)− i[X,H], (12)

and
LL(X) =

1
2
L∗[X,L] +

1
2

[L∗, X]L. (13)

1In terms of annihilation and creation white noise operators b(t), b∗(t)
that satisfy singular commutation relations [b(s), b∗(t)] = δ(t − s), the
fundamental field operators are given by B(t) =

R t
0 b(s)ds, B∗(t) =R t

0 b
∗(s)ds, and Λ(t) =

R t
0 b
∗(s)b(s)ds. Also, we may write B(ξ) =R∞

0 ξ∗(s)dB(s).
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and The map X 7→ G(X) is known as the Lindblad
generator, while the quartet of maps X 7→ G(X), S∗XS −
X, S∗[X,L], [L∗, X]S are known as Evans-Hudson maps.

The output field is defined by Bout(t) = U∗(t)B(t)U(t).2

In this paper we consider the output field observable Y (t)
defined by

Y (t) = U∗(t)Z(t)U(t), (14)

where
Z(t) = B(t) +B∗(t), (15)

is a quadrature observable of the input field. Note that
both Z(t) and Y (t) are self-adjoint and self-commutative:
[Z(t), Z(s)] = 0 and [Y (t), Y (s)] = 0. We write Zt and
Yt for the subspaces of commuting operators generated by
the observables Z(s), Y (s), 0 ≤ s ≤ t, respectively.3

They are related by the unitary rotation Yt = U∗(t)ZtU(t).
Physically, Y (t) may represent the integrated photocurrent
arising in an idealized (perfect) homodyne photodetection
scheme, as in Figure 1. For further information on homodyne
detection, we refer the reader to the literature; for example,
[22], [13], [15], [23]. In particular, [23] considers pulsed
homodyne detection for fields in a continuous-mode n-
photon state, which includes the single photon state as a
special case.

The primary goal of this paper is to determine the quantum
filter for the quantum conditional expectation (see, e.g. [14,
Definition 3.13])

X̂(t) = E11[X(t) |Yt]. (16)

This conditional expectation is well defined, since X(t)
commutes with the subspace Yt (non-demolition condition).
The conditional estimate X̂(t) is affiliated to Yt (written in
abbreviated fashion as X̂(t) ∈ Yt) and is characterized by
the requirement that

E11[X̂(t)K] = E11[X(t)K] (17)

for all K ∈ Yt.

III. MASTER EQUATION

Before deriving the quantum filter, we work out dynamical
equations for the unconditioned single photon expectation.
Such equations are often called master equations and are
of fundamental importance, and arise in Markovian models
of open quantum systems, [21], [18], [11], [15]. Master
equations are analogous to the Fokker-Plank equations for
classical diffusion processes. Note that the master equations
for systems driven by a single photon field have previously
been derived by other means in [24], although we only
became aware of this after this work was completed.

When the field is in the vacuum state |φ〉, the joint
system-field state evolves according to U(t)|ηφ〉, and the
system density operator ρ00(t) is defined by 〈ρ00(t), X〉 =

2Recall B(t) = Bin(t) is the input field.
3Zt and Yt are commutative von Neumann algebras. They are also

filtrations, e.g. Zt1 ⊂ Zt2 whenever t1 < t2.

〈ηφ, U∗(t)(X ⊗ I)U(t)ηφ〉 = E00[X(t)]. It is well-known
[18], [19], [21] that ρ00(t) satisfies the master equation

ρ̇00(t) = G∗(ρ00(t)), (18)

where

G∗(ρ) = LρL∗ − 1
2
ρL∗L− 1

2
L∗Lρ+ i[ρ,H]. (19)

The master equation (18) is readily determined from the
Heisenberg evolution (11) by taking expectations with re-
spect to the vacuum state and appropriately collecting terms.
Note that the unitary operator S appearing in the Schrödinger
equation (10) does not appear in the master equation (18).

Now suppose that the field is in a single photon state
|ξ〉, in which case the density operator ρ11(t) is defined
by 〈ρ11(t), X〉 = 〈ηξ, U∗(t)(X ⊗ I)U(t)ηξ〉 = E11[X(t)],
which involves expectation with respect to the single photon
field. Using equation (11) and the relations

dB(t)|ξ〉 = ξ(t)|φ〉, dΛ(t)|ξ〉 = ξ(t)dB∗(t)|φ〉, (20)

we calculate that

d

dt
Eηξ[X(t)] =

d

dt
E11[X(t)] (21)

= E11[G(X(t))]
+E01[S∗(t)[X(t), L(t)]]ξ∗(t)
+E10[[L∗(t), X(t)]S(t)ξ(t)
+E00[(S∗(t)X(t)S(t)−X(t))]|ξ(t)|2.

Notice that the right hand side of (21) includes a vacuum
expectation, as well as cross terms involving single photon
and vacuum states. The system driven by the single photon
field is not Markovian, in contrast to the vacuum case.

In view of this, we define

µ11
t (X) = E11[X(t)], µ10

t (X) = E10[X(t)],
µ01
t (X) = E01[X(t)] µ00

t (X) = E00[X(t)]. (22)

Consequently, the master equation in Heisenberg form for
the system when the field is in the single photon state |ξ〉 is
given by the system of equations

µ̇11
t (X) = µ11

t (G(X)) + µ01
t (S∗[X,L])ξ∗(t) (23)

+µ10
t ([L∗, X]S)ξ(t)

+µ00
t (S∗XS −X)|ξ(t)|2,

µ̇10
t (X) = µ10

t (G(X)) + µ00
t (S∗[X,L])ξ∗(t), (24)

µ̇01
t (X) = µ01

t (G(X)) + µ00
t ([L∗, X]S)ξ(t), (25)

µ̇00
t (X) = µ00

t (G(X)). (26)

The initial conditions are

µ11
0 (X) = µ00

0 (X) = 〈η,Xη〉, µ10
0 (X) = µ01

0 (X) = 0.
(27)

In order to obtain a Schrödinger form of the master
equations, we define (generalized) density operators ρjk(t)
by

〈ρjk(t), X〉 = µjkt (X). (28)
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The operators ρjk(t) enjoy the symmetry properties

ρ00∗(t) = ρ00(t), ρ01∗(t) = ρ10(t), ρ11∗(t) = ρ11(t).
(29)

The master equation in Schrödinger form for the system
when the field is in the single photon state |ξ〉 is given by
the system of equations

ρ̇11(t) = G∗(ρ11(t)) + [Sρ01(t), L∗]ξ(t)
+[L, ρ10(t)S∗]ξ∗(t)
+(Sρ00(t)S∗ − ρ00(t))|ξ(t)|2, (30)

ρ̇10(t) = G∗(ρ10(t)) + [Sρ00(t), L∗]ξ(t), (31)
ρ̇01(t) = G∗(ρ01(t)) + [L, ρ00(t)S∗]ξ∗(t), (32)
ρ̇00(t) = G∗(ρ00(t)). (33)

The initial conditions are

ρ11(0) = ρ00(0) = |η〉〈η|, ρ10(0) = ρ01(0) = 0. (34)

An example of the master equation is presented in Section
VI.

IV. SINGLE PHOTON SIGNAL MODEL

In Section III we saw that the master equation for the sys-
tem G driven by a single photon field is non-Markovian, and
the equations derived suggest the possibility of embedding
the system and field in a larger system G̃. Indeed, Markovian
embeddings were used in [25] to derive quantum trajectory
equations for a class of non-Markovian master equations.
In engineering and statistics, it is common practice to use
‘generating filters’ driven by white noise to represent colored
noise.

In this section we construct a generating filter M =
(I, L0, H0) (an open quantum system on a Hilbert space
H0) driven by vacuum to represent the single photon field,
Fig. 2. Here, the ancilla parameters M = (I, L0, H0) are to
be determined. This results in an extended system G̃ defined
on the Hilbert space H0 ⊗H (cascade, or series connection,
[26]) driven by vacuum, with parameters given by

G̃ = G /M = (S,L+ SL0, H +H0 + Im[L∗SL0]), (35)

from which the master equation and quantum filter equations
(Section V) can be obtained.

HD

signal

model system

vacuum

wavepacket
homodyne

detection

Fig. 2. An ancilla system M (a two-level system) is used as a signal
model or ‘generating filter’. The ancilla system M is driven by vacuum
(quantum white noise), and produces a single-photon output. The cascade
circuit illustrated in this figure is equivalent to the circuit of Fig. 1.

Specifically, we seek an ancilla system M initialized in
a state |γ〉 and driven by vacuum that provides a unitary
dilation of the single photon driven system. This means that

given our system G = (S,L,H), can we find an ancilla
system M with state |γ〉 and an ancilla operator R such that
if Ũ(t) is the unitary for G̃ = G /M then

Eηξ[X(t)] = Eγηφ[Ũ∗(t)(R⊗X)Ũ(t)]. (36)

Here, X(t) = U∗(t)XU(t), where U(t) is the unitary for G.
Equation (36) means that the effect of the single photon field
on the system is equivalent to the effect of the cascade of the
ancilla on the system. The left hand side of (36) is a quantum
expectation with respect to the state |ηξ〉 = |η〉⊗|ξ〉 with the
field in the single photon state |ξ〉, while the right hand side
involves quantum expectation in the extended system with
respect to the initial state |γηφ〉 = |γ〉 ⊗ |η〉 ⊗ |φ〉, with the
field in the vacuum state |φ〉.

In order to fulfil the requirement (36), we consider the
time derivative of both sides of (36) and determine the
unknown signal model parameters by comparison. The time
derivative of the left hand side of (36) is given by (21) or
equations (23)-(26) above, while the right hand derivative can
be computed from the Lindblad generator GG/M (A⊗X) for
the extended system G̃ = G /M ,

d

dt
Eγηφ[Ũ∗(t)(A⊗X)Ũ(t)]

= Eγηφ[Ũ∗(t)GG/M (A⊗X)Ũ(t)], (37)

where

GG/M (A⊗X) = A⊗ GG(X) + LL0(A)⊗X
+L∗0A⊗ S∗[X,L] +AL0 ⊗ [L∗, X]S
+L∗0L0 ⊗ (S∗XS −X) (38)

for any ancilla operator A and system operator X .
Considering the definitions (22) of µjkt (X) above, we must

find ancilla operators Qjk and (non-vanishing) weighting
functions wjk(t) such that

µjkt (X) =
µ̃t(Qjk ⊗X)

wjk(t)
, (39)

where

µ̃t(Qjk ⊗X) = Eγηφ[Ũ∗(t)(Qjk ⊗X)Ũ(t)]. (40)

Now
d

dt

µ̃t(Qjk ⊗X)
wjk(t)

=
µ̃t(GG/M (Qjk ⊗X))

wjk(t)

− µ̃t(Qjk ⊗X)
wjk(t)

ẇjk(t)
wjk(t)

. (41)

Comparing this expression with equations (23)-(26) we find
that (39) and (36) are satisfied if we choose the ancilla to
be a two-level system with state γ = |e1〉 (excited state),
R = Q11 = I , Q10 = σ−, Q01 = σ+, Q00 = n, w11(t) = 1,
w10(t) = w01(t) =

√
w(t), w00(t) = w(t) =

∫∞
t
|ξ(s)|2ds,

L0 = ξ(t)σ−/
√
w(t).

The signal model ancilla system is therefore

M = (I,
ξ(t)σ−√
w(t)

, 0), (42)
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and so the extended system is

G̃ = G /M (43)
= (S,L+ ξ(t)√

w(t)
Sσ−, H + ξ(t)√

w(t)
Im(L∗Sσ−)).

Remark. The output state of the generating filter M can
be understood as follows. If V (t) denotes the unitary for
M driven by vacuum, and if the initial state is |ψ(0)〉 =
|e1〉 ⊗ |φ〉, then the state |ψ(t)〉 = V (t)|ψ(0)〉 satisfies the
Schrodinger equation

d|ψ(t)〉 =

[
ξ(t)√
w(t)

σ−dB
∗(t)− 1

2
|ξ(t)|2

w(t)
σ+σ−dt

]
|ψ(t)〉

(44)
(since dB(t)|φ〉 = 0). It is an elementary calculation to see
that this has the exact solution

|ψ(t)〉 =
√
w(t)|e1 ⊗ φ〉+ |e0 ⊗B−∗t (ξ)φ〉; (45)

cf. (8). Since ξ is square integrable, |ψ(t)〉 approaches the
state |e0 ⊗ ξ〉 as t → ∞. Therefore the state of the field
produced by the generating filter M approaches the single
photon state |ξ〉 asymptotically.

V. SINGLE PHOTON FILTER

The quantum filter πt(X) = Eηξ[X(t)|Y (s), 0 ≤ s ≤ t]
for the system G driven by a single photon field may
now be obtained from the quantum filter π̃t(A ⊗ X) =
Eγηφ[Ũ∗(t)(A ⊗ X)Ũ(t)|I ⊗ Y (s), 0 ≤ s ≤ t] for the
extended system G̃ = G / M driven by vacuum [14],
with the extended system parameters given by (43) (see the
Appendix). Using the definition of conditional expectation
(see [14] and the Appendix), it follows that

I ⊗ πt(X) = π̃t(I ⊗X). (46)

If we define

I ⊗ πjkt (X) =
π̃t(Qjk ⊗X)

wjk(t)
, (47)

we obtain the system of equations

dπ11
t (X)

=
(
π11
t (G(X)) + π01

t (S∗[X,L])ξ∗(t)
+π10

t ([L∗, X]S)ξ(t) + π00
t (S∗XS −X)|ξ(t)|2

)
dt

+(π11
t (XL+ L∗X) + π01

t (S∗X)ξ∗(t) + π10
t (XS)ξ(t)

−π11
t (X)Kt(X))dW (t), (48)

dπ10
t (X) =

(
π10
t (G(X)) + π00

t (S∗[X,L])ξ∗(t)
)
dt

+(π10
t (XL+ L∗X) + π00

t (S∗X)ξ∗(t)
−π10

t (X)Kt(X))dW (t), (49)

dπ00
t (X) = π00

t (G(X))dt+ (π00
t (XL+ L∗X)

−π00
t (X)Kt(X))dW (t). (50)

Here,

Kt(X) = π11
t (L+ L∗) + π01

t (S)ξ(t) + π10
t (S∗)ξ∗(t) (51)

and the innovations process W (t) is a Wiener process with
respect to the single photon state and is defined by

dW (t) = dY (t)−Kt(X)dt. (52)

We have π01
t (X) = π10

t (X∗)∗, and the initial conditions are
π11

0 (X) = π00
0 (X) = 〈η,Xη〉, π10

0 (X) = π01
0 (X) = 0.

Consequently the conditional expectation for the system
driven by the single photon field is given by

πt(X) = Eηξ[X(t)|Y (s), 0 ≤ s ≤ t] = π11
t (X), (53)

and so the required quantum filter is given by the system of
coupled equations (48)-(50).

Equations for the conditional density operators may easily
be derived. Finally, we remark that although the master
equations for systems driven by a single photon field have
been obtained by other means in [24], to the best of our
knowledge the quantum filtering (trajectory) equations (48)-
(53) for such systems have not been derived before.

VI. EXAMPLE

When the system is a two-level system or qubit, the filter-
ing equations reduce to a finite set of stochastic differential
equations. In this case we have HS = C2. The system
is specified by the parameters S = I , L =

√
κσ−, and

H = ωσz . Here κ > 0 is a scalar parameter.
We begin with the master equations (30)-(33), and write

ρ00 =
1
2

(I + x00σx + y00σy + z00σz) (54)

ρ01 =
1
2

(x01σx + y01σy + z01σz) = ρ10∗ (55)

ρ11 =
1
2

(I + x11σx + y11σy + z11σz) (56)

Note that x00, y00, z00 and x11, y11, z11 are real, while x01,
y01, z01 may be complex. Also note, for example, ρ00(σx) =
x00, ρ01(σx) = x01∗, etc. Then we obtain nine coupled
equations for the nine coefficients:

ẋ00 = −2ωy00 − κ

2
x00,

ẏ00 = 2ωx00 − κ

2
y00,

ż00 = −κ(1 + z11),

ẋ01 = −κ
2
x01 − 2ωy01 −

√
κξ(t)∗z00,

ẏ01 = 2ωx01 − κ

2
y01 − i

√
κξ(t)∗z00,

ż01 = −κz01 −
√
κx00ξ(t)∗ + i

√
κy00ξ(t)∗,

ẋ11 = −κ
2
x11 − 2ωy11 +

√
κz01ξ(t) +

√
κz01∗ξ(t)∗,

ẏ11 = 2ωx11 − κ

2
y11 + i

√
κz01ξ(t)− i

√
κz01∗ξ(t)∗,

ż11 = −κ− κz11 −
√
κx01ξ(t)− i

√
κy01ξ(t)

−
√
κx01∗ξ(t)∗ + i

√
κy01∗ξ(t)∗.

For the quantum filter (48)-(50), we use a slightly more
general representation for ρ̂jk given by:

ρ̂jk =
1
2

(ĉjkI + x̂jkσx + ŷjkσy + ẑjkσz),
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for j, k = 0, 1. Since 〈ρ̂11, I〉 = 1 (i.e., ρ̂11 is a normalized
conditional density operator), we always have that ĉ11 = 1
at all times. However, unlike the master equation, this will
not be so for ĉ01, ĉ10, ĉ00, as these coefficients will evolve in
time. This is the reason we need to consider the more general
representation for ρ̂jk. The quantum filter for the two-level
system is given by the finite set of coupled equations

dĉ00 = (
√
κx̂00

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)ĉ00)dW (t),

dx̂00 =
(
−2ωy00 − κ

2
x00
)
dt+

(√
κĉ00

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)x̂00

)
dW (t),

dŷ00 =
(
2ωx00 − κ

2
y00
)
dt

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)ŷ00

)
dW (t),

dẑ00 =
(
−κ(1 + z00))dt+

(√
κx̂00

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)ẑ00

)
dW (t),

dĉ01 =
(√

κx̂01 + ĉ00ξ(t)∗

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)ĉ01

)
dW (t),

dx̂01 =
(
−κ

2
x01 − 2ωy01 −

√
κξ(t)∗z00

)
dt

+
(
x̂00ξ(t)∗ +

√
κĉ01

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)x̂01

)
dW (t),

dŷ01 =
(
2ωx01 − κ

2
y01 − i

√
κξ(t)∗z00

)
dt

+
(
ŷ00ξ(t)∗

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)ŷ01

)
dW (t),

dẑ01 =
(
−κz01 −

√
κx00ξ(t)∗ + i

√
κy00ξ(t)∗

)
dt

+
(√

κx̂01 + ẑ00ξ(t)∗

− (
√
κx̂11 +

1
2
ĉ01ξ(t) +

1
2
ĉ01∗ξ(t)∗)ẑ01

)
dW (t),

dx̂11 =
(
−κ

2
x11 − 2ωy11 +

√
κz01ξ(t) +

√
κz01∗ξ(t)∗

)
dt

+
(√

κ+ x̂01∗ξ(t)∗ + x̂01ξ(t)

− (
√
κx̂11 +

1
2
c01ξ(t) +

1
2
c01∗ξ(t)∗)x̂11

)
dW (t),

dŷ11 =
(
2ωx11 − κ

2
y11 + i

√
κz01ξ(t)− i

√
κz01∗ξ(t)∗

)
dt

+
(
ŷ01∗ξ(t)∗ + ŷ01ξ(t)

− (
√
κx̂11 +

1
2
c01ξ(t) +

1
2
c01∗ξ(t)∗)ŷ11

)
dW (t),

dẑ11 =
(
−κ− κz11 −

√
κx01ξ(t)− i

√
κy01ξ(t)

−
√
κx01∗ξ(t)∗ + i

√
κy01∗ξ(t)∗

)
dt

+
(√

κx̂11 + ẑ01∗ξ(t)∗ + ẑ01ξ(t)

− (
√
κx̂11 +

1
2
c01ξ(t) +

1
2
c01∗ξ(t)∗)ẑ11

)
dW (t).

The innovations process is given by

dW (t) = dY (t)−
(√
κ x̂11(t) + ĉ01(t)ξ(t) + ĉ10(t)ξ∗(t)

)
dt.

(57)

VII. DISCUSSION AND CONCLUSION

In this paper we have derived the master equation and
quantum filter for a class of open quantum systems that are
coupled to single photon fields. The paper has focused on
the case of quadrature measurements Y (t) given by (14),
(15). However, the methodology also applies to the case of
counting measurements, corresponding to a photodetector in
place of the homodyne detector in Figure 1.4

The single photon filter consist of coupled equations
that determine the evolution of the conditional state of the
system under continuous (weak) measurement performed on
the output field, in contrast to the familiar single filtering
equation for open Markov quantum systems that are coupled
to coherent boson fields. This coupled equations structure
of the master and filter equations is a reflection of the non-
Markov nature of systems coupled to single photon fields.
Indeed, a key feature of our approach is the embedding
of the system into a larger extended system, a technique
often employed in the analysis of non-Markov systems,
providing an elegant framework within which to study the the
dynamics, both unconditional and conditional, of the system.
We expect that the basic approach taken in this paper can be
adapted to study quantum systems that are coupled to other
types of highly non-classical boson fields.

4Of course, homodyne detection is based on a photon counting system,
e.g. [21].
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APPENDIX

The quantum filter for a system G = (S,L,H) (driven
by vacuum) for the quadrature output field observable Y (t)
(given by (14)) is

dπt(X) = πt(GG(X))dt (58)
+(πt(XL+ L∗X)− πt(L+ L∗)πt(X))dW (t),

where W (t), a Wiener process called the innovations pro-
cess, is given by dW (t) = dY (t) − πt(L + L∗)dt). By the
spectral theorem it follows that the quantum filter is equiva-
lent to a classical system driven by the measurement record,
[27], [14]. Perhaps the simplest way to derive the quantum
filter is to use the conditional characteristic function, [9],
[27], [28], which we now briefly summarize.

We begin with a short discussion of quantum conditional
expectation. The measurement signal Y (s), 0 ≤ s ≤ t,
is a collection of commuting self-adjoint operators. These
operators form a subspace Yt in the space of operators,
and the quantum conditional expectation Eηφ[X(t)|Y (s),
0 ≤ s ≤ t] is the orthogonal projection of the system
operator X(t) at time t (since the field serves as a probe,
we have the commutation relation [X(t), Y (s)] = 0 for all
0 ≤ s ≤ t (non-demolition), and so the conditional expec-
tation is well-defined). The orthogonal projection property
corresponds to least squares estimation, and leads to the
following characterization (17) mentioned in Section II. We
will use this characterization in the following form. Define,
for any function g,

cg(t) = exp{
∫ t

0

g(s)dY (s)− 1
2

∫ t

0

|g(s)|2ds}, (59)

and note dcg(t) = g(t)cg(t)dY (t). Then we require

Eηφ[X(t)cg(t)] = Eηφ[X̂(t)cg(t)], (60)

for all functions g.
Now suppose that dX̂(t) has the form

dX̂(t) = α(t)dt+ β(t)dY (t), (61)

where α and β are to be determined from the relation (60).
Now using the QSDE (11) for X(t) = jt(X), we have

d
dtEηφ[X(t)cg(t)]

= Eηφ[cg(t)πt(−i[X,H] + GL(X))
+g(t)cg(t)πt(XL+ L∗X)] (62)

(here we have used property (60)). Similarly, using (61) we
have

d
dtEηφ[X̂(t)cg(t)]

= Eηφ[cg(t)(α(t) + πt(L+ L∗)β(t))

+g(t)cg(t)(β(t) + πt(L+ L∗)X̂(t)] (63)

Now equating the RHS of (62) and (63) and using the fact
that g is arbitrary we find that

α(t) = πt(−i[X,H] + GL(X))− πt(L+ L∗)β(t)
β(t) = πt(XL+ L∗X)− πt(L+ L∗)πt(X)

The quantum filter (58) now follows from this.
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