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Abstract— The Lie group projection operator approach is
an iterative scheme for solving continuous-time optimal control
problems on Lie groups. This work details the approach for
optimal control problems on T SO(3), the tangent bundle of
the special orthogonal group SO(3). The dynamics of a rigid
satellite is used as illustrative example. Numerical simulations
are presented and discussed.

I. INTRODUCTION

In [1], [2], the authors have introduced an algorithm

for solving continuous time optimal control problems for

systems evolving on Lie groups (including, as a particular

case, the flat space R
n). The approach borrows from and

expand the key results of the projection operator approach

for optimization of trajectory functionals developed in [3].

In [2], the authors have discussed the implementation

details of the approach for solving optimization problems on

SO(3). Here the natural extension of that work is presented,

showing how to construct an iterative scheme for solving

optimal control problems on TSO(3), the tangent bundle

of SO(3). The dynamics of a rigid satellite [4] is used as

illustrative example.

The reader might be interested in comparing our approach

with the discrete-time methods presented in [5], [6] for

mechanical systems evolving on Lie groups.

The paper is organized as follows. In Section II, we

introduce the notation and review the projection operator

approach for Lie groups. In Section III, we formulate the

optimization problem reviewing the systems dynamics of a

rigid satellite and introducing a specific cost functional. In

Section IV, we compute the second order approximation

of the optimization problem that defines the core of the

Lie group projection operator approach. Simulation results

are presented in Section V. Conclusions and future research

directions are presented in Section VI.

Due to space limitations, all results are stated without

proofs. They can be readily obtained upon request by con-

tacting the authors.
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II. PRELIMINARIES

We assume that the reader is familiar with the theory of fi-

nite dimensional smooth manifolds, covariant differentiation

[7], [8], [9], and matrix Lie groups [10], [11].

A. Notations and definitions

M , N smooth manifolds

TM , T ∗M tangent and cotangent bundles

f : M → N (smooth) mapping from M to N
Df : TM → TN . tangent map of f

∇ affine connection

∇XY covariant derivative of the vector

field Y in the direction X
Dt covariant differentiation w.r.t. t

γ(t), t ∈ I curve (I ⊂ R)

P t1←t0
γ V0 parallel displacement of V0 along γ

D
2f(x) · (v,w) second covariant derivative of f [1]

G Lie group

g Lie algebra of G
e group identity

Lgx, Rgx left and right translations

gx, xg, shorthand notation for Lgx and Rgx
gvx, vxg shorthand notation for DLg(x) · vx

and DRg(x) · vx
[·, ·] Lie bracket operation

Adg adjoint representation of G on g

ad̺ adjoint representation of g

onto itself (ad̺ς = [̺, ς ])
exp : g → G exponential map

log : G → g logarithm map (i.e., inverse of exp
in a neighborhood of e)

SO(3) special orthogonal group

so(3) Lie algebra of SO(3)
R

3
× Lie algebra given by R

3 with

cross product as Lie bracket

∧ : R3
× 7→ so(3) Lie algebra isomorphism


x1

x2

x3



∧

7→




0 −x3 x2

x3 0 −x1

−x2 x1 0




∨ : so(3) 7→ R
3
× inverse of ∧

B. The Lie group projection operator approach

The projection operator approach for the optimization of

trajectory functionals [3] is an iterative scheme to solve

continuous-time nonlinear optimal control problems. In [1],

the authors have shown how the approach can be generalized

to work with a dynamical system defined on a Lie group G,
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that is, for a system in the form

ġ = f(g, u, t) = g(t)λ(g(t), u(t), t) , (1)

where f : G × R
m × R → TG is a control system on G

and λ : G× R
m × R → g, λ(g, u, t) := g−1f(g, u, t), is its

left-trivialization. The approach, in its simplest formulation,

can handle optimal control problems in the form

min
(g(·),u(·))

∫ T

0

l(g(τ), u(τ), τ) dτ +m(g(T )) (2)

subject to

ġ = f(g, u, t), (3)

g(0) = g0, (4)

with l : G×R
m×R → R the incremental cost, m : G → R

the terminal cost, and g0 the initial condition. Modifications

of the strategy for handling a terminal condition and mixed

input-state constraints (through a barrier functional approach)

are discussed, for control problems on R
n, in [12] and [13].

From an abstract point of view, the optimization scheme

can be thought as a constrained Newton method in infinite

dimension. The approach is based on (and derives its name

from) the projection operator P [3], which is an operator

that maps a generic curve ξ(t) = (α(t), µ(t)) ∈ G × R
m,

t > 0, into a trajectory η(t) = (g(t), u(t)) ∈ G×R
m, t > 0,

of the system (1). It is defined through the feedback system

ġ(t) = g(t)λ(g(t), u(t), t) , g(0) = α(0) ,
u(t) = µ(t) +K(t)

[
log(g(t)−1α(t))

]
,

(5)

where K(t) : g → R
m is a linear map, which can be thought

as a standard linear feedback as soon as a basis is chosen

for the Lie algebra g. It is straightforward to verify that P is

indeed a projection, i.e., it satisfies P2 := P ◦ P = P . The

projection operator P was used in [14] to show that the set

of exponentially stabilizable trajectories T (of infinite extent)

forms an infinite dimensional manifold, a fact that allows us

to use vector space operations [15] to effectively explore it.

Given a trajectory ξ(t) = (g(t), u(t)) of the control

system (1), its (left-trivialized) linearization is defined as the

time-varying linear system

ż(t) = A(ξ(t), t)z(t) +B(ξ(t), t)v(t), (6)

with (z(t), v(t)) ∈ g× R
m, t ≥ 0 and where

A(ξ, t) := D1λ(g, u, t) ◦ TeLg − adλ(g,u,t), (7)

B(ξ, t) := D2λ(g, u, t). (8)

From a geometric point of view, a trajectory

ζ(t) = (z(t), v(t)), t ≥ 0, of the (left-trivialized)

linearization about ξ should be regarded as a (left-

trivialized) tangent vector to the trajectory manifold T , a

fact that is indicated as ξζ ∈ TξT [1].

The projection operator approach consists in applying

the following iterative method

Algorithm (Projection operator Newton method)

given initial trajectory ξ0 ∈ T

for i = 0, 1, 2, . . .
(search direction)

ζi = arg min
ξiζ∈Tξi

T
Dh(ξi) · ξiζ +

1
2 D

2h̃(ξi) · (ξiζ, ξiζ) (9)

γi = arg min
γ∈(0,1]

h̃(ξi exp(γζi)) (step size) (10)

ξi+1 = P(ξi exp(γiζi)) (update) (11)

end

In (9), h is the cost functional appearing in (2) and h̃ is the

functional obtained by composing h with the projection op-

erator P , i.e., h̃ := h◦P . At each iterate, the search direction

minimization (9) is performed on the tangent space TξT , that

is, we search over the curves ζ(·) = (z(·), v(·)) that satisfies

(6). Then, the step size subproblem (10) is considered. The

classical approximate solution obtained using backtracking

line search with Armijo condition [16, Chapter 3] can be

used to compute the optimal step size γi. Finally, the update

step (11) projects each iterate on to the trajectory manifold

and the process restarts as long as termination conditions

have not been met.

As explained in [1], the derivation of the above Newton

algorithm on a generic Lie group has required the use of

covariant differentiation of mappings, indicated with the

symbol D. (In fact, in [1], the covariant derivative is called

“geometric derivative” as we were unaware at the time

that the operator D should be interpreted as the covariant

derivative of a two-point tensor [17]). This is related to

the problem of constructing the Taylor-like expansion of a

function between two smooth manifolds M1 and M2, each

endowed with an affine connection.

III. SYSTEM DYNAMICS AND COST FUNCTIONAL

The rotational dynamics of a rigid satellite with m gas jet

actuators [4], m ∈ {0, 1, 3}, can be written as

Ṙ = Rω̂ R ∈ SO(3) (12)

Iω = (Iω)× ω + Cu, ω ∈ R
3 (13)

where R is the rotational matrix expressing the attitude of the

satellite relative to an inertial frame, ω the angular velocity

in body frame, I the inertia matrix of the spacecraft in

body coordinates, and C ∈ R
3×m a matrix whose columns

represent the axis about which the m control torques u ∈ R
m

are applied by means of opposing pairs of gas jets.

Given R ∈ SO(3), let ‖I−R‖2
P̄
:= tr((I−R)T P̄ (I−R)).

Indicating with g = (R,ω) ∈ SO(3)× R
3 the system state,

we derive the expressions for the projection operator Newton

method for the case where the incremental cost l : (SO(3)×
R

3)×R
m×R → R and terminal cost m : SO(3)×R

3 → R

are given by

l(g, u, τ) :=
1

2
‖I −RT

d (τ)R‖2
Q̄R

+
1

2
‖ωd(τ) − ω‖2Qω +

1

2
‖ud(τ) − u‖2R, (14)

and

m(g) :=
1

2
‖I −RT

f R‖2
P̄R

f

+
1

2
‖ωf − ω‖2Pω

f
. (15)
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where ((Rd, ωd), ud)(t), t ≥ 0 is a desired state-control

curve, (Rf , ωf ) ∈ SO(3) × R
3 a reference terminal state,

Q̄R, Qω, P̄R
f , and Pω

f positive semi-definite state weighting

matrices and R a positive define control weighting matrix.

These weighing matrices allow to control, similarly to the

standard LQ regulator, the trade off between the speed of

convergence to the desired curve (Rd(t), ωd(t)), t ∈ [0, T ]
and the amount of control u used.

Note the use of boldface to distinguish between the

configuration matrix R and the control weight matrix R.

IV. THE QUADRATIC APPROXIMATION OF THE OPTIMAL

CONTROL PROBLEM

The rigid satellite state space TSO(3) can be made into a

Lie group in different ways. In this section, we propose and

discuss one particular choice of group structure and detail

how to compute all the basic expressions that define the Lie

group projection operator approach. In particular, we provide

explicit expressions for the left-trivialized linearization and

the quadratic approximation of h̃, the functional obtained

from the composition of the cost functional h, given in (2),

with the projection operator P , given in (5).

A. The Lie group SO(3)× R
3 and its Lie algebra

The dynamics (12)-(13) is defined on TSO(3), which

can be identified with SO(3) × R
3 via left translation. By

choosing the operation

(R, δR) · (S, δS) = (RS,RS(ST δS +RT δR)), (16)

with (R, δR) and (S, δS) ∈ TSO(3), the manifold TSO(3)
can be made into a Lie group. Defining ω = (RT δR)∨ and

ν = (ST δS)∨, the above operation on SO(3) × R
3 simply

reads

(R,ω) · (S, ν) = (RS, ν + ω). (17)

The unit element of SO(3)× R
3 is e = (I, 0) and for each

(R,ω) ∈ SO(3)× R
3 its inverse is (RT ,−ω).

The left translation on SO(3)× R
3 is

L(R,ω)(S, ν) = (RS, ν + ω) (18)

with tangent map

T(S,ν)L(R,ω)(δS, δν) = (R δS, δν), (19)

which we also write in short form as

(R,ω)(δS, δν) = (R δS, δν) ∈ T (SO(3)× R
3). (20)

Similar expressions hold for the right translation. A faithful

representation of the matrix group SO(3)× R
3 is



R 0 0
0 I ω
0 0 1


 . (21)

Clearly, the Lie algebra of SO(3)×R
3 is so(3)×R

3 which we

further identify with R
3
××R

3 (see Section II for the definition

of R3
×). A generic Lie algebra element (zR, zω) ∈ R

3
××R

3

has matrix representation given by



ẑR 0 0
0 0 zω

0 0 0


 (22)

from which one can show that the exponential map ẽxp :
R

3
× × R

3 → SO(3)× R
3 is given by

ẽxp(zR, zω) = (exp(ẑR), zω) ∈ SO(3)× R
3 (23)

with exp the standard exponential from so(3) → SO(3).
Given (R,ω) ∈ SO(3)×R

3 and (zR, zω) ∈ R
3
××R

3, the

adjoint representation of the group into its Lie algebra is

Ad(R,ω)(z
R, zω) = (RzR, zω) (24)

The above expression is obtained differentiating the inner

automorphism Ig(h) = ghg−1 with respect to h at the

identity. Given (zR1 , z
ω
1 ) and (zR2 , z

ω
2 ) ∈ R

3
××R

3, the adjoint

representation of the Lie algebra R
3
× × R

3 onto itself is

ad(zR
1
,zω

1
)(z

R
2 , z

ω
2 ) = (ẑR1 z

R
2 , 0). (25)

The above expression can be obtained computing the com-

mutator of the matrix representations of the two elements of

the Lie algebra or by differentiating the Ad operator at the

identity.

B. The left-trivialized dynamics and linearization

Recall that given the control system ġ = f(g, u, t), with

g ∈ G, a Lie group, and u ∈ R
m, the left-trivialization of f

is defined as λ(g, u, t) := g−1f(g, u, t). From (12)-(13) and

(19), we obtain

λ((R,ω), u, t) = (RT ,−ω)(Rω̂, I−1(Iω × ω + Cu))

= (ω, I−1 Îω ω + I
−1Cu) ∈ R

3
× × R

3. (26)

Given x ∈ R
3, define

H(x) := I
−1(Îx − x̂I). (27)

Note that H is a symmetric operator in the sense that

H(x)y = H(y)x, ∀x, y ∈ R
3. We can now state the

following result

Proposition 4.1: The left-trivialized linearization of the

control system (12)-(13) is given by

A(ξ, t) =

[
−ω̂ I
0 H(ω)

]
and B(ξ, t) =

[
0

I
−1C

]
(28)

with ξ = (g, u) = ((R,ω), u) ∈ SO(3) × R
m and H(ω) as

in (27).

C. Second order approximation of the cost functional

The search direction subproblem (9) consists in

minimizing the functional Dh(ξ) · ξζ + 1
2 D

2h̃(ξ) · (ξζ, ξζ)
over the set of trajectories of the left-trivialized linearization
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Fig. 1. Desired trajectory ξd(t) = ((Rd(t), ωd(t)), ud(t)) ∈ (SO(3) × R
3)× R

3, t ∈ [0, 10]. Part (a) shows the unit quaternion representation of the
desired attitude Rd(·); Part (b) shows the desired body angular velocity ωd(·); Part(c) shows the desired input ud(·).

of (12)-(13) about ξ. As shown in [2], this optimal control

problem can be written in matrix form as

min
(z,v)(·)

∫ T

0

a(τ)T z(τ)+b(τ)T v(τ)+
1

2

[
z(τ )
v(τ )

]T
W (τ)

[
z(τ )
v(τ )

]
dt

+ aT1 z(T ) +
1

2
z(T )TP1z(T ) , (29)

subject to the dynamic constraint

ż(t) = A(ξ(t), t)z(t) +B(ξ(t), t)v(t) (30)

z(0) = 0. (31)

where (30) is the left-trivialized linearization given in (6)–

(7), aT (t), bT (t), a1, P1, satisfy, respectively,

aT (t)z = D1l(g(t), u(t), t) · g(t)z,

bT (t)v = D2l(g(t), u(t), t) · v,

aT1 z = Dm(g(T )) · g(t)z,

zTP1z = D
2m(g(T )) · (g(T )z, g(T )z).

The matrix W (t) is symmetric and its explicit expression

will be given, for the specific dynamics of our interest, in

the sequel.

Proposition 4.2: Given the incremental cost (14) and ter-

minal cost (15), a(t), b(t), a1 and P1 are

aT (t)=[2qTv (t)Q
R(qs(t)I + q̂v(t)), (ω(t)−ωd(t))

TQω]

bT (t)=(u(t)− ud(t))
TR

aT1 =[2κT
v P

R
f (κsI + κ̂v), (ω(T )− ω1)

TPω
f ]

P1=

[
(κsI + κ̂v)

TPR
f (κsI + κ̂v)− (κT

v P
R
f κv)I 0

0 Pω
f

]

where (qs, qv) ∈ R × R
3 denotes one of the two unit

quaternions associated to the rotational matrix Rd(t)
TR(t),

(κs, κv) ∈ R×R
3 is one of the two unit quaternions associ-

ated to the rotational matrix RT
1 R(T ), QR := tr(Q̄R)I−Q̄R,

and PR
f := tr(P̄R

f )I − P̄R
f

Before stating the main result concerning the explicit

expression of the matrix W , we state two technical lemmas.

Lemma 4.3: The second covariant derivative of the incre-

mental cost l, given in (14), about ξ = (g, u) = ((R,ω), u) ∈

0

2

4

6

8

10

Fig. 2. Snapshots of the desired attitude trajectory Rd(t), t ∈ [0, 10].

(SO(3)× R
3)× R

m, is

D
2lτ (ξ)·(ξζ1, ξζ2) =



zR1
zω1
v1



T 

M(τ) 0 0
0 Qω 0
0 0 R





zR2
zω2
v2




(32)

where lτ (ξ) := l(ξ, τ),

ξζi = ((R,ω), u)((zRi , z
ω
i ), vi), i = {1, 2},

with ((zRi , z
ω
i ), vi) ∈ (R3

× × R
3)× R

m, i ∈ {1, 2}, and

M(τ) := (qsI + q̂v)
TQR(qsI + q̂v)− (qTv Q

Rqv)I, (33)

with q = (qs, qv) ∈ R×R
3 one of the two unit quaternions

corresponding to the rotation matrix RT
d (τ)R(τ) and QR :=

tr(Q̄R)I − Q̄R.

Lemma 4.4: The second covariant derivative of the left

trivialized vector field λ, given in (26), is given by

D
2λτ (ξ) · (ξζ1, ξζ2) =

(
0, H(zω2 )z

ω
1

)
, (34)

where ξ = (g, u) = ((R,ω), u) ∈ (SO(3) × R
3) × R

m,

λτ (g, u) := λ(g, u, τ), ζi = (zi, vi) = ((zRi , z
ω
i ), vi) ∈

(R3
× × R

3)× R
m, i = {1, 2}, and H as in (27).

We are ready to state the main result of this section.

Proposition 4.5: The matrix W (τ), appearing in (29), can
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Fig. 3. Initial trajectory ξ0(t) = ((R0(t), ω0(t)), u0(t)) ∈ (SO(3) × R
3) × R

3, t ∈ [0, 10]. Part (a) shows the unit quaternion representation of the
desired attitude Rd(·); Part (b) shows the desired body angular velocity ωd(·); Part (c) shows the desired input ud(·).
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Fig. 4. Snapshots of the initial attitude trajectory R0(t), t ∈ [0, 10].

be written as


M(τ) −1/2p̂R 0

1/2p̂R Qω + E(pω) 0
0 0 R


 (35)

where (qs, qv) ∈ R × R
3 is one of the two unit quater-

nions associated to the rotational matrix Rd(τ)
TR(τ), p =

(pR, pω) ∈ R
6 (more correctly, p ∈ (R3

× × R
3)∗) is the

solution at time τ of the stabilized adjoint equation

−ṗ(t) = Acl(t)
T p(t) + a(t)−K(t)T b(t), (36)

p(T ) = a1, (37)

where Acl(t) := A(ξ(t), t)−B(ξ(t), t)K(t), with A(ξ(t), t)
and B(ξ(t), t) the left-trivialized linearization (28), K(t) the

feedback that defines the projection operator, a(t), b(t) and

a1 as in Proposition 4.2.

V. NUMERICAL RESULTS

This section demonstrates the effectiveness of the Lie

group projection operator approach on TSO(3) for solving

the optimal control problem defined in Section III for the

fully actuated case. We choose as desired curve ξd(t) =
((Rd(t), ud(t)), ud(t)) ∈ (SO(3) × R

3) × R
3, t ≥ [0, T ],

a nontrivial trajectory of the system. This choice has the

advantage that we can check easily if the optimization

scheme is converging to the solution of the optimization

problem which is clearly the trajectory ξd itself.

In (12)–(13), we set I = diag(0.9, 1.0, 1.1), C = I , and

the initial condition R(0) = diag(−1, 1,−1) and ω(0) =
(0, 0, 0)T . The optimization horizon is T = 10. The desired

curve ξd(t) = ((Rd(t), ωd(t)), ud(t)) ∈ (SO(3)×R
3)×R

3,

is the trajectory of (12)–(13) obtained by projecting through

(5) the curve (α(t), µ(t)) = ((S(t), 0), 0) ∈ (SO(3) ×
R

3) × R
3, t ∈ [0, 10], where the rotational matrix S(t)

corresponds to the unit quaternion q(t)/‖q(t)‖ with q(t) =
(sin(0.1t), sin(0.3t), cos(0.5t), sin(0.2t)) and the feedback

K(t) is identically equal the constant matrix

K0 =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


 . (38)

The trajectory ξd(t), t ∈ [0, 10], is shown in Figure 1.

Figure 2 provides a visual representation of the desired

attitude matrix Rd using a rectangular box. The width and

height of the box (corresponding to the y and z body

axes, respectively) are two and three times the depth (the

x body axis). The box is centered at the point (t, 0, 0)
and 11 snapshots in the interval t ∈ [0, 10] (one for each

second) are shown. The optimization algorithm is started

with the initial trajectory ξ0 which is obtained similarly

to ξd but with a (constant) feedback set to 0.1K0. The

resulting trajectory ξ0 = ((R0(t), ω0(t)), u0(t)) is shown

in Figure 3. Note that ξ0 is quite different from ξd (not at

t = 0, where they are clearly equal). A visual representation

of ξ0 is given in Figure 4. The weighting matrices in the

incremental cost (14) are Q̄R = 1/2tr(QR) − QR, with

QR = diag(10.0, 10.0, 10.0), Qω = diag(10.0, 10.0, 10.0),
and R = diag(1.0, 1.0, 1.0). The weighing matrices in the

terminal cost (15) are given by P̄R = 1/2tr(PR)−PR, with

PR = diag(13.0, 13.0, 13.0), and Pω = diag(4.0, 4.0, 4.0)
and the state penalty is “centered” at Rf = Rd(T ) and

ωf = ωd(T ).

At each iteration of the optimization algorithm (9)–(11),

the feedback K defining the projection operator P is re-

designed solving a standard LQR problem with linear dy-

namics given by the transverse linearization about the current

trajectory ξ and constant weighting matrices for the state

and control identically equal to the identity. The Newton

algorithm (9)–(11) converges to the the optimal solution
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Fig. 5. Descent. The plot shows log10 −Dh(ξk) · ξkζk ≈ log10(h(ξk)−
h(ξk+1)) as a function of the number of iterations.

ξ∗ = ξd with quadratic convergence rate as one can see

in Figure 5. To integrate the differential equations required

at each iteration of the algorithm, we used the function

ode45 of Mathworks Matlab, storing all the trajectories

with a sampling period of 0.01s. The absolute and relative

tolerances of the ODE solver is set to 10−12 and 10−12,

respectively. The termination condition is −Dh(ξk) · ξkζk ≈
h(ξk) − h(ξk+1) ≤ 10−10. The algorithm takes about 2.3

seconds to run on a laptop equipped with a Intel Core 2 Duo

CPU P8600 2.40 GHz. (Reducing the error tolerance for the

ODE solver to standard values and setting the termination

condition to 10−7 one can easily reach an execution time

way below one second.) The algorithm is coded as a main

m-function which calls a series of S-functions written in C.

VI. CONCLUSIONS

In this paper we have detailed how to construct the

quadratic approximation of an optimal control problem on

TSO(3). Numerical simulations have been presented to show

the effectiveness of the method and the quadratic conver-

gence rate.

The second covariant derivative of the left trivialized

dynamics λ of the rigid satellite has a relatively simple

expression due to the fact that λ does not depend on the

configuration R. Our long term goal is to address constrained

dynamical path planning problems for aerial and marine

vehicles, for which the general expression is required. The

derivation we have presented is sufficiently detailed that

should allow the interested reader to derive the expression

for the second covariant derivative in the general case.

This work has shown that the choice of the Lie group

structure given to the tangent bundle TSO(3) is important.

Initially, we had chosen the operation

(R, δR) · (S, δS) = (RS,RδS + δRS)

= (RS,RS(ST δS + AdS−1RT δR))

obtained by differentiation of the standard operation on

SO(3). This choice make TSO(3) into what is commonly

called the tangent group of SO(3). Initially, we thought

that this was the best group structure to choose but direct

computations have shown that, in terms of complexity of the

expressions obtained for the Lie group projection operator

approach, the one which has been presented in the paper is

much more simpler. This leaves open the question of how to

choose the “best” group structure given an optimal control

problem defined on the tangent space of a Lie group.

Rigid satellite dynamics has attracted the attention of

the control community in particular for the problem of

controllability and stabilizability in the underactuated case

[4], [18], [19]. As the linearization of the dynamics of the

underactuated rigid satellite about a constant trajectory is

not controllable, some care is to be taken in trying to solve

numerically, e.g., an optimal stabilization problem. We have

done some simulation in this context with the Projection

Operator approach, but further investigation is needed to fully

understand the obtained results.
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