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Abstract— It is well known that hysteresis often exists and
failures may occur in practical actuators during system oper-
ation. The compensation for uncertainties caused by unknown
hysteresis and unknown failures is an important problem in
ensuring system stability and performances. However, available
results based on adaptive approaches to address such a problem
are still very limited. In this paper, an adaptive tracking control
scheme is proposed to solve such a problem. Simulation results
also illustrate the effectiveness of the control scheme.

I. INTRODUCTION

Actuator failures seems inevitable in practical systems and
such failures may lead to instability or even catastrophic acci-
dents during their operations. So how to maintain acceptable
system performance when a failure occurs has become more
and more important in the design of control schemes. To
address such an issue, several methods have been proposed
in recent years, see for examples in [1]-[12]. Among these
methods, adaptive control approach offers certain advantages.
For example, it can handle system parametric uncertainties
and avoid false alarms and delays possibly caused by failure
detection. In the context of unknown failure compensation
based on adaptive approach, several schemes have been
proposed, see for examples in [4]-[12]. In [4] [5] adaptive
control schemes were proposed to compensate for uncertain-
ties caused by unknown actuator failures for linear systems
and it was extended to strict feedback nonlinear systems with
backstepping techniques in [6]. A result on MIMO systems
was presented in [7]. In [8] an output feedback adaptive
control law was designed for a class of nonlinear systems
to address failure problem, but the previous assumption of
identical relative degrees with respect to all the inputs was
still needed. By using pre-filters, the relative degree condition
was relaxed for linear systems in [9] and the result was
extended to nonlinear systems in [10]. In [11] an adaptive
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control scheme based on a prescribed performance bound
was proposed to guarantee transient performance.

On the other hand, hysteresis nonlinearities exists in a
wide range of practical systems especially in mechanical
actuators, electro-magnetic system and so on. So the effect
of hysteresis cannot be ignored in the design and analysis
of control systems. In recent years, several schemes based
on adaptive approach to compensate for hysteresis have
been proposed, see for examples [13]-[21]. In [14] adaptive
control law was proposed for a class of linear systems
by constructing an inverse operator to cancel the effects
of backlash hysteresis. In [15] and [16], a robust adaptive
control scheme was proposed to compensate for backlash-
like hysteresis for a class of nonlinear plants. In [14] [15],
an assumption that all the system parameters must be in a
known bounded set was imposed. It was relaxed in [16]
by using backstepping design approaches. The result was
extended to decentralized adaptive control systems in [17].
By introducing a smooth inverse function of backlash and
with backstepping technique, an adaptive output feedback
control law was designed to ensure the stability of system in
[18] and [19].

Failures of such hysteretic actuators may occur in practice.
However, the available results based on adaptive approaches
to address such a problem are very limited. Recently in [20],
we proposed an adaptive scheme for a simple class of sys-
tems studied in [15] - [17]. In [20] and [15] - [17], the control
gains are constants. Thus the effects of approximating the
actuator hysteresis will be bounded after multiplying these
gains and they can be handled in similar ways to bounded ex-
ternal disturbances. In this paper, we will consider parametric
strict feedback systems. For such systems, the control gains
are nonlinear functions of system states and therefore the
relevant effects in approximating the actuator hysteresis can
no longer be assumed bounded. How to handle such effects
is a challenging issue in the design and analysis of adaptive
controllers and it becomes even more difficult in the presence
of possible actuator failures. Our idea is to separate such
effects into two parts by applying Young’s inequality. One is
bounded and it is combined with external disturbances. An
estimator is designed to estimate their unknown upper bound.
The other part is handled together with unknown nonlinear
modeling errors by finding a suitable smooth function as
their upper bound. This upper bounding function is in turn
employed in the design of estimators and controllers. It is
shown that the adaptive controllers designed in this way can
ensure global stability and asymptotic tracking even in the
presence of possible failures of hysteretic actuators. Results
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from simulation studies also verify the established theoretical
results.

The paper is organized as follows. In Section 2, we
present and discuss the models of the class of systems to
be controlled and hysteretic actuators with possible failures.
Adaptive control scheme is proposed and analyzed in Section
3. In Section 4, we use a simple system to illustrate the
effectiveness of our control scheme. Finally, the paper is
concluded in Section 5.

II. PROBLEM STATEMENT

We will consider the following class of uncertain nonlinear
systems under the control of m actuators.

ẋ1 = x2 +ϕT
1 (x1)θ

ẋ2 = x3 +ϕT
2 (x1,x2)θ

...

ẋn = ϕ0(x)+ϕT
n (x)θ +

m
∑

i=1
biβi(x)ui +d(t)+η(x, t)

y = x1

(1)

where x = [x1,x2, . . . ,xn] is system state, y ∈ R is the output,
ui ∈R(i = 1,2, . . . ,m) are inputs, ϕ0 ∈R, ϕi ∈Rp and βi(x)∈
R(i = 1,2, . . . ,m) are known and sufficient smooth functions,
θ ∈ Rp and bi ∈ R(i = 1,2, . . . ,m) are unknown constant
parameters, d(t) ∈ R is bounded disturbance and η(x, t) ∈ R
is a unknown nonlinear function representing system mod-
eling errors. There exists a known function δ (x) such that
|η(x, t)| ≤ δ (x).

We now consider the ith hysteretic actuator which may
fail during its operation. It exhibits backlash-like hysteresis
behavior denoted as vi = B(uci) and uci is the designed
control signal and vi represents the output. As shown in [15]
[16] [17], a backlash-like hysteresis model is given as

dvi

dt
= αi|duci

dt
|(ciuci− vi)+Bi1

duci

dt
(2)

where αi and ci and Bi1 are constants, ci > 0 and ci > Bi1.
It can be solved as

vi = ciuci + d̄1i(uci) (3)

d̄1i(uci) = (vi− ciuci(0))e−αi(uci−uci(0))sign(u̇ci)

+e−αiucisign(u̇ci)
∫ uci

uci0

(Bi1− ci)eαiξ sign(u̇ci)dξ

where d̄1i is bounded as shown in [15].
Similar to [11], failure of the ith actuator at time instant

ti f is modeled as

ui = ρivi +uki, (∀t ≥ ti f )
ρiuki = 0 (4)

where 0≤ ρi ≤ 1, uki and ti f are unknown constants. For dif-
ferent values of ρi, the actuator operates under the following
situations:
• ρi = 1, the actuator works normally, namely ui = vi.
• 0 < ρi < 1,

It indicates ui = ρivi. The ith actuator is called partial
loss of effectiveness.

• ρi = 0,
It indicates ui = uki. The ith actuator is called total loss
of effectiveness.

With (3) and (4), the model of ith hysteretic actuator can
be re-written as follows

ui = ρiciuci +uki + d̄i, (∀t ≥ ti f )
ρiuki = 0 (5)

where d̄i = ρid̄1i(uci) is bounded.
From (1) and (5), the system can be expressed as

ẋ1 = x2 +ϕT
1 (x1)θ

ẋ2 = x3 +ϕT
2 (x1,x2)θ

...

ẋn = ϕ0(x)+ϕT
n (x)θ +

m
∑

i=1
biβi(x)(ρiciuci +uki + d̄i)

+d(t)+η(x, t)
y = x1

(6)

To derive a suitable adaptive control scheme, the following
Assumptions are made.

Assumption 1: The number of totally failed actuators is up
to m− 1 and the control objectives can be achieved by the
remaining normal actuators. Also any actuator can change
only from normal to partial failure or total failure.

Remark 1: In adaptive failure compensation problem, the
stability of closed-loop system and desirable system perfor-
mance are achieved by the remaining actuations. Therefore,
as explained in [6] and [11] the above assumption is indis-
pensable. Note that all actuators are allowed to have partial
loss of effectiveness simultaneously.

Remark 2: The ith actuator becomes faulty at an uncertain
time instant ti f . Furthermore, any actuator fails only once.
Hence, There exists a finite time instant Tf after which no
new failure will occur.

Assumption2: βi(x) 6= 0 and bi is in a known bounded
interval which does not include zero, namely bimin ≤ bi ≤
bimax(i = 1,2, · · · ,m) for some known constants bimin and
bimax. Without loss of generality, we suppose 0 < bimin.

Remark 3: The class of model is much more general
than that in [20]. Due to the nonlinear functions βi(x), the
effects of d̄i caused by approximating the actuator hysteresis
will be biβi(x)d̄i and cannot be assumed bounded as in [20]
and [15] - [17]. How to handle such effects is a challenging
issue in the design and analysis of adaptive controllers and
it becomes even more difficult in the presence of possible
actuator failures.

Assumption 3: Reference signal yr(t) and its i-order (i =
1,2, . . . ,n−1) derivatives are known and bounded.

III. DESIGN OF CONTROLLERS
Our objective is to design adaptive controllers to guarantee

the global stability of closed loop system. To obtain suitable
control law and update laws for controller parameters based
on the backstepping approach, the following change of
coordinates are introduced.

z1 = x1− yr

zi = xi−αi−1− y(i−1)
r ,(i = 2, . . . ,ρ)

(7)
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where variable z1 is tracking error, αi−1 (i = 2, . . . ,n) is a
virtual control to be designed at step i−1.

A. Control design

In this subsection, we will carry out the design recursively
as in [21] and [22]. The first n−1 steps are rather standard
and thus no details are given. However, the last step is totally
different and will be elaborated.

Step 1: From (6) and (7) the derivative of tracking error
can be rewritten as

ż1 = ẋ1− ẏr = z2 +α1 +ϕT
1 θ (8)

where α1 is the virtual control. We define a positive definite
Lyapunov function as follows

V̄1 =
1
2

z2
1 +

1
2

θ̃ T Γ−1θ̃ (9)

where θ̃ = θ − θ̂ , θ̂ is an estimate of unknown parameters
θ and Γ is a positive definite matrix. Virtual control α1 can
be chosen as

α1 =−K1z1−ϕT
1 θ̂ (10)

where K1 is positive constant. From (8) (9) (10), the deriva-
tive of V̄1 is

˙̄V1 =−K1z2
1 + z1z2− θ̃ T Γ−1( ˙̂θ − τ1) (11)

where τ1 is a turning function chosen as

τ1 = Γϕ1z1 (12)

Step i(i = 2,3, . . . ,n − 1): In this step, the following
Lyapunov function V̄i is considered

V̄i = V̄i−1 +
1
2

z2
i (13)

We choose the virtual control as

αi = −Kizi− zi−1− (ϕT
i −

i−1

∑
k=1

∂αi−1

∂xk
ϕT

k )θ̂

+
i−1

∑
k=1

(
∂αi−1

∂xk
xk+1 +

∂αi−1

∂y(k−1)
r

y(k)
r )+

∂αi−1

∂ θ̂
τi

+
i−1

∑
k=2

∂αk−1

∂ θ̂
Γ(ϕi−

i−1

∑
k=1

∂αi−1

∂xk
ϕk)zk (14)

where Ki is a positive design parameter, turning function τi
is given as

τi = τi−1 +Γ(ϕi−
i−1

∑
k=1

∂αi−1

∂xk
ϕk)zi (15)

Step n: From (6) and (7), the derivative of zρ can be
expressed as follows

żn = ϕ0 +ϕT
n θ +

m

∑
i=1

biβi(x)(ρiciuci +uki + d̄i)+d(t)

+η(x, t)−
n−1

∑
k=1

∂αn−1

∂xk
(xk+1 +ϕT

k θ)− ∂αn−1

∂ θ̂
˙̂θ

−
n−1

∑
k=1

∂αn−1

∂y(k−1)
r

y(k)
r − y(n)

r (16)

In the stability analysis given later, we need to consider the
derivative of 1

2 z2
n, a term included in the Lyapunov function.

Certain parameters in its bound need to be estimated for
designing our control law. Thus we now study 1

2 z2
n. From

(16), we have

1
2
(z2

n)
′ = zn(Ξ+

m

∑
i=1

biβi(x)d̄i +d(t)+η(x, t)) (17)

≤ znΞ+ |zn||
m

∑
i=1

biβi(x)d̄i|+ znd(t)+ znη(x, t)

where

Ξ = ϕ0 +ϕT
n θ +

m

∑
i=1

biβi(x)(ρiciuci +uki)−
n−1

∑
k=1

∂αn−1

∂y(k−1)
r

y(k)
r

−
n−1

∑
k=1

∂αn−1

∂xk
(xk+1 +ϕT

k θ)− ∂αn−1

∂ θ̂
˙̂θ − y(n)

r (18)

Using Young’s inequality, we can get

|
m

∑
i=1

biβi(x)d̄i| ≤ 1
2
(‖ (b1β1(x), · · · ,bmβm(x)) ‖2

+‖(d̄1, · · · , d̄m)‖2)
≤ bβ (x)+ d̄(t) (19)

where
b = max{|bi|2,(i = 1,2, · · · ,m)}

β (x) =
1
2
‖(β1(x), · · · ,βm(x))‖2

d̄(t) =
1
2
‖(d̄1, · · · , d̄m)‖2

Therefore
1
2
(z2

n)
′ ≤ znΞ+ |zn|bβ (x)+ znη(x, t)+ znd(t) (20)

where d(t) = sign(zn)d̄(t)+d(t) and it is bounded.
The unknown bound D of d(t) will be estimated. b is

unknown and will also be estimated with its estimate denoted
as b̂. From Assumption 2, we have b ∈ [bmin,bmax] where

bmin = min{b2
imin};bmax = max{b2

imax},(i = 1,2, · · · ,m)

A projection operation can guarantee that b̂ Is always in the
bounded interval [bmin,bmax]. To compensate for the effects

of |
m
∑

i=1
biβi(x)d̄i| and modeling error η(x, t) in the design

of adaptive controllers we also need a smooth function to
bound −b̃β (x)+ sign(zn)η(x, t) where b̃ = b̂− b. Note that
|b̃| ≤ bmax−bmin. Then

|− b̃β (x)+ sign(zn)η(x, t)| ≤ |− b̃β (x)|+ |sign(zn)η(x, t)|
≤ (bmax−bmin)β (x)+δ (x)(21)

Such a bounding function, denoted as hn, can thus be chosen
as

hn(x) =
√

((bmax−bmin)β (x)+δ (x))2 + ε (22)

where ε is any positive constant. Clearly hn is differentiable.
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We now return to our design problem. Different from
the standard backstepping approach, a virtual control α and
turning function τn at this step are designed as follows

α = −Knzn− zn−1−ϕ0 + y(n)
r − (ϕT

n −
n−1

∑
k=1

∂αn−1

∂xk
ϕT

k )θ̂

+
n−1

∑
k=1

(
∂αn−1

∂xk
xk+1 +

∂αn−1

∂y(k−1)
r

y(k)
r )+

∂αn−1

∂ θ̂
τn

−sign(zn)D̂+
n−1

∑
k=2

zk
∂αk−1

∂ θ̂
Γ(ϕn−

n−1

∑
k=1

∂αn−1

∂xk
ϕk)

−sign(zn)b̂β (x)− sign(zn)hn(x) (23)

τn = τn−1 +Γ(ϕn−
n−1

∑
k=1

∂αn−1

∂xk
ϕk)zn (24)

where θ̂ is the estimate of unknown θ .
The virtual control in (23) together with the control law

and parameter update laws below is obtained based on the
control Lyapunov function approach which will become clear
in the stability analysis of the next subsection.

Similar to [20], if knowing the system parameters and
failures, we could choose the control law as

uci =
1

βi(x)
κT ω (25)

where κ is a desired parametric vector and ω is a known
vector to be specified in the stability analysis. Both are m+1
dimensional vectors denoted as

κ = (κ1,κ21, . . . ,κ2m)T ,ω = (ω1,ω21, . . . ,ω2m)T (26)

However, owing to the unknown parameters and failures, κ
is unknown and thus needs to be estimated. With κ replaced
by its estimate κ̂ , the control law is obtained as

Control Law:
uci =

1
βi(x)

κ̂T ω (27)

Based on the consideration of control Lyapunov function
approach, particularly from (33) in the next subsection, the
parameter update laws are also obtained

Update Laws:
˙̂D = ηd |zn|
˙̂κ =−Γκ ωzn
˙̂θ = τn
˙̂b = pro j(Γb|zn|β (x))

(28)

where Γb,ηd are positive constants, Γκ is a positive define
matrix and pro j(·) denotes a projection operator.

B. Stability analysis

We now analyze the stability of closed loop system with
control law and update laws in (27) and (28). Suppose that
p j(0 ≤ p j ≤ m) actuators are faulty and no new normal
actuator fails in time interval (Tj,Tj+1),( j = 0,1, . . . , f ). Let
the set Q jT denote the actuators of total failure in interval
(Tj,Tj+1),( j = 0,1, . . . , f ) and use the set Q̄ jT to represent

other actuators but total failure. It is clear Q jT ∪ Q̄ jT =
{1,2, . . . ,m}.

Remark 4: Let T0 = 0,Tf +1 = ∞ and p0 = 0. So we can
get all actuators work normally in time interval [T0,T1) and
no new failure will occur after time instant Tf . Furthermore,
the set Q̄0T = {1,2, · · · ,m} and the set Q̄ f T are not empty
according to Assumption 1.

Now consider the following Lyapunov function in time
interval (Tj,Tj+1)

Vj = V̄n−1 +
1
2

z2
n + ∑

i∈Q̄ jT

ρicibi

2
κ̃T Γ−1

κ κ̃ +
1

2ηd
D̃2 (29)

Using (20) gives

V̇j ≤ ˙̄Vn−1 + znΞ+ |zn|bβ (x)+ znη(x, t)+ znd(t)

− ∑
i∈Q̄ jT

ρici|bi|κ̃T Γκ ˙̂κ− 1
ηd

D̃ ˙̂D (30)

Vector κ and ω in (26) should be such that
m

∑
i=1

cibiκT ω = α (31)

This gives

κ1 = 1
∑

i∈Q̄ jT

ρicibi

κ2i = 0,(i ∈ Q̄ jT )
κ2i =− biuki

∑
i∈Q̄ jT

ρicibi
(i ∈ Q jT )

ω1 = α
ω2i = βi(x),(i = 1,2, . . . ,m)

(32)

With (23), (24), (30) and (31),we have

V̇j ≤ −
n

∑
k=1

Kkz2
k − θ̃ T Γ−1( ˙̂θ − τn)−

n−1

∑
k=2

zk
∂αk−1

∂ θ̂
( ˙̂θ − τn)

−zn
∂αn−1

∂ θ̂
( ˙̂θ − τn)− ∑

i∈Q̄ jT

cibiκ̃T Γ−1
κ ( ˙̂κ +Γκ ωzn)

+|zn|[|− b̃β (x)+ sign(zn)η(x, t)|−hn]

− 1
ηd

D̃( ˙̂D−ηd |zn|) (33)

With the update laws in (28), we obtain

V̇j ≤ −
n

∑
k=1

Kkz2
k − θ̃ T Γ−1( ˙̂θ − τn)−

n

∑
k=2

zk
∂αk−1

∂ θ̂
( ˙̂θ − τn)

− ∑
i∈Q̄ jT

ci|bi|κ̃T Γ−1
κ ( ˙̂κ +Γκ ωzn)− 1

ηd
D̃( ˙̂D−ηd |zn|)

≤ −
n

∑
k=1

ckz2
k (34)

It is clear that Vj is non increasing. So we have Vj(T−j+1)≤
Vj(T +

j ). Let j = 0, then we can get V0(T−1 )≤V0(0). It can be
concluded that all signals zi, θ̃ , κ̃, D̂ are bounded in the time
interval [0,T1). Note that the difference between V1(T +

1 ) and
V0(T−1 ) is only the coefficients in front of the term κT Γκ κ .
Since all the possible jumping on κ are bounded, V1(T +

1 )
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is bounded, then V1(T−2 ) is bounded. Similar to the above
analysis, we can get Vj(T−j+1) is bounded from the bound of
Vj(T +

j ). According to Assumption 1, there is a finite time
instant Tf such that in the time interval (Tf ,∞), the operation
of all actuators remain unchanged, namely no new failures
occur. Also in time interval (Tf ,∞), it can be shown that
Vf (t) ≤ Vf (T +

f ). Then we have z, θ̃ , κ̃, D̃ bounded in [0,∞].
From this, we have the following result.

Theorem 1: Consider the closed loop system consisting
of nonlinear plant (1), m hysteretic actuators modeled in (2)
with possibly unknown failures described by (4) and adaptive
controllers with the control law in (27) and the update laws
in (28). Under Assumptions 1 to 3, all signals are bounded.
In addition, asymptotic tracking is achieved, i.e. limt→∞(y−
yr) = 0.

Proof: As analyzed above, signals zi, θ̃ , D̃ and κ̃ are
bounded. Then all the virtual control αi, i = 1,2, · · · ,n− 1,
α and states xi, i = 1,2, · · · ,n are bounded. From the control
law (27), uci is ensured bounded. In addition, by applying
the Lasalle-Yoshizzawa Theorem, it follows that limt→∞(y−
yr) = 0.

IV. SIMULATION STUDIES

To illustrate the effectiveness of the proposed scheme, we
use the aforementioned methodology on a simple system
described as follows

ẋ = ϕ(x)T θ +b1β1(x)u1(t)+b2β2(x)u2(t)+η(x, t) (35)

where u1(t) and u2(t) are the outputs of the two hysteretic
actuators. The known function ϕ(x) = 1−e−x

1+e−x , β1(x) = 1.9+
0.1sin(x), β2(x) = 2. θ ,b1,b2 ∈ R are unknown constants.
η(x, t) is unknown nonlinear functions represents system
modeling errors.

In simulation, The actual parameter values are θ = 2 and
b1 = b2 = 1. The uncertain nonlinear function η(x, t) is
0.1sin(t). The reference signal is sin(t).

The backlash-like hysteresis is described by (2). The pa-
rameters in the model (2) are α2 = α1 = 1, c2 = c1 = 3.1635
and B21 = B11 = 0.345.

We choose b1max = b2max = 1.5,b1min = b2min = 0.5. Then
with (21) we choose hn(x) = 8+0.38sin(x) and the designed
parameters Γθ = 0.1, Γκ = 1,Γb = 0.1, ηd = 0.1.The initial
value are chosen as follows: z(0) = 0.5, u1(0) = u2(0) = 0,
θ̂(0) = 0, κ̂(0) = 0, D̂(0) = 0,b̂(0) = 0.6. When all actuators
work normally, Fig.1 shows the tracking error, Fig.2 and Fig.
3 present the inputs uc1(t) and uc2(t), and outputs u1(t) and
u2(t) of the actuators, respectively. Suppose that at t = 2
second actuator u2 is stuck at an unknown value 4.5. Fig.4
gives the tracking error under the above failure. In this case,
the inputs uc1(t) and uc2(t), and outputs u1(t) and u2(t) of the
actuators are shown in Fig.5 and Fig.6, respectively. Clearly
the proposed scheme has been verified effective by these
simulation results.

V. CONCLUSIONS

A robust adaptive control scheme is proposed by using
backstepping techniques to compensate for uncertain failures
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Fig. 2. Backlash inputs(no failure)
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Fig. 3. Backlash outputs(no failure)
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Fig. 6. Backlash outputs(failure)

of hysteretic actuators for a class of nonlinear systems with
uncertainties including unknown parameters, unknown exter-
nal disturbance and unknown system modeling errors. The
stability of closed-loop system and output tracking perfor-
mance can be ensured by the adaptive controllers. Simulation
results also verify the effectiveness of the proposed control
scheme.
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