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Abstract— This paper presents a new method for robust con-
trol of a class of uncertain nonlinear systems in strict-feedback
form with state measurement errors. The measurement feed-
back control problem is solved by recursively designing input-
to-state stability (ISS) induced nonlinear state estimators and
virtual control laws. With the gain assignment technique, the
closed-loop system can be transformed into an interconnection
of ISS subsystems, the ISS and input-to-output stability (IOS)
of which can be guaranteed by the cyclic-small-gain theorem.
Moreover, the IOS gain from the measurement error of the
system output (the first state) to the system output can be
designed to be linear and arbitrarily close to the identity
function.

I. INTRODUCTION

Robustness with respect to measurement errors is essential

for automatic control systems. Fundamentally different from

linear systems, controllers for nonlinear systems often need

to be carefully designed to achieve such robustness; see

[1, Section 6.1] for examples. Input-to-state stability (ISS)

invented by Sontag is a tool to describe how external inputs

affect the internal stability of a nonlinear system, i.e., the ro-

bustness of a nonlinear system with respect to external inputs

(see [2] for a tutorial). With the development of networked

control, ISS with respect to measurement errors appears to be

fundamental in several recent networked controller designs;

see e.g., [3] on quantized control, [4] for time-delayed

nonlinear systems, [5] on sampled-data control. It should

be noted that measurement errors are usually non-smooth

or even discontinuous signals. For example, a quantizer can

be mathematically modeled as a discontinuous map.

Despite its importance to practical control problems, ro-

bust control of nonlinear systems with measurement errors

has not yet been paid enough attention. Reference [6] studied

the input-to-state stabilization of first-order nonlinear sys-

tems with measurement error. In [7], the conditions under

which a system can be stabilized insensitively to small

measurement errors were given. Reference [1] introduced

a robust control design approach based on the well-known

backstepping methodology (see the book [8] for an excellent
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introduction to backstepping) and flattened Lyapunov func-

tions to the control of strict-feedback nonlinear systems with

bounded measurement errors. In [9], a hybrid controller was

developed for a class of nonlinear systems to achieve ISS

with respect to measurement errors. Reference [10] studied

nonlinear systems composed of two subsystems, one is ISS

and the other one is input-to-state stabilizable with respect

to the measurement error. In [10], the ISS of the closed-

loop system is guaranteed by the gain assignment technique

introduced in [11], [12], [13] and the nonlinear small-gain

theorem proposed in [11], [14]. In our very recent work [15],

we developed a fundamentally new approach by using set-

valued maps to cope with the discontinuous measurement

errors caused by sensor noise in decentralized control sys-

tems. However, most of the existing results of high-order

systems consider bounded measurement errors. In addition,

these results are not directly applicable to networked control

systems design.

Reference [16] firstly announced an extension of the ISS

small-gain theorem in [11], [14] for networks of discrete-time

ISS systems. Shortly, [17] independently developed a matrix-

small-gain criterion for networks with plus-type intercon-

nections and mentioned the cyclic-small-gain condition. In

[18], the dynamical network with max-type interconnections

in the ISS gain formulation was systematically studied and

more general cyclic-small-gain criteria were developed for

networks of IOS systems. The ISS-Lyapunov based cyclic-

small-gain theorem was developed in [19]. The cyclic-small-

gain condition can be roughly described as follows: every

loop-gain, i.e., the composition of the gain functions of the

subsystems along every simple-loop in the network, is less

than the identity function.

In practical industrial control applications, low-pass filters

are usually employed to attenuate high-frequency measure-

ment noise and to estimate the measured signals. Motivated

by low-pass filters, in this paper, we develop new ISS-

induced estimators to estimate the measured states, “pol-

luted” by measurement errors. Based on the estimators, a

dynamic state feedback control law will be designed to

transform the closed-loop system into an interconnection

of ISS subsystems. Then, the ISS property of the total

interconnected system will be guaranteed by checking the

loop-gains with the cyclic-small-gain theorem. The closed-

loop system will also be designed to be input-to-output stable

(IOS) from the measurement errors to the control errors.

Moreover, it will be demonstrated that the IOS gain from

the measurement error of the system output to the system

output can be designed to be arbitrarily close to the identity
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II. PROBLEM FORMULATION

In this paper, we consider a class of nonlinear uncertain

systems in the strict-feedback form:

ẋi = xi+1 +∆i(x̄i), i = 1, . . . ,n (1)

xn+1
def
= u (2)

xm
i = xi + di, i = 1, . . . ,n (3)

where [x1, . . . ,xn]
T := x ∈ℝ

n is the state, u∈ℝ is the control

input, x̄i = [x1, . . . ,xi]
T , xm

i ∈ℝ is the disturbed measurement

of xi with measurement error di ∈ℝ, and ∆i’s for i = 1, . . . ,n
are unknown locally Lipschitz continuous functions.

Assumption 1: For each ∆i with i = 1, . . . ,n in (1), there

exists a known ψ∆i
∈ K∞ such that for all x̄i,

∣∆i(x̄i)∣ ≤ ψ∆i
(∣x̄i∣). (4)

Remark 1: In our previous work, e.g., [15], the measure-

ment errors di are assumed to be bounded by some unknown

constants. We do not make such assumption in this paper.

The objective of this paper is to design a continuous

dynamic state-measurement feedback controller of the form

ζ̇ = ϕ(ζ ,xm); u = λ (ζ ) (5)

such that the system (1)–(3) is made ISS with di’s as the

inputs. Moreover, the closed-loop system is input-to-output

stable with di’s as the inputs and x1 as the output, and the

IOS gain from d1 to x1 can be assigned arbitrarily close to

the identity function.

III. MODIFIED GAIN ASSIGNMENT

The gain assignment technique has been proved to be

extremely useful in small-gain based controller designs [11],

[12], [13], [10]. In this section, we present a modified

gain assignment lemma for the dynamic state-measurement

feedback control design in this paper.

In this paper, we will transform the closed-loop system

into an interconnection of first-order nonlinear systems in

the following form:

η̇ = φ(η ,ω1, . . . ,ωm)+ κ̄ (6)

ηm = η +ωm+1 (7)

where η ∈ ℝ is the state, κ̄ ∈ ℝ is the control input,

ω1, . . . ,ωm+1 ∈ ℝ represent external inputs, ηm ∈ ℝ is the

measurement of η , the nonlinear function φ(η ,ω1, . . . ,ωm)
is locally Lipschitz and satisfies

∣φ(η ,ω1, . . . ,ωm)∣ ≤ ψ
η
φ (∣η ∣)+

m

∑
k=1

ψ
ωk

φ (∣ωk∣) (8)

with ψη
φ ,ψ

ω1
φ , . . . ,ψωm

φ ∈K∞. Define αV (s) =
1
2
s2 for s∈ℝ+.

Lemma 3.1 presents a modified gain assignment technique

for system (6)–(7).

Lemma 3.1: Consider system (6)–(7). For any specified

0< c< 1, ε > 0, ℓ > 0 and γω1
η , . . . ,γωm

η ∈K∞, we can design

a measurement feedback control law

κ̄ = κ(ηm) =−ν(∣ηm∣)ηm (9)

where ν : ℝ+ →ℝ+ is positive, nondecreasing and continu-

ously differentiable on (0,∞), and satisfies

(1− c)ν((1− c)s)s

≥ ψ
η
φ (s)+

m

∑
k=1

ψ
ωk

φ ∘
(

γ
ωk
η

)−1 ∘αV (s)+
ℓ

2
s (10)

for all s ≥
√

2ε . Moreover, κ is continuously differentiable,

odd, strictly decreasing and radially unbounded, and Vη(η)=
αV (∣η ∣) satisfies the following implication:

Vη(η)≥ max
k=1,...,m+1

{

γ
ωk
η (∣ωk∣),ε

}

⇒ ∇Vη(η)η̇ ≤−ℓVη(η) (11)

where γ
ωm+1
η (s) = αV

(

s
c

)

for s ∈ ℝ+.

Proof: Because ψη
φ (s)+∑m

k=1 ψ
ωk
φ ∘

(

γ
ωk
η

)−1 ∘αV (s)+
ℓ
2
s is a K∞ function of s, from Lemma 1 in [13], for

any 0 < c < 1, ε > 0, we can find a ν : ℝ+ → ℝ+ which

is positive, nondecreasing and continuously differentiable

on (0,∞), and satisfies (10) for all s ≥
√

2ε . It can be

directly proved that the κ defined as κ(r) = −ν(∣r∣)r is

odd, strictly decreasing, radially unbounded and continuously

differentiable on (−∞,0)∪ (0,∞). With direct calculation,

we have limr→0+
dκ(r)

dr
= limr→0−

dκ(r)
dr

and κ is continuously

differentiable.

Recall Vη(η) = αV (∣η ∣) = 1
2
η2. Consider the case of

Vη(η)≥ max
k=1,...,m+1

{

γ
ωk
η (∣ωk∣),ε

}

. (12)

In this case, we have ∣ωk∣ ≤
(

γ
ωk
η

)−1 ∘αV (∣η ∣) for k =

1, . . . ,m, ωm+1 ≤ cα−1
V (Vη(η)) = c∣η ∣ and ∣η ∣ ≥

√
2ε . Recall

κ̄ = κ(ηm) = κ(η +ωm+1). With 0 < c < 1 and ωm+1 ≤
c∣η ∣, when η ∕= 0, we have sgn(ηm) = sgn(η), ∣ηm∣ =
∣η +ωm+1∣ ≥ (1− c)∣η ∣ and ν(∣ηm∣)∣ηm∣ ≥ (1− c)ν((1−
c)∣η ∣)∣η ∣.

Using (8), (10) and the discussion above, for any κ̄
satisfying (9), in the case of (12), we have

∇Vη(η)(φ(η ,ω1, . . . ,ωm)+ κ̄)

= η(φ(η ,ω1, . . . ,ωm)−ν(∣ηm∣)ηm)

≤ ∣η ∣∣φ(η ,ω1, . . . ,ωm)∣− ∣η ∣ν(∣ηm∣)∣ηm∣

≤ ∣η ∣
(

ψη
φ (∣η ∣)+

m

∑
k=1

ψ
ωk
φ (∣ωk∣)

− (1− c)ν((1− c)∣η ∣)∣η ∣
)

≤ ∣η ∣
(

ψη
φ (∣η ∣)+

m

∑
k=1

ψ
ωk

φ ∘
(

γ
ωk
η

)−1 ∘αV (∣η ∣)

− (1− c)ν((1− c)∣η ∣)∣η ∣
)

≤ − ℓ

2
∣η ∣2 =−ℓVη(η). (13)

This ends the proof.
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IV. DYNAMIC STATE-MEASUREMENT FEEDBACK

CONTROL DESIGN

In this section, we recursively construct the dynamic state-

measurement feedback controller to transform the closed-

loop system into an interconnection of ISS subsystems.

Specifically, given the ei-subsystem with xi+1 as the virtual

control input, we design an estimator with state êi to estimate

ei such that the estimation error subsystem with state ẽi =
êi − ei is ISS. Then, we design a virtual control law κ12(êi)
to render the êi-subsystem to be ISS. A new state ei+1 is

defined as ei+1 = xi+1 − κ12(êi). A new system with state

[ê1, ẽ1, . . . , ên, ẽn]
T is constructed from the x-system. With the

employment of the estimators, the problems caused by the

discontinuity of the measurement errors are solved.

For each ẽi-subsystem and each êi-subsystem, we define

the following ISS-Lyapunov function candidates, respec-

tively:

Vẽi
(ẽi) = αV (∣ẽi∣), i = 1, . . . ,n, (14)

Vêi
(êi) = αV (∣êi∣), i = 1, . . . ,n, (15)

where αV (s) =
1
2
s2 for s ∈ℝ+. In the following discussions,

we simply use Vẽi
and Vêi

instead of Vẽi
(ẽi) and Vêi

(êi),
respectively.

For convenience of notations, define ê0 = e0 = 0 and d0 =
0.

For i = 1, . . . ,n, the ei’s are recursively defined as

e1 = x1 (16)

ei = xi −κ(i−1)2(êi−1), i = 2, . . . ,n (17)

where κ(i−1)2 : ℝ→ ℝ is a continuously differentiable, odd,

strictly decreasing and radially unbounded function, and êi−1

is an estimate of ei−1.

Since xi (and thus ei) is not available for feedback, we

define

em
1 = xm

1 (18)

em
i = xm

i −κ(i−1)2(êi−1), i = 2, . . . ,n (19)

and construct the following estimator for ei:

˙̂ei = κi1(êi − em
i )+ xm

i+1 (20)

where êi ∈ℝ is an estimate of ei and κi1 : ℝ→ℝ is an odd

and strictly decreasing function to be determined later.

The structure of the êi-subsystem is shown in Fig. 1.

-⊕? -⊕?

κ(i−1)2

?

-⊕ - κi1
-⊕

6
- ∫ -?+

+
+
− −+

+
+

xi

di

êi−1

xm
i

xm
i+1

êi

Fig. 1. The estimator for ei: the êi-subsystem.

Define

ẽi = êi − ei (21)

as the estimation error for ei. Taking the derivative of ẽi and

using xm
i = xi + di and xm

i+1 = xi+1 + di+1, direct calculation

yields:

˙̃ei = ˙̂ei − ėi

= ˙̂ei − ẋi+
∂κ(i−1)2(êi−1)

∂ êi−1

˙̂ei−1

= κi1(ẽi − di)+ di+1 + xi+1 −∆i(x̄i)− xi+1

+
∂κ(i−1)2(êi−1)

∂ êi−1

˙̂ei−1, (22)

or equivalently,

˙̃ei = ∆∗
i1(ê1, ẽ1, . . . , êi, ẽi,di−1,di,di+1)+κi1(ẽi − di) (23)

where

∆∗
i1(ê1, ẽ1, . . . , êi, ẽi,di−1,di,di+1)

= di+1 −∆i(x̄i)+
∂κ(i−1)2(êi−1)

∂ êi−1

˙̂ei−1. (24)

With Assumption 1 satisfied, we can find ψ
êk

∆∗
i1
,ψ

ẽk

∆∗
i1
∈K∞

with k = 1, . . . , i and ψ
di−1

∆∗
i1

,ψdi

∆∗
i1
,ψ

di+1

∆∗
i1

∈ K∞ such that

∣∆∗
i1(ê1, ẽ1, . . . , êi, ẽi,di−1,di,di+1)∣

≤
i

∑
k=1

(

ψ
êk

∆∗
i1
(∣êk∣)+ψ

ẽk

∆∗
i1
(∣ẽk∣)

)

+ψ
di−1

∆∗
i1

(∣di−1∣)+ψdi

∆∗
i1
(∣di∣)+ψ

di+1

∆∗
i1

(∣di+1∣). (25)

By using xm
i = xi + di and xm

i+1 = xi+1 + di+1, we can

rewrite the êi-subsystem as

˙̂ei = κi1(ẽi − di)+ di+1+ xi+1. (26)

Consider xi+1 as the virtual control input of the êi-

subsystem. We design a virtual control law κi2(êi), with κi2 :

ℝ → ℝ continuously differentiable, odd, strictly decreasing

and radially unbounded, to be determined later. Define

ei+1 = xi+1 −κi2(êi). (27)

Note that xi+1 (and thus ei+1) is not available for feedback.

We use êi+1 to denote the estimate of ei+1 and define ẽi+1 =
êi+1 − ei+1. Then, the êi-subsystem (26) can be rewritten as

˙̂ei = ∆∗
i2(ẽi, ẽi+1, êi+1,di,di+1)+κi2(êi) (28)

where

∆∗
i2(ẽi, ẽi+1, êi+1,di,di+1)

= κi1(ẽi − di)+ di+1 + êi+1 − ẽi+1. (29)

Because κi1 is odd and strictly decreasing, we can find

ψ ẽi

∆i2
,ψ

ẽi+1

∆i2
,ψ

êi+1

∆i2
,ψdi

∆i2
,ψ

di+1

∆i2
∈ K∞ such that

∣∆∗
i2(ẽi, ẽi+1, êi+1,di,di+1)∣

= ψ ẽi

∆i2
(∣ẽi∣)+ψ

ẽi+1

∆i2
(∣ẽi+1∣)+ψ

êi+1

∆i2
(∣êi+1∣)

+ψdi

∆i2
(∣di∣)+ψ

di+1

∆i2
(∣di+1∣). (30)
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Fig. 2. The interconnection in each ĕi-system (i = 1, . . . ,n).

Denote ĕi = [êi, ẽi]
T for i= 1, . . . ,n. The interconnection in

the ĕi-subsystem is shown in Fig. 2. Denote ¯̆ei = [ĕT
1 , . . . , ĕ

T
i ]

T

for i = 1, . . . ,n.

Given the ¯̆ei-subsystem, we choose γ
êk
ẽi
,γ

ẽk
ẽi

∈ K∞ with

k = 1, . . . , i such that the compositions of the gain functions

along all the simple loops through the ẽi-subsystem in the

[ ¯̆eT
i−1, ẽi]

T -subsystem are less than the identity function.

Consider the ẽi-subsystem defined in (23). Using Lemma

3.1, for any specified constants 0 < ci1 < 1, εi1 > 0 and ℓi1 >

0, any specified γ êi
ẽi
,γ

di−1
ẽi

,γdi
ẽi
,γ

di+1
ẽi

∈ K∞, and the γ
êk
ẽi
,γ

ẽk
ẽi

∈
K∞ for k = 1, . . . , i chosen above, we design κi1 in the form

of (9) such that Vẽi
satisfies

Vẽi
≥ max

k=1,...,i−1

⎧



⎨



⎩

γ
ẽk
ẽi
(Vẽk

),γ
êk
ẽi
(Vêk

),γ êi
ẽi
(Vêi

),

γ
di−1
ẽi

(∣di−1∣),γdi
ẽi
(∣di∣),

γ
di+1
ẽi

(∣di+1∣),εi1

⎫



⎬



⎭

⇒ ∇Vẽi
˙̃ei ≤−ℓi1Vẽi

(31)

where

γdi
ẽi
= αV

(

s

ci1

)

(32)

for s ∈ℝ+.

Given the [ ¯̆ei−1, ẽi]
T -subsystem, we choose γ ẽi

êi
∈ K∞ such

that the compositions of the gain functions along all the

simple loops through the êi-subsystem in the ¯̆ei-subsystem

are less than the identity function.

Consider the êi-subsystem defined in (28). Using Lemma

3.1, for any specified constants εi2 > 0 and ℓi2 > 0, any

specified γ
ẽi+1

êi
,γ

êi+1

êi
∈ K∞ and the γ ẽi

êi
chosen above, we

design κi2 in the form of (9) such that Vêi
satisfies

Vêi
≥ max

{

γ ẽi
êi
(Vẽi

),γ
êi+1

êi
(Vêi+1

),γ
ẽi+1

êi
(Vẽi+1

),

γdi
êi
(∣di∣),γdi+1

êi
(∣di+1∣),εi2

}

(33)

⇒∇Vêi
˙̂ei ≤−ℓi2Vêi

. (34)

In the case of i = n, xi+1 = xm
i+1 = u, êi+1 = ei+1 = 0 and

di+1 = 0. The dynamic state measurement feedback control

law is designed as

u = κn2(ên). (35)

Remark 2: In standard backstepping, we usually design a

virtual control law in the form of κi(ei) for the ei-subsystem.

Due to the measurement error di, ei is not available for

feedback, and an intuitive modification is κi(ei + di). How-

ever, the discontinuity of di makes it impossible to take

the derivative of κi(ei + di), and the differentiation-based

standard backstepping cannot proceed.

Remark 3: In our very recent paper [15], we introduced

a set-valued map based static feedback control design to

overcome the problem caused by the discontinuity of the

measurement errors. The dynamics of the closed-loop system

are represented with differential inclusions. That method

is effective for only bounded measurement errors and can

only achieve local ISS. In this paper, by introducing the

estimators, we do not make any assumption on the bounds of

the measurement errors. Moreover, with the help of the es-

timators, the closed-loop system can be directly represented

with differential equations.

V. STABILITY ANALYSIS AND MAIN RESULTS

The system digraph of the [ĕ1, . . . , ĕn]
T -system is shown

in Fig. 3.

⃝ ⃝ ⃝ ⃝� ⋅ ⋅ ⋅ � � � ⋅ ⋅ ⋅ �j s R
* *3ĕ1 ĕi ĕi+1 ĕn

Fig. 3. The system digraph of the [ĕ1, . . . , ĕn]
T -system.

According to the recursive design, given the ĕi−1-system,

by designing κi1 for the ẽi-subsystem, we can assign the ISS

gains γ
êk
ẽi
,γ

ẽk
ẽi

’s for k = 1, . . . , i− 1 such that all the simple

loops in the [ĕ
T

i−1, ẽi]
T -system through the ẽi-subsystem sat-

isfy the cyclic-small-gain condition. By designing κi2 for the

êi-subsystem, we can assign the ISS gain γ ẽi
êi

such that the

simple loop in the ĕi-system through the ẽi-subsystem sat-

isfies the cyclic-small-gain condition. Through the recursive

control design procedure, the e-system satisfies the cyclic-

small-gain condition and is ISS [18], [19].

For the e-system, we construct an ISS-Lyapunov function

in the following form:

Ve(e) = max
i=1,...,n

{σi1(Vẽi
(ẽi)),σi2(Vêi

(êi))} (36)

where σ12 = Id, and σi1 with i = 1, . . . ,n and σi2 with

i = 2, . . . ,n are compositions of γ̂
(⋅)
(⋅) ’s which are smooth on

(0,∞) and slightly larger than the corresponding γ
(⋅)
(⋅) ’s, and

still satisfy the cyclic-small-gain condition. Here it is not

necessary to give an explicit representation of the σi1 and

σi2 to analyze the effect of the measurement errors.

Correspondingly, the influence from di and εi for i =
1, . . . ,n can be represented as:

θ = max
i=1,...,n

⎧



⎨



⎩

σi1 ∘ γ
di−1
ẽi

(∣di−1∣),σi1 ∘ γdi
ẽi
(∣di∣),

σi1 ∘ γ
di+1

ẽi
(∣di+1∣),σi1(εi1),

σi2 ∘ γdi
êi
(∣di∣),σi2 ∘ γ

di+1

êi
(∣di+1∣),σi2(εi2)

⎫



⎬



⎭

(37)

From the Lyapunov-based cyclic-small-gain theorem, it

holds that

Ve(e)≥ θ ⇒ ∇Ve(e)ė ≤−αe(Ve(e)) (38)
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wherever ∇Ve exists, with αe positive definite.

By default, γdn
ẽn+1

:= 0, γd1
ẽ0

:= 0, γd1
ê0

:= 0, σ(n+1)1 := 0 and

σ01 := 0.

Define

γdi
e (s) = max

⎧



⎨



⎩

σ(i+1)1 ∘ γdi
ẽi+1

(s),σi1 ∘ γdi
ẽi
(s),

σ(i−1)1 ∘ γdi
ẽi−1

(s),σi2 ∘ γdi
êi
(s),

σ(i−1)2 ∘ γdi

êi−1
(s)

⎫



⎬



⎭

(39)

ε = max
i=1,...,n

{σi1(εi1),σi2(εi2)} . (40)

Then, the θ defined in (37) can be equivalently represented

as

θ = max
i=1,...,n

{

γdi
e (∣di∣),ε

}

. (41)

By choosing the γ
(⋅)
(⋅) ’s small enough, we can make σi1 for

i = 1, . . . ,n and σi2 for i = 2, . . . ,n small enough such that

σi1 ∘ γdi
ẽi
(s)

≥ max

{

σ(i+1)1 ∘ γdi
ẽi+1

(s),σ(i−1)1 ∘ γdi
ẽi−1

(s),

σi2 ∘ γdi
êi
(s),σ(i−1)2 ∘ γdi

êi−1
(s)

}

. (42)

In this way, we achieve

θ = max
i=1,...,n

{

σi1 ∘ γdi
ẽi
(∣di∣),ε

}

. (43)

Property (38) implies that there exists a βe ∈ K L such

that

Ve(e(t))≤ max

{

βe(Ve(e(t0)), t − t0), sup
t0≤τ≤t

(θ (τ))

}

(44)

where

θ (τ) = max
i=1,...,n

{

σi1 ∘ γdi
ẽi
(∣di(t)∣),ε

}

. (45)

From the definition of Ve in (38), using σ12 = Id, we have

∣x1∣= ∣e1∣= ∣ê1 − ẽ1∣ ≤ ∣ê1∣+ ∣ẽ1∣
= α−1

V (Vê1
(ê1))+α−1

V (Vẽ1
(ẽ1))

≤ α−1
V ∘σ−1

12 (Ve(e))+α−1
V ∘σ−1

11 (Ve(e))

= (α−1
V +α−1

V ∘σ−1
11 )(Ve(e)). (46)

Define

γ̄di
x1
= (α−1

V +α−1
V ∘σ−1

11 )∘σi1 ∘ γdi
ẽi
, i = 1, . . . ,n (47)

β̄x1
= (α−1

V +α−1
V ∘σ−1

11 )∘βe (48)

ε̄x1
= (α−1

V +α−1
V ∘σ−1

11 )(ε). (49)

Then, from (44) and (45), we obtain

∣x1(t)∣ ≤(α−1
V +α−1

V ∘σ−1
11 )(Ve(e(t)))

≤max
{

β̄x1
(Ve(e(t0)), t − t0),

sup
t0≤τ≤t

(

max
i=1,...,n

γ̄di
x1
(∣di(τ)∣)

)

,ε
}

. (50)

Thus, the closed-loop system is IOS with x1 as the output

and the IOS gain from di to x1 is γ̄di
x1

[11].

Recall γd1
ẽ1
(s) = αV (s/c11) for s ∈ℝ+. From the definition

of γ̄d1
x1

in (47) with i = 1, we have

γ̄d1
x1

= (α−1
V +α−1

V ∘σ−1
11 )∘σ11 ∘ γd1

ẽ1

= (Id+α−1
V ∘σ11 ∘αV )

(

s

c11

)

. (51)

Note that for i = 1, . . . ,n, each σi1 is a composition of γ̂
(⋅)
(⋅) ’s,

which can be chosen arbitrarily small. Thus, the IOS gain

γ̄di
x1

for i = 2, . . . ,n can be designed arbitrarily small. If we

also choose c11 arbitrarily close to one, and σ11 arbitrarily

small, then γ̄d1
x1

is arbitrarily close to the identity function.

The main result of this paper is summarized in the

following theorem.

Theorem 1: With Assumption 1 satisfied, the system (1)–

(3) can be input-to-state stabilized with the dynamic state

measurement feedback control law defined in (17), (19), (20)

and (35). Moreover, the close-loop system is IOS with the

measurement errors d1, . . . ,dn as inputs and x1 as output, the

IOS gain from d1 to x1 can be designed to be arbitrarily close

to the identity function, and the IOS gain from d2, . . . ,dn to

x1 can be designed to be arbitrarily small.

VI. AN EXAMPLE

To verify the main result of this paper, consider the

following second-order nonlinear system:

ẋ1 = x2 (52)

ẋ2 = 0.2x2
2 + u (53)

xm
1 = x1 + d1; xm

2 = x2 + d2. (54)

For the sake of simplicity, assume d2 = 0.

Define e1 = x1. Following the design procedure in Section

IV, we have

˙̂e1 = κ11(ẽ1 − d1)+ ê2 − ẽ2 +κ12(ê1) (55)

˙̃e1 = κ11(ẽ1 − d1) (56)

where ê1 is the estimate of e1, ẽ1 = ê1 − e1, and ê2 and ẽ2

will be defined later.

Consider the ẽ1-subsystem. Clearly, ∆∗
11 = 0. We choose

c11 = 0.8 and ℓ11 = 0.02. Then, the κ11 is designed in the

form of κ11(r) =−ν11(∣r∣)r with ν11 satisfying

(1− c11)ν11((1− c11)s)s ≥ 0.01s. (57)

Then, we choose ν11(s) = 0.05 for s ∈ ℝ+ and κ11(r) =
−0.05r for r ∈ ℝ.

With κ11 designed, we have ∆∗
12(ẽ1, ẽ2, ê2,d1) =−0.05ẽ1+

0.05d1 + ê2 − ẽ2. Thus, ψ ẽ1

∆∗
12
(s) = 0.05s, ψd1

∆∗
12
(s) = 0.05s,

ψ ê2

∆∗
12
(s) = s and ψ ẽ2

∆∗
12
(s) = s. Choose ℓ12 = 0.02, γ ẽ1

ê1
(s) = s,

γ ẽ2
ê1
(s) = 0.99s, γd1

ê1
(s) = 0.5s2 and γ ê2

ê1
(s) = s. Then, the

κ12 is designed in the form of κ12(r) = −ν12(∣r∣)r with

ν12(s) = 2.11 for s ∈ ℝ+.

Define e2 = x2 −κ12(ê1). The estimator for e2 is designed

in the following form:

˙̂e2 = κ21(ẽ2)+ u (58)
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where ê2 is the estimate of e2. Define ẽ2 = ê2−e2. By directly

taking the derivative of ẽ2, we have

˙̃e2 = ∆∗
21(ẽ1, ê1, ẽ2, ê2,d1)+κ21(ẽ2) (59)

where ∣∆∗
21(ẽ1, ê1, ẽ2, ê2,d1)∣ satisfies ∣∆∗

21(ẽ1, ê1, ẽ2, ê2,d1)∣ ≤
0.1055∣ẽ1∣ + 1.7344∣ê1∣2 + 4.4521∣ê1∣ + 0.822∣ẽ2∣2 +
2.11∣ẽ2∣ + 0.822∣ê2∣2 + 2.11∣ê2∣ + 0.1055∣d1∣. Thus, we

have ψ ê2

∆∗
21
(s) = 0.822s2 + 2.11s, ψ ẽ2

∆∗
21
(s) = 0.822s2 + 2.11s,

ψ ê1

∆∗
21
(s) = 1.7344s2 + 4.4521s, ψ ẽ1

∆∗
21
(s) = 0.1055s and

ψd1

∆∗
21
(s) = 0.1055s. We choose ℓ21 = 0.02, γ ê1

ẽ2
(s) = 0.99s,

γ ê2
ẽ2
(s) = 0.99s, γ ẽ1

ẽ2
(s) = 0.99s and γd1

ẽ2
(s) = 0.5s2. Then,

the γ21 is designed in the form of κ21(r) = −ν21(∣r∣)r with

ν21(s) = 3.3784s+ 8.7876 for s ∈ℝ+.

With κ21 designed, we have ∆∗
22(ẽ2) = −3.3784∣ẽ2∣ẽ2 −

8.7876ẽ2. Thus, ψ ẽ2

∆∗
22
(s) = 3.3784s2 + 8.7876s. We choose

ℓ22 = 0.02 and γ ẽ2
ê2
(s) = 0.99s. Then, the κ22 is designed

in the form of κ22(r) =−ν22(∣r∣)r with ν22(s) = 3.3784s+
8.7976 for s ∈ ℝ+.

In the construction of the ISS-Lyapunov function for the

closed-loop system, we can choose all σ(⋅) = Id. With direct

calculation following the procedure in Section V, we have

γ̄d1
x1
(s) = 2.5s for s ∈ ℝ+.

Simulation results with d1 = 0.3sgn(sin0.2t)+ 1.7 shown

in Figs. 4–5 are in accordance with the theoretical design.
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Fig. 4. The measurement disturbance and the system states.
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Fig. 5. The estimator states and the control input.

VII. CONCLUSIONS

This paper has presented a new dynamic state measure-

ment feedback control strategy for nonlinear systems with

discontinuous measurement errors, based on the cyclic-small-

gain theorem. ISS-induced estimators are recursively con-

structed to estimate the disturbed state and the dynamic state-

measurement control law is designed to transform the closed-

loop system into an interconnection of ISS subsystems. ISS

and IOS properties of the closed-loop system are guaranteed

by the cyclic-small-gain theorem. In particular, the IOS gain

from the measurement error of the system output to the

system output can be designed to be arbitrarily close to the

identity function.
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