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Abstract— In this manuscript we continue the thread of
[M. Chertkov, F. Pan, M. Stepanov, Predicting Failures in
Power Grids: The Case of Static Overloads, IEEE Smart Grid
2011] and suggest a new algorithm discovering most probable
extreme stochastic events in static power grids associated
with intermittent generation of wind turbines. The algorithm
becomes EXACT and EFFICIENT (polynomial) in the case of
the proportional (or other low parametric) control of standard
generation, and log-concave probability distribution of the
renewable generation, assumed known from the wind forecast.
We illustrate the algorithm’s ability to discover problematic
extreme events on the example of the IEEE RTS-96 model of
transmission with additions of 10%,20% and 30% of renewable
generation. We observe that the probability of failure may grow
but it may also decrease with increase in renewable penetration,
if the latter is sufficiently diversified and distributed.

I. INTRODUCTION

In progress to becoming smarter, the power grid of today
is undergoing multiple transformations [1], [2]. One of the
envisioned changes consists in replacing a significant portion
of the traditional fossil thermal plants by renewable gener-
ation [3], in particular by solar and wind farms. This task,
motivated by ecological and political reasons, will not be a
simple substitution. The renewable sources of energy, will
also be much less predictable and thus much more difficult
to control. Both wind and solar fluctuate temporally and
spatially. Even when forecasted, the renewable generation
can be described only in probabilistic terms, suggesting that
the existing toolbox of power engineering, which is largely
deterministic, needs to be upgraded with computationally
more challenging probabilistic tools. For any configuration
of aggregated loads, which stays roughly constant for tens
of seconds or even minutes, one ought to consider an
ensemble of possible configurations of renewable generation
undergoing significant and unpredictable changes during the
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same time. This uncertain (but probabilistically predictable)
configuration of renewable generation will be complemented
by standard adjustable generation. The adjustment is required
to stabilize the system and complete matching between re-
quested load and total generation. Many configurations from
this ensemble of matchings will be feasible, i.e. not violating
transmission constraints. However, there will always be some
number of probabilistically rare but strong fluctuations of the
renewable sources for which an instantaneous adjustment
of generation to loads will be problematic, as resulting in
overload of some number of lines. Discovering extreme
stochastic events of this rare but damaging type becomes an
important practical problem which requires fast and largely
non-existent algorithmic solutions.

This manuscript is devoted to resolving (at least some part
of) the aforementioned challenge. We assume that configu-
ration of loads over the network is fixed, while generation is
split into two parts: (a) the bigger, consisting of conventional
generation, controlled and adjustable as a group, for example
via common re-scaling (roughly representing, for example,
so-called “droop” speed control with the proportion of each
generator response to the frequency variation fixed, or rep-
resenting “regulation” response when deployed regulation is
also in proportion to the frequency variation); and (b) renew-
able generation, say coming from wind farms, uncertain and
not controlled, described in terms of a probability distribution
function, assumed known from a forecast. We are interested
to discover the most probable configuration(s) of the wind
(more generally any fluctuating renewable source) which
is troublesome, in terms of possibly violating transmission
and/or controlled generation constraints, when no additional
control efforts, such as curtailment of wind generation, load
shedding, line switching, etc, are in place. With diversity
of wind production across multiple wind sites, the extreme
stochastic events will not be frequent, thus making the
problem of finding the rare configuration causing the trouble
as challenging as finding a needle in a haystack. To discover
the extreme stochastic events we exploit and develop further
the approach, originally introduced in theoretical physics, see
e.g. [4], [5], [6], [7] then used to analyze performance of
error-correction codes [8], and recently applied to predict
static failures in power grids associated with fluctuations
in loads [9]. We call this rare but most probable troubled
instance of the wind the instanton. In a significant technical
improvement in comparison with [9] this manuscript sug-
gests a direct way, which is Exact and Efficient (polynomial
in the size of the grid), to explore the structure of the problem
for finding the instanton(s). This algorithmic improvement is
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achieved via mapping the instanton problem to minimization
of a convex function, characterizing forecasted distribution of
the wind, over the exterior of a tractable polytope, describing
feasible solutions of the power flow equations.

The material in the manuscript is organized as follows.
We give some technical background, formulate the problem
and briefly describe history of the instanton methodology
in Section II. Section III formulates the main theoretical
result of the manuscript: exact and efficient algorithm for
finding most probable wind extreme stochastic event for
given configuration of the grid. The performance of the
algorithm is illustrated in Section IV on example of the
IEEE RTS96 system with 10%,20% and 30% of renewable
penetration. The results are summarized and discussed in
Section V, where we also discuss future research challenges.

II. QUASI-STATIC POWER FLOWS, WIND MODELING
AND FORMULATING THE INSTANTON PROBLEM

Modern power grid is always in motion. Moreover many
of the changes which take place on multiple time scales
are inherently uncertain, being probabilistic in nature. With
sufficient penetration of the renewable sources, wind turbines
bring a particularly important source of fluctuations into the
modern power grid. Production of wind can be forecasted
only to a degree. Even with a perfect forecast, and due
to a turbulent nature of the wind, one ought to describe
output of the wind turbine integrated directly to the power
grid (without curtailing) in probabilistic, rather than deter-
ministic, terms. Relevant times scales, where fluctuations of
wind generation dominate other sources of uncertainty (in
particular these associated with fluctuations of demands),
are in the range from tens of seconds to tens of minutes.
At these temporal scales transient (sub-second) phenomena
are already settled and quasi-static description of the power
flows is appropriate [10], [11]. Taking a standard Direct
Current (DC) power flow approximation (well justified for
transmission network, where resistivity of power lines is
significantly smaller that respective inductance, voltage vari-
ations are small and change in phase between neighboring
busses is small too) one arrives at the following relations
between the vector of injected/consumed real powers, PPP, and
the vector of phases, ϕϕϕ, over the power grid defined as a
graph, G = (G0,G1) (G0 and G1 represent the set of nodes
and the set of edges respectively), written in the form of
conditions

COND f low =

(
BBBϕϕϕ =PPP, & ϕ0 = 0

)
, (1)

BBB =


0, {i, j} /∈ G1

−1/xi j, {i, j} ∈ G1

∑
{i,k}∈G1
k x−1

ik , i = j
, (2)

PPP =


−di, i ∈ Gd
ρi, i ∈ Gr

αpi, i ∈ Gg
0, i /∈ Gd ∪Gr ∪Gg

 . (3)

In the remainder of the paragraph we detail notations, and
underlying notions, assumed in Eq. (3). BBB in Eq. (1) is
the matrix of the graph Laplacian constructed from line
inductive reactances, xxx, and the second condition in Eq. (1)
sets the phase at an arbitrarily chosen (zero) node to zero.
Different components of the vector, PPP, associated with nodes
of the graph, are split in Eq. (3) into four groups: set of
demand/consumption nodes, Gd ; set of renewable nodes, Gr;
set of standard generation nodes, Gg; and the remaining set
of other (junction) nodes. Any component of the demand
is assumed negative and fixed (on the time scale of interest
measured in seconds-to-minutes). The renewable generation
fluctuates according to the forecasted probability distribution

P (ρρρ)∼ exp(−S(ρρρ)) , (4)

where S(ρρρ) is a known convex function of its multi-
dimensional argument, achieving minimum at the most prob-
able, equilibrium, configuration of the wind generation, ρρρ0.
This distribution function represents statistics of the wind
fluctuations, collected over the time interval when loads
do not change or change very little. (The assumption of
S convexity is reasonable for a sufficiently wide, and thus
most probable, vicinity of the maximum output, in particular
for popular modeling of the wind statistics via the Weibull
function [12].) Standard (controllable) generation adjusts to
match the imbalance between total consumption and total
renewable generation (assuming that the loads stay constant).
The adjustment is relatively fast (instantaneous within the
quasi-static description) and we will simplify by assuming
that the mismatch is shared between the controllable gener-
ators in some pre-defined, automatic fashion. In particular,
we will consider the case where the adjustment for each
generator is proportional to its nominal generation, so that α

entering Eq. (3), is

α =
∑i∈Gd

di−∑i∈Gr ρi

∑i∈Gg pi
, (5)

and it is the only degree of freedom on the standard gener-
ation side which reacts absorbing changes in the renewable
generation, ρρρ = (ρi|i ∈ Gr). We assume that α is set to
unity at the equilibrium configuration, ρρρ0. Then, (pi|i ∈ Gg)
constitutes output of the controllable generation preset in the
beginning of the time interval of interest. Normally, this
redispatch of the controllable generation is the output of
the Optimum Power Flow (OPF) analysis, accounting for
diversity in the generation cost at different sites, and executed
periodically on the scale ranging from minutes to tens of
minutes. The model of Eq. (5) schematically represents either
droop control or regulation response, although details of both
of these control modes differ from our model in details.

One expects that a feasible Power Flow (PF) solution,
representing a perturbed OPF, satisfies, in addition to the
basic power flow relations (1), the following set of trans-
mission (thermal) conditions representing line constraints on
the amount of power which can flow safely trough the lines
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(without overheating or damage)

CONDedge =

(
∀{i, j} ∈ G1 : |ϕi−ϕ j| ≤ xi jui j

)
,(6)

where ui j is the line {i, j} rating. One also assumes that all
the generators included in the proportional control are within
their capacity bounds, which translates into the following
cumulative constraints on the proportional control coefficient

CONDpower =

(
α≤ α≤ α

)
, (7)

where α and α are defined in accordance with the maxi-
mum low and minimum high constraints, respectively, over
individual controllable generators. In fact, typical control
modes would allow for some generators reaching their limits;
however, we simplify that issue here.

Even though the most probable configuration of the
wind generation corresponds to the power flow solution of
COND f low, which is safely within the feasibility region of
CONDedge∪CONDpower, other less probable configurations
of wind can violate one or more of the feasibility constraints.
Naturally, we are first of all interested to discover the most
probable instance of the wind, the instanton, which lies
outside of the feasibility region:

ρρρinst = argminρρρS(ρρρ)
∣∣∣
ρρρ/∈Dint

, (8)

Dint ≡ Projection(COND(ϕϕϕ,ρρρ,α))
ρρρ
, (9)

COND≡COND f low∪CONDedge∪CONDpower,(10)

where Projection(COND(ϕϕϕ,ρρρ,α))
ρρρ

is the projection of the
polytope COND to the ρρρ-space. Therefore, by construction
Dint is also a polytope. Alternatively we can rewrite Eq. (8)
as

ρρρinst = argminρρρS(ρρρ)
∣∣∣
ρρρ∈Dext

, (11)

where Dext is a non-convex set, defined as an exterior of the
convex set (polytope) Dint , i.e. Dext = R|Gu|

+ \Dint . Eq. (11)
states succinctly the instanton problem addressed in this
manuscript.

In more general formulations, not yet utilizing special
structure of the optimization domain Dext specific to our
problem, the instanton problem (11) can be solved within
the machinery of non-convex optimization methods. For
example, and as described in details in [13], [14], [9], one
may search for the minimum of S(ρρρ) with the help of
a general-purpose optimization technique, specifically the
downhill simplex (or “amoeba”) method [15], [16]. Since
the optimization domain is not concave, we expect to find
many (candidate) instanton solutions. Each initialization of
the instanton-amoeba could lead to a new instanton. The
initialization selects a simplex, built on Nd + 1 feasible
points (where Nd is the dimensionality of the ρρρ space,
which is equal in our case to the number of renewable
generators) from the error-surface separating Dint and Dext .
Then the instanton-amoeba method evolves the simplex, via a

sequential set of shifts, contractions and extensions, towards
its eventual collapse to a local minimum of S(ρρρ). Differ-
ent random initiations will sample the space of instantons,
thus generating the so-called instanton spectrum describing
the frequency of a given instanton occurrence and also
suggesting an estimation for the ordered list (with respect
to their probability of occurrence and frequency) of top
instantons. Repeated infinite number of times, the sampling
would output the most probable instanton. However given
that the number of initiations will be finite in reality, the
most probable one (of the finite number of instantons found)
gives a heuristic estimate from below for the probability of
the most probable instanton. To ensure sampling quality one
needs to continue random initiations till the most probable in-
stantons would appear multiple number of times. (Typically,
this require hundreds of initiations for the network measured
in hundreds of nodes, of the type discussed below in Section
IV.)

However, the specific structure of our problem (11) allows
a much faster and moreover exact resolution, than the one
provided by the general purpose but computationally heavy
instanton-amoeba method of [13], [14], [9]. As shown in the
next Section, very specific features of Dext , associated with
the linear nature of the DC power flow and also with the
single-parametric and linear control of fluctuations on the
standard generation side, allow to solve Eq. (11) efficiently.
The new approach, describe below, offers a significant
algorithmic improvement in comparison with the general
approach of the instanton-amoeba type.

III. EXACT AND EFFICIENT ALGORITHM TO DISCOVER
THE INSTANTON(S)

Given Eqs. (1) and Eq. (5), one can express ϕϕϕ and α via
ρ, thus arriving at the following explicit (tractable polytope)
expression for Dint :

Dint =CONDedge∪CONDpower, (12)
CONDedge (13)

=

(
∀{i, j} ∈ G1 : |(B̃BBPPP)i− (B̃BBPPP) j| ≤ xi jui j

)
,

CONDpower (14)

=

(
∑

i∈Gd

di−α ∑
i∈Gc

pi ≥ ∑
i∈Gu

ρi ≥ ∑
i∈Gd

di−α ∑
i∈Gc

pi

)
,

where matrix B̃BB is the quasi-inverse of BBB accounting for
the ϕ0 = 0 constraint and thus regularizing the only zero
eigenvalue of BBB.

With this explicit formulation of Dint the instanton prob-
lem (11) becomes tractable, as it reduces to a minimum over
a tractable set of convex problems:

min
a=1,··· ,K

{Ma}, Ma = min
ρρρ

S(ρρρ)
∣∣∣∣
ca∪(Dint\ca)

, (15)

where K = |CONDedge ∪CONDpower|; ca stands for any of
the inequality constraints in CONDedge ∪CONDpower; and
ca is the saturated version of ca by replacing inequality
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with equality. When the feasibility set of a sub-problem
a in Eq. (15) is empty we formally set Ma to infinity.
Eq. (15) is computationally tractable because it splits into
K convex optimizations. The proof of the transition from
Eq. (11) to Eq. (15) is straightforward and it simply relays
on testing the faces of Dint sequentially. (See, e.g., detailed
discussion of similar problem in [17].) For any of the internal
minimizations in Eq. (15), which is feasible, having one facet
of Dint saturated is guaranteed (by construction) and unless
there is a degeneracy in S(ρρρ) there will be only one saturated
facet per any minimization problem Ma.

Two comments are in order. First, our scheme is general,
and can account for other types of the generation control
besides adjusting generation linearly in response to the
variation in ρρρ. However, one should also expect that the
difficulty of the generalized problem will grow exponentially
with the number of the control degrees of freedom. This
exponential explosion is associated with the fact that pro-
jection of the respective generalization of COND(ϕϕϕ,ρρρ,ααα),
where ααα is now multi-parametric, will generate generalized
Dint , which is much more complex as described via an
exponentially large (in the dimensionality of ααα) number of
contraints/inequalities. This is in spite of the fact that the
original polytope, COND(ϕϕϕ,ρρρ,ααα), is tractable. (Indeed, it is
well known that projection of a tractable polytope along a
subspace results in a polytope characterized, in the worst
case, in terms of the set of constraints which is exponentially
large in the size of the subspace. See [18], [19] for examples
and related algorithmic discussions.) Second, given that the
instanton problem is split into K tractable optimizations in
Eq. (15), one also finds not only the instanton itself (absolute
minimum) but also the ranked list of other extreme stochastic
events associated with other faces of Dint . We will call these
other instantons, second-, third- etc according to their ranking
in the derived hierarchy. This ranking is useful to discover the
list of extreme stochastic events. Note, however, that strictly
speaking this ranking does not necessarily corresponds to the
actual ranked list of all possible extreme stochastic events.
There are two reasons for that. First, any point from a small
continuous vicinity of the (top ranked) instanton, sitting at
the same face of Dint as the instanton, will have a lower S(ρρρ)
weight than other instantons. (This is under assumption that
the situation is not degenerate and the instanton corresponds
to an interior point of the face.) Second, one may find a
(discrete) configuration, which will be second in ranking
within a minimization ranked k1 in Eq. (15), but will still
have a lower S(ρρρ) weight than the top result of another
minimization ranked k2, even when k1 < k2.

IV. NUMERICAL EXAMPLE

We test the algorithm on the standard IEEE RTS-96 model
[20] extended with renewables. The results are shown in
Figs. 1,2,3,4) and commented upon below. To imitate effect
of renewables, we took the base configuration of the model
(standard generators, loads and transformer nodes are kept
according to the data from [20]). Then, we add 3,6 and 9
additional nodes, for new wind generators and connect each

Generator

Load

Renewable

Fig. 1. Graph of the IEEE RTS-96 model with nine new renewable
generators (#73-#81) added.

0.00
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6.00

7.00

72 73 74 75 76
Bus ID

Instanton1

Instanton2

Instanton3

(a) Configuration of renewable generation for the top
three instantons.

Instanton1

Instanton2

Instanton3

(b) Top instantons are shown. Vertexes marked in
red/orange/blue colors are of the most stressed renew-
able generator from the instanton output. Edges marked
red/orange/blue colors are the saturated ones for the
respective instantons.

Fig. 2. Instanton(s) for base configuration + 3 renewable generators: 10%
of renewable penetration in average production. The instantons are ordered
according to their cost values, S(ρρρ).
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Instanton1

Instanton2

Instanton3

(a) Configuration of renewable generation for the top
three instantons.

Instanton1

Instanton2

Instanton3

(b) Top instantons are shown. Vertexes marked in
red/orange/blue colors are of the most stressed renew-
able generator from the instanton output. (Bus #77 is the
most stressed in the instanton #1 and the instanton #3.)
Edges marked red/orange/blue colors are the saturated
ones in the respective instantons.

Fig. 3. Instanton(s) for base configuration + 6 renewable generators: 20%
of renewable penetration in average production. The instantons are ordered
according to their cost values, S(ρρρ).

of them to some number of other randomly selected nodes,
where number of connections per new node is distributed
according to the degree distribution of generators in the base
configuration. To facilitate comparison, we also create the
three configurations sequentially, such that the bigger one
is built on the top of the smaller one. The new graph is
shown in Fig. (1). The capacities of added lines are chosen
equal (and roughly correspond to the median capacity of the
existing lines). Inductances of the new lines are distributed
uniformly in a median range of inductances of the base case.
We choose α = 0 and α = 2. We pick the simplest possible
model for statistics of renewable generation, assuming that
ρρρ is site-uncorrelated, positive (component by component)
Gaussian, thus represented by

S (White)(ρρρ)≡
{

∑i∈Gu(ρi/ρi−1)2, ∀i ∈ Gr : ρi > 0
+∞, otherwise,

(16)

where one chooses ρρρ = (ρi|i ∈ Gu in a way that the total of
typical renewable generation, ∑i∈Gu ρi, corresponds to 10%,
20% and 30% (for the three test cases respectively) of the
standard generation of the RTS-96 base case. Selecting ρρρ we
also make sure that the resulting configurations are all in the

0.00

0.50

1.00

1.50

2.00

2.50

3.00

72 74 76 78 80 82

Bus ID

Instanton1

Instanton2

Instanton3

(a) Configuration of renewable generation for the top
three instantons.

Instanton1

Instanton2

Instanton3

(b) Top instantons are shown. Vertexes marked in
red/orange/blue colors are of the most stressed renew-
able generator from the instanton output. (Bus #77 is
the most stressed in the instanton #1 and instanton #3.)
Edges marked red/orange/blue colors are the saturated
ones in the respective instantons.

Fig. 4. Instanton(s) for base configuration + 9 renewable generators: 30%
of renewable penetration in average production. The instantons are ordered
according to their cost values, S(ρρρ).

regime where no transmission or generation constrains are
violated, i.e. ρρρ ∈ Dint . Note, that the choice of the positive
Gaussian and site-uncorrelated distribution is made here for
illustrative purposes only. Actual correlations of wind will
be more elaborate and interesting. However, one expects that
the realistic, S(ρρρ), representing actual wind forecast, will still
be a convex function of ρρρ, thus making application of our
algorithm to the more realistic situation as straightforward
as for the synthetic positive Gaussian case discussed here.

The results of our numerical tests, which main goal was to
illustrate utility of the algorithm as of an exact and fast tool,
are shown in Figs. (2,3,4) for the three levels of the renewable
penetration respectively. For each example we present two
figures showing in, (a) configuration of renewable generation
ρρρ for the top three leading instantons in comparison with the
base case, and in (b) structure of the top three instantons
(renewable sites with the largest values of ρ/ρ marked) and
respective saturated edges. A complete instanton analysis of
an instance (graph+distribution) is very fast, it takes few
seconds on a laptop.

Here is the summary and brief discussion of the simulation
results:
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• In the cases correspondent to 10% and 30% of renew-
able penetration the top instantons are well localized
on a site/node, in a sense that production at this single
site is significantly larger than the typical value while
deviation in production at the other renewable sites are
much weaker. On the contrary, the top instanton is of a
de-localized type in the intermediate case of 20% of
renewable penetration. Note that the cost of the top
instanton in the intermediate 20% case , S(ρρρ) = 1.04, is
significantly lower than in the 10% case, S(ρρρ) = 11.28
and also smaller than in the 30% case, S(ρρρ) = 2.49.
This non-monotonicity of the cost with increase of
the renewable penetration illustrates the generally very
important point that addition of renewables can stress
(transition from the 10% case to the (30% case) or de-
stress (transition from the 10% case to 20% case) the
network in terms of stochastic transmission congestion,
depending on how it is done.

• We also monitor the value of α at the instantons, and
observe that it decreases with increase of the level of
renewables: 0.75, 0.63 and 0.54 for the top instantons
in the 10%, 20% and 30% cases respectively. This ex-
presses the fact that the addition of renewables translates
into reduction of the standard generation.

• There is always one saturated edge per instanton. 1

Somehow remarkably, this saturated edge is always
one of the “old” edges (present in the base structure),
and it is also positioned in majority of cases relatively
far from the renewable sites which over-generate at
the instanton. This observation emphasizes non-locality
(and thus intrinsic difficulty) of the problem.

• The standard generation constraints are not violated at
the instantons, i.e. for each of the instantons found,
α = 0 < α < α = 2. α is unity at the base case and
it (naturally) decreases with the level of renewable
generation increase.

V. CONCLUSIONS AND PATH FORWARD

Summarizing, the main results of this work are:
• We posed the problem of discovering extreme stochastic

events in power grids, the instanton, associated with
transmission overflows caused by fluctuations of renew-
able generation.

• We showed that the aforementioned problem is com-
putationally tractable within the DC power flow setting
and with a low parametric linear control of standard
generation, for example of the proportional type.

• We illustrated algorithmic utility and efficiency of our
newly suggested algorithm on example of the IEEE
RTS-96 grid with 10%, 20% and 30% of added re-
newable generation. Main conclusions of our numerical
tests are: (a) Addition of renewables may lead to signif-
icant increase of the probability of failures (destructive

1Note that this observation does not violate the N − 1 contingency
requirement (a security measure enforcing that the system has a feasible
solution for any one of the N edges of the graph removed) simply because
the condition is enforced only at the equilibrium point.

effect), but it may also help to make the network to
become prone to failures (constructive effect), depend-
ing on quantitative details of how the grid extension is
done. (b) The instanton configurations represent global
correlations in the graph, which shows itself in the fact
that the (single) overloaded line is typically relatively
far from the over-producing renewable sites. (c) Our
algorithm is very efficient computationally in providing
the exact assessment of the gain (or loss) associated
with addition of renewables.

We plan to continue this work on discovering extreme
stochastic events in the power grids efficiently. Our main goal
here is to design a reliable predictive tool, extreme stochastic
event toolbox, capable to provide awareness (fast guidance
to utility operator) in terms of predicting dangerous extreme
stochastic events associated with the renewable generation.
More specifically, this work will be continued along the
following lines.

• First of all, we will be testing scalability of the approach
for larger, continental scale, transmission networks. Our
task here is to approach complexity which would scale
linearly with the size of the system. (This may be
achieved, e.g. by replacing standard convex optimization
solvers, by their linear scaling and distributed proxies.)

• Our modeling of wind statistics needs to be more
realistic. We plan to apply our algorithm to wind data
taken from a realistic forecast, e.g. of the type available
at [21], in particular accounting for long spatial (usu-
ally, at least hundreds of kilometers long) correlations
between different sites. Our future test beds will include
models of ERCOT (with actual or planned wind farms
in Western Texas), as well as models of other wind-rich
parts of US power grids.

• We will incorporate into the (so far static) scheme
dynamic effects and actual (time series) measurements
of the wind intensity. This will require extending the
instanton approach to account for temporal Lagrangian
correlations in the cost function, integrated in time
over pre-history, and enforcing the transmission and
generation conditions not only instantaneously but also
over the (dicretized) time horizon.

• Our model of proportional control is convenient for
analysis, but it matches the details of droop control
and of regulation response only schematically. We will
modify the model to more fully represent these actions,
in particular accounting for generation limits.

• We envision incorporating the instanton analysis into
control schemes, in particular in the tertiary (balance)
control, for example penalizing top instanton configu-
rations (and their vicinities) in the modified optimum
power flows. Another interesting control option is to
fit the instanton framework into an adversarial process,
whereby any given control action can be matched by a
corresponding instanton. This yields an iterative process
(with each iteration roughly like the problem solved in
the paper), which produces robust control actions and
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significant events, at the same time.
• We will also work on extending the algorithm to the

case of AC power flows (which is especially important
in terms of accounting for additional issues related to
voltage variations), e.g. utilizing new advances in related
optimization techniques [22]. We will consider other
schemes of transmission and voltage control, in particu-
lar related to demand response [23], line switching [24],
controlling DC tie-lines, capacitor banks, phase shifters
and related [10]. We also plan to account for other type
of stochastic issues, e.g. related to dynamic stability [25]
and voltage collapse [26].

Finally, once the extreme stochastic event toolbox is devel-
oped, we envision using it (as a black box) for developing
new planning and control schemes for smart grids of the fu-
ture, for example in the spirit of the general approach of [27].
We envision using this toolbox to solve related problems of
discovering interdiction attacks on power grids [28], [29],
and analyzing, controlling and preventing cascading failures
[30], [31].
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