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Abstract— A general framework for the analysis of networks
of heterogeneous agents is presented. By modeling each agent as
a nominal linear time-invariant system plus a possibly nonlinear
perturbation and the interconnection among the agents via a
memoryless operator, a general result is offered which ensures
robust synchronization of the network to a subspace of RN . The
result is applied to the case when the interconnection operator
is a constant normal matrix and the perturbations nonlinear.
The criterion is reduced to a graphical Popov criterion for the
synchronization of the network.

I. INTRODUCTION
In the past few years, the scientific community has devoted

a vast amount of effort to the study of synchronization
in large–scale networks. In these systems a possibly huge
number of agents interact according to some local law which
is designed to achieve some global goal. Since the control is
based on local cooperation between the agents rather than on
coordination by a centralized unit, we call this a distributed
algorithm. The network is modeled by a communication
graph G = (V, E) in which the nodes are the agents, and
an edge (k, j) exists if agent j is able to use some sort of
information coming from agent k. We say that cooperation
is local since each agent receives information from a usually
small subset of the network, called its neighborhood. One
of the simplest instances is the consensus problem, which
found several applications in recent years, see [1], [2] and the
references therein. It is defined as follows: Assume we have
N agents, each initialized with a different real number. The
goal is to agree on a common value by iteratively exchanging
information between the agents. We stack all these initial
values in a vector x(0) = x0 ∈ RN , which evolves according
to the discrete–time system

{
x = z−1

1−z−1u = N0(z−1)u

u = −(I − P )x
. (1)

The first equation says that agent k updates its information
by integration of some local input uk, which is computed
as a linear combination of the values of its neighbors with
coefficients given by the k-th row of the matrix P ∈ RN×N .
This is a non–negative row–stochastic primitive1 matrix
consistent with the communication graph, namely such that
Pkj > 0 if and only if (j, k) ∈ E , in accordance to the fact
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1Row–stochastic means P1 = 1, primitive that there exists a positive
integer ν such that all the entries of P ν are strictly positive. Here 1 =
1√
N

[1, . . . , 1] ∈ RN .

that j uses, to compute its local control, only the information
coming from its neighbors. By Perron–Frobenius theorem [3]
we know that

xk(t)
t→∞−→ πTx0, ∀ k = 1, . . . , N

where πTP = πT and πT1 = 1.
A consensus network is thus a network of integrators

that asymptotically agrees on the same linear combination
of the initial conditions of the network. In this paper we
are interested in higher order consensus problems, where
N0(z−1) is a generic transfer function, not just an integrator.
The consensus here is required in the outputs of the agents,
and we call this synchronization of the network. We consider
moreover heterogeneous networks, in which the dynamics of
the agents contain a nominal part perturbed in some “mild”
way. The unperturbed network is called homogeneous. In [4]
robust synchronization of a network of perturbed integrator is
studied, and the idea is extended in [5] to the synchronization
of a class of higher order systems. In [6] a graphical criterion
is proposed for a homogeneous network in the case of linear
dynamic feedback. The paper [7] proposes a comprehensive
model for synchronization in an input/output framework.
Finally, the paper [8] presents an LMI-based tool for the
synchronization of systems around a given autonomous tra-
jectory of the nominal, possibly nonlinear, system. Much
effort has also been devoted to the study of the stabilization
of an interconnected network (in consensus we stabilize the
system apart from the consensus direction, e.g. 1), see,
for example, [9], [10]. In this paper we propose a general
framework for the synchronization of a network of agents.
Here we allow heterogeneity, higher order dynamics and
higher order synchronization, and some degree of generality
in the law that produces the local controls given the local
information. We present a synchronization result which is
derived using the IQC theorem in [11] and we particularize
it to a special case for which the criterion decomposes to
one lower dimensional criterion for each eigenvalue of the
interconnection matrix.

Notations

The Hilbert space H denotes either the continuous time
signal space L2[0,∞) or the discrete time signal space
l2(0,∞). Vector valued versions are denoted by Hn, n begin
the dimension of the signal. The corresponding extended
space Hne consists of signals for which PT v ∈ Hn, ∀T ≥ 0,
where the truncation operator is defined as (PT v)(t) = v(t)
when t ≤ T and (PT v)(t) = 0 when t > T .
An operator H on Hne is causal if PTH(v) = PTH(PT v)
for all T ≥ 0 and all v ∈ Hne . The operator is bounded

if its gain γ(H) = supv∈Hn

v 6=0

‖H(v)‖
‖v‖ is bounded, where

‖ · ‖ is the norm on Hn. H is linear if H(α1v1 + α2v2) =
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α1H(v1) + α2H(v2). A causal linear time–invariant (LTI)
operator acts as

(Hv)(t) =

∫ t

0

hc(t− τ)v(τ)dτ + h0v(t) (2)

(Hv)(t) =

n∑

k=0

h(t− k)v(k) (3)

in continuous and discrete time, respectively, where h is the
impulse response function. If the signals belong to Hn then
we have the equivalent frequency domain representations
Ĥv(jω) = Ĥ(jω)v̂(jω) and Ĥv(ejω) = Ĥ(ejω)v̂(ejω),
where Ĥ and v̂ is the transfer function and Fourier transform
of v ∈ Hn, respectively. Ĥ(s) and Ĥ(z−1) will denote
respectively the Laplace transform and the Z transform of
h in continuous and discrete time. We denote by Ω the
unstability domain. In the case of continuous time systems
we have Ω = {s : Res ≥ 0} and in the case of discrete
time systems we have Ω = {z : |z| ≥ 1}. We let Hnd denote
the signals on the doubly infinite time–axis Ln2 (−∞,∞) or
ln2 (−∞,∞) with corresponding frequency domain space Ĥd
being either L2(jR) or L2[0, 2π]. The adjoint of a bounded
operator Ψ : Hnd → Hnd is defined by the relation 〈w,Ψv〉 =
〈Ψ∗w, v〉, ∀w, v ∈ Hnd , where 〈·, ·〉 denotes the inner
product. Ψ is self-adjoint if Ψ = Ψ∗. A self–adjoint bounded
linear time–invariant operator Ψ : Hnd → Hnd defines a
quadratic form 〈v,Ψv〉. We say that Ψ is positive definite,
which is denoted, Ψ > 0, if there exists ε > 0 such that
〈v,Ψv〉 ≥ ε‖v‖2 for all v ∈ Hnd . A necessary and sufficent
condition is that Ψ̂(jω) = Ψ̂(jω)∗ > 0, ∀ω ∈ R ∪ {∞} and
Ψ̂(ejω) = Ψ̂(ejω)∗ > 0, ∀ω ∈ [0, 2π], respectively. In this
paper we use the algebra Ac consisting of LTI operators with
impulse responses functions h(t) = hc(t)θ(t)+h0δ(t) where
hc ∈ Lm×m1 [0,∞), h0 ∈ Rm×m, θ(·) and δ(·) denote the
unit step function and the dirac delta function, respectively. It
defines a bounded LTI operator via the convolution in Eq. 2.
We let Sn×nAc

be the bounded LTI operators on Ln2 (−∞,∞)
defined by impulse response functions of the form h(t) =
hc(t) + h0δ(t) where hc(t) = hc(−t)T ∈ Lm×m1 (−∞,∞)
and h0 = hT0 ∈ Rm×m. The transfer function Ψ̂(s) of Ψ ∈
Sm×mA satisfies Ψ̂(s) = Ψ̂(−s)T in its domain of definition,
which includes the imaginary axis. It is thus self-adjoint
and will be used to define quadratic forms. Similarly, Ad
denotes the bounded LTI operators on l2(0,∞) defined by
the convolution in Eq. 3 with an impulse response function
satisfying

∑∞
k=0 |hk| < ∞. Similarly, Sn×nAd

denotes the
LTI bounded operators on ln2 (−∞,∞) defined by impulse
response functions with hk = hT−k and

∑∞
k=−∞ |hk| < ∞.

Any transfer function Ψ̂(z) of Ψ ∈ Sm×mAd
satisfies Ψ̂(z) =

Ψ̂(−z)T and is thus self-adjoint. We use the notation A
and Sn×nA to denote an LTI operator that could be either
continuous or discrete time. A causal LTI operator is called
stable if its transfer function is analytic in Ω. In particular,
A consists of stable LTI operators.

The diagonal augmentation is defined as

daug (A,B) =



A11 0 A12 0
0 B11 0 B12

A21 0 A22 0
0 B21 0 B22


 .

II. A MODEL OF HETEROGENEOUS NETWORKS

Our model for a heterogeneous multi–agents network is
given in the following system, depicted in Fig. 1




[
y

v

]
=

[
Huy Hry Hwy

Huv 0 Hwv

]

u

r

w


 = H



u

r

w


 ,

w = ∆(v),

u = Γ(y).

(4)

All the variables are N–dimensional vectors, one for each
agent. In our model each agent is represented as a common
LTI system, so that all the block–entries of H are diagonal
and we can write

H =

[
huv hry hwy
huv 0 hvv

]
⊗ IN .

The agent k is characterized by an output yk whose dynamics
is given by

yk = huyuk + hryrk + hwywk.

Here uk is the interconnection input, produced according to

uk(t) = Γk(t, y(t)),

where Γk is a bounded memoryless operator HNe → He
whose structure is related to the communication graph G =
(V, E). In particular, (j, k) ∈ E if and only if Γk depends
explicitly on yj , namely if k is allowed to use the information
coming from j. The signal rk is called the external input and
it can be used, for example, to impose initial conditions under
some assumptions on the system. We will always assume
that ‖r‖2 < ∞. The internal input wk is an internal signal
which is used to model the perturbations of the agents, and
it is produced according to wk = ∆k(vk), while the internal
output vk evolves according to

vk = huvuk + hwvwk.

The operator ∆ will be always assumed to be diagonal,
since the perturbations at different agents are assumed to be
“independent” of each other, and even of different nature. For
example, ∆k could be a LTI SISO system while ∆j could
be a memoryless nonlinear operator. If ∆(v) ≡ 0, namely
if no perturbation exists, the system evolves according to its
nominal behavior, and we have a homogeneous network. The
following assumptions are technical conditions that normally
are non-restrictive in applications.

Assumption 2.1: The transfer functions representing the
operators huy , hry and hwy are such that

ĥ∗y =
b∗y
a
f̂∗y, ∗ ∈ {u, r, w},

where f̂∗y is the transfer function corresponding to f∗y ∈ A,
b∗y is a stable polynomial and

a(s) =

m∏

k=1

(s− sk)ρk

where sk ∈ Ω such that deg(b∗y) < deg(a). We finally
assume that f̂∗y has no zeros in Ω. This means that the
systems are strictly proper, has no unstable zeros, and share
the same unstable poles.
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Huy Hry Hwy

Huv 0 Hwv

y

v w

r

u

Γ

∆

Fig. 1. The system under consideration.

Such assumptions are satisfied in many cases of interest
such as the higher order consensus problem with minimum
phase nominal system.

Example 2.1: The homogeneous consensus network that
was presented in the introduction can be expressed in our
framework as





[
y

v

]
=

[
z−1

1−z−1
z−1

1−z−1
z−1

1−z−1

I 0 0

]

u

r

w


 ,

w = ∆(v),

u = Γ0y.

(5)

where thus huv = 1, hwv = 0 and huy = hry = hy =
z−1

1−z−1 , Γ0 = −(I − P ) and ∆ ≡ 0. If ∆ 6= 0 then we
have a perturbed consensus network, while the higher order
consensus network is obtained simply substituting for z−1

1−z−1

a generic transfer function N0(z−1), or N0(s) in continuous–
time. Due to the simplicity of this system, we will often
reduce it to2

{
yk = N0(I + ∆)u+N0r

u = Γ(t, y)
(6)

which is depicted in Fig. 2, where the operator Γ can be
more general than the simple multiplication by a constant
matrix.

N0(I + ∆)

Γ

y

N0r

u

Fig. 2. Higher order perturbed consensus network.

III. SYNCHRONIZATION OVER HETEROGENEOUS
NETWORKS

In this section we provide the basic tool to prove synchro-
nization in the sense of the following definition.

Definition 3.1: Consider the system in Eq. 4 and a sub-
space Z ⊂ RN . Let y⊥ = PZ⊥y be the projection of y
onto the orthogonal complement of Z . Let M : HNe → HNe
denote the causal map representing the closed loop system

2Here ∆u should be read ∆(u).

y⊥ = M(r). We say that the system synchronizes to Z if
||M||HN

e →HN
e
<∞.

This notion of synchronization implies under the assump-
tion r ∈ H, that y asymptotically converges to Z , and
this is why we call it synchronization subspace. Typically
Z = span {1} in which the term synchronization recovers
its usual meaning that the differences among the components
of y to converge to zero.
We will take the following steps toward our main synchro-
nization result. First we reduce the dimension of the system
by projecting down to the orthogonal complement of Z .
Then we perform a loop transformation to stabilize the linear
part of the system. The main result will then follow by an
application of the IQC theorem in [11].

Projection onto Z⊥

The following assumption is imposed on the operator Γ.
Assumption 3.1: The synchronization subspace Z is the

right and left kernel of the memoryless operator Γ. Namely, if
z ∈ Z , then Γ(t, z) = 0 and z∗Γ(t,v) = 0, ∀ t ≥ 0, ∀v ∈
HN .

Let Z be a matrix whose columns form an orthonormal
basis for Z , and V be any orthonormal complement to it,
i.e.

Z∗Z = Ip, V
∗V = IN−p, V

∗Z = 0, V V ∗ + ZZ∗ = IN

where p = dimZ , and where V V ∗ and ZZ∗ are two
projectors respectively onto Z⊥ and Z . Assumption 3.1 can
be expressed by means of the constraints

Γ(t, y) = Γ(t, V V ∗y), Γ(t, y) = V V ∗Γ(t, y).

The first step consists in redefining y⊥ = V ∗y ∈ RN−p,
and the same for u, r, w, v, Γ⊥(y⊥) = V ∗Γ(V y⊥) and
∆⊥(v⊥) = V ∗∆(V y). Once this is done, simple computa-
tions allow us to conclude that these “projected” variables
evolve according to the reduced–dimension system





[
y⊥
v⊥

]
= H



u⊥
r⊥
w⊥




w⊥ = ∆⊥(v⊥)

u⊥ = Γ⊥(y⊥)

(7)

It is worth to notice that the diagonal structure of the linear
part H has been maintained after the dimension reduction at
the price that the diagonal structure of the perturbation is
lost. As we will see, this does not pose any problem.

Remark 3.1: We will assume from now on Hwv = 0,
namely we suppress the dependence of the internal output
from the internal input. Under some assumptions, this can
be done without loss of generality, and this will be the case
in all the applications we have in mind.

Loop transformation

The second step of our approach consists in performing a
loop transformation to stabilize the linear part. This is done
by means of a matrix

Q =

[
0 Q12

Q21 Q22

]
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and by defining the operator ΓQ
3 via the upper linear

fractional transformation of Γ⊥, Γ⊥ = Fu(Q, ΓQ), namely

u⊥ = Γ⊥(y⊥) =⇒





uQ = ΓQyQ[
yQ
u⊥

]
= Q

[
uQ
y⊥

]
.

ΓQ

0 Q12

Q21 Q22
y⊥ u⊥

r⊥

uQ yQ

w⊥v⊥

Γ⊥

G

∆⊥

Huy Hry Hwy

Huv 0 0

Guy Gry Gwy

Guv Grv Gwv

ΓQ

uQ

r⊥

w⊥

yQ

v⊥

∆⊥

Fig. 3. Loop transformation of the system. The upper linear fractional
system Fu(Q, ΓQ) has been substituted for Γ⊥. The Redheffer star product
of Q and the linear and unstable part, H , is employed in order to obtain a
matrix of stable transfer functions G.

This operation is depicted in Fig. 3, in which Fu(Q,ΓQ)
is substituted for Γ⊥. Once this is done, we consider the
interconnection of the linear part H and the matrix Q,
obtaining the matrix of transfer functions

G = Q ? H =

[
Guy Gry Gwy
Guv Grv Gwv

]
(8)

where the star product defines

Guy = huyQ12(I −Q22huy)−1Q21

[Gry Gwy] = Q12(I −Q22huy)−1 [hry hwy]

Guv = huv(I −Q22huy)−1Q21

[Grv Gwv] = huvQ22(I −Q22huy)−1 [hry hwy]

If G is stable, we have thus achieved the goal of this
section, and this will be an assumption from now on.

Assumption 3.2: The matrix Q ∈ R2N×2N is chosen in
such a way that all the entries of the matrix of transfer
functions G in Eq. 8 are stable.

The synchronization criterion

The main result will follow by an application of the IQC
theorem from [11] on the transformed system. Stability and
Integral Quadratic Constraint are defined as follows.

Definition 3.2: The interconnection [G,diag (ΓQ,∆⊥)] in
Fig. 4 is called stable if there exists c > 0 such that

‖yQ‖2 + ‖v⊥‖2 ≤ c‖r⊥‖2

for all r⊥ ∈ Hn−1.

3We will often suppress the arguments of Γ(t, y), and of ΓQ and Γ⊥,
for sake of notation.

ΓQ

∆⊥

Gr

[
yQ

v⊥

]
[

0
r⊥

]

Fig. 4. Feedback system on which we apply the IQC theorem. Here Gr
is a matrix of stable transfer functions and in order to prove stability we
have to provide IQC characterizations for both the operators ΓQ and ∆.

Definition 3.3 (IQC): Let Π ∈ S2m×2m
A . Then a bounded

causal operator ∆ : Hme → Hme is said to satisfy the IQC
defined by Π (∆ ∈ IQC(Π)) if

〈
[
∆(w)
w

]
, Π

[
∆(w)
w

]
〉 ≤ 0, ∀w ∈ H.

We are now ready to state our main result.
Theorem 3.1: Assume that the operator Γ respects As-

sumption 3.1 and that there exists a matrix Q ∈ R2N×2N

which respects Assumption 3.2. Assume moreover that
i) there exists continuous (in the norm topology)

parametrizations ΓQ(τ) and ∆⊥(τ) such that ΓQ(1) =
ΓQ, ∆⊥(1) = ∆⊥ and such that the nominal intercon-
nection [G,diag (ΓQ(0),∆⊥(0))] is stable,

ii) there exists bounded self–adjoint linear operators ΠΓQ

and Π∆⊥ such that
(a) ΓQ(τ) ∈ IQC(ΠΓQ

), τ ∈ [0, 1],
(b) ∆⊥(τ) ∈ IQC(Π∆⊥), τ ∈ [0, 1],

iii) [
I
Gr

]∗
daug

(
ΠΓQ

,Π∆⊥

) [ I
Gr

]
> 0 (9)

where

Gr =

[
Guy Gwy
Guv Gwv

]
, (10)

iv) huv, h
−1
uv ∈ A, Q12, Q

−1
12 ∈ RN×N .

Then the network in Eq. 4 synchronizes to the subspace Z
in the sense of Definition 3.1

Remark 3.2: The theorem ensures that y⊥ belongs to
HN−p. In discrete–time this is enough for y⊥ → 0, while
in continuous–time we need to impose in addition that Guy ,
Gry and Gwy are strictly proper. However, this is true by
our assumptions on h∗y , ∗ ∈ {u, r, w}, and hence y → Z ,
namely the network synchronizes in the usual sense.

Remark 3.3: In general, multipliers able to tightly catch
the characteristics of the operators ΓQ and ∆⊥ allow less
conservative criteria. On the contrary, badly chosen ones
could result in conditions which cannot be satisfied, and thus
the criterion turns out to be useless.

IV. SPECTRAL DECOMPOSITION OF THE
INTERCONNECTION MATRIX Γ0

In this section we particularize the previous result for
the simplest choice for the interconnection operator Γ(t, y),
namely the multiplication by a constant matrix

Γ(t, t) = Γ0y

and we impose the following Assumption on Γ0.
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Assumption 4.1: The matrix Γ0

i) respects Assumption 3.1
iia) is normal, namely such that Γ0Γ∗0 = Γ∗0Γ0

iib) is such that the transfer functions hry

1−λkhuy
are stable

for any non–zero eigenvalue λk of Γ0.
Normality of Γ0 implies that

Γ0 = [ZV ]

[
0p 0
0 Γ0⊥

] [
Z∗

V ∗

]
= V ∗Γ0V,

where the columns of Z are an orthonormal basis of Z =
ker Γ0, those of V are an orthonormal basis of Z⊥, and
Γ0⊥ = diag (λp+1, . . . , λN ) ∈ RN−p×N−p is a diagonal
matrix whose (k, k)-th entry is the k-th non-zero eigenvalue
of Γ0. The following result can be proved using Theorem 3.1
once we choose for the loop transformation the following

Q12 = IN−1, Q21 = IN−1, Q22 = Γ0⊥.

Corollary 4.1: Consider the system in Eq. 4 in which
Γ(t, y) = Γ0y, where Γ0 respects Assumption 4.1.

Assume there exists a multiplier π∆ ∈ S2×2
Ad

such that
π∆, 11 ≥ 0 and π∆, 22 ≤ 0, ∆k ∈ IQC(π∆) and

[
I

λkhry

1−λkhuy

]∗
π∆

[
I

λkhry

1−λkhuy

]
> 0,

for any nonzero eigenvalue λk, k = 1, . . . , N − p of Γ0.
Assume moreover that huv, h−1

uv ∈ A. Then the system
synchronizes to the subspace Z .

A. Quasi–saturation in the interconnection inputs
In this section we consider the higher order consensus

system which we have described in Example 2.1
{
y = N0(1 + ∆)u+N0r

u = Γ0u
(11)

The input to the k-th agent at time t is given by uk +
∆k(uk(t)) and we assume that ∆k(u) = 0 if |u| ≤ uth,
where uth is a certain threshold value, and that in general it
satisfies the slope restriction

−αmin ≤
∆k(x1)−∆k(x2)

x1 − x2
≤ 0. (12)

By making use of such an operator we can model quasi–
saturation of the input, in which the interconnection input
uk(t) is used if it is small enough in absolute value, while
if it is too large it is underestimated. If αmin = 0 then the
effect of ∆k disappears, and we keep αmin < 1 in order to
avoid the pure saturation of the input, which in general could
prevent our notion of synchronization. An example of what
can be expressed using this ∆ is shown in Fig. 5.

v

αminv

(1 + ∆k)(v)

Fig. 5. An example of quasi–saturation.

A first, simple multiplier is the sector–condition multiplier

π∆, C =

[
2 αmin

αmin 0

]

which, however, offers too conservative results. We will
combine it with the Zames–Falb multiplier, see e.g. [12],

π∆, ZF (jω) =

[
2Re( −jω

1−jω/τ ) αmin
−jω

1−jω/τ
αmin

jω
1+jω/τ 0

]
.

for which ∆k ∈ IQC(π∆, ZF ) thanks to the slope condi-
tion. If we choose τ large enough, this bounded multiplier
approximates, at sufficiently low frequency, as π∆, ZF (jω) ≈
αminπ∆,P (jω), where the Popov multiplier is

π∆, P (jω) =

[
0 −jω
jω 0

]
.

Hence, at low frequencies the Zames–Falb multiplier recov-
ers the Popov one.

Our choice for the multiplier to be used is a linear
combination of the two

π∆, C + λαminπ∆, P =

[
2 αmin(1− jλω)

αmin(1 + jλω) 0

]
.

(13)
We can invoke Corollary 4.1 to immediately prove the
following result.

Corollary 4.2: Consider the system in Eq. 11 where ∆k

satisfies Eq. 12 and Γ0 satisfies Assumption 4.1. Then the
system synchronizes if there exists λ ∈ R such that

[
1

λkN0

1−λkN0

]∗
(π∆, C + λπ∆, P )

[
1

λkN0

1−λkN0

]
> 0, (14)

where π∆, C and π∆, P are defined above.
This inequality can easily be checked graphically using a

Popov plot. Define Gr = λkN0

1−λkN0
and

P = {z : z = ReGr(jω)− jωImGr(jω)}.
The system synchronizes if P entirely lies on the right to
the line with slope 1

λ and crossing the x–axis in the point
− 1
αmin

. Is is worth to notice that if αmin → 0, namely if
∆k → 0, then the Popov criterion is always satisfied, and
this is clear since the nominal interconnection is stable.

Remark 4.1: Corollary 4.2 and the graphical criterion are
stated and verified using the Popov multiplier instead of the
Zames–Falb multiplier. As we have noticed above, the former
is a good approximation of the latter at low frequencies, so
in this range the two criteria essentially coincide. One has
then to be sure that at high frequencies in which the correct
multiplier is π∆, ZF , the inequality in Eq. 14 is satisfied. This
holds, for example, if τ is large, we are in continuous–time
and N0(s) is a strictly proper transfer function.

B. Clocks Synchronization
In this section we will apply our result to the continuous–

time version of the clock model presented in [13]. A clock
is modeled as a double–integrator in which the first state is
the relative time given by the clock and the second is the
instantaneous skew of the clock. The model in state space is




ẋk(t) =

[
0 q

0 0

]
xk(t) + Fuk(t),

yk(t) =
[
1 0

]
xk(t),

(15)
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A steady assumption will be that the parameter q is shared
among all the clocks. This is a rather strong assumption
which is done for simplicity only. The control matrix F =
[f1, f2]T is assumed to be the same for all the clocks, and
uk is the k-th component of u(t) = (I + ∆)(Γ0y(t)).

To give a numerical example, consider a network of 9
clocks and set q = 1 and f1 = 1.7, f2 = 1, thus the transfer
function modeling the clocks is N0(s) = f1s+f2q

s2 = 1.7s+1
s2 .

We set as interconnection matrix Γ0 = −IN + 0.15(CN +
C−1
N )+0.30C5

N +0.40C−5
N , where CN is the N×N circulant

matrix whose first row is entirely zero apart from [CN ]12 = 1.
It can be checked that N0(s)

1−λkN0(s) is a stable transfer function
for all k.

We assume thus that the systems are all equal, except that
they all quasi–saturate their inputs as

(1 + ∆k)(uk(t)) ={
uk(t), |uk(t)| ≤ uth
uth + αk(uk(t)− sgn(uk(t))uth), |uk(t)| > uth

where αk ∈ [0.2, 1], ∀k.
To prove the synchronization of this network we can use

the multiplier π∆ in Eq. 13 with λ = 3, and to see that
the IQC is satisfied one can use the Popov plot, which is
presented in Fig. 7.
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Fig. 6. Clock synchronization with quasi–saturation. A typical trajectory
of the outputs.
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C. A non–normal Γ0 example
In this section the interconnection matrix Γ0 is not longer

assumed to be normal. Instead, we assume Γ0 = −νL where

ν > 0 is a real number and L is a reversible weighted
Laplacian of the communication graph G. Being a Laplacian
means that Lji ≤ 0 ⇐⇒ (i, j), i 6= j, is an edge of
the graph, and that L1 = 0. A Laplacian can be obtained
as L = I − P where P is a non–negative row–stochastic
matrix associated with the communication graph. By Perron–
Frobenius theorem the kernel of L is only spanned by 1 if
P is primitive, for which a sufficient condition is presented
in the following proposition, adapted from [1].

Proposition 4.1: Consider a row–stochastic matrix P as-
sociated to the directed graph G. Assume that G has all the
self–loops, namely that Pii > 0, ∀ i = 1, . . . , N , and that G
has a spanning tree. Then the matrix P is primitive.

Reversibility of Γ0 means that there exists a diagonal
matrix D such that

DΓ0 = ΓT0 D, (16)

which, if it exists, can be obtained as D = diag (π) where
πTΓ0 = 0. Notice that in the special case D = 1

N IN , the
matrix Γ0 is symmetric so we fall in the normal case.

Assume now that πi > 0, ∀ i = 1, . . . , N , so that we can
write D1/2 and D−1/2, and define the matrix

R0 = D1/2Γ0D
−1/2. (17)

Using Eq. 16 it is trivial to see that R0 is symmetric, and
this proves that the eigenvalues of a reversible Γ0 are real,
since R0 and Γ0 are similar. Since R0 is symmetric, it is
also normal, and its right kernel is span

{
D1/21

}
.

Consider the higher order consensus system
{
y = N0(I + ∆)u+N0r

u = Γ0y
. (18)

We can perform a multiplier transformation defining ȳ =
D1/2y, ū = D1/2u, r̄ = D1/2r and ∆̄(ū) =
D1/2∆(D−1/2ū) in order to obtain

{
ȳ = N0(I + ∆̄)ū+N0r̄

ū = R0ȳ
(19)

where now R0 respects the normality assumptions. We can
now state the following result.

Proposition 4.2: Consider the system in Eq. 18 where
Γ0 = −ν(I − P ) is reversible with left kernel spanned by
πT . Assume moreover that the transfer functions N0

1−λkN0
are

stable for any nonzero eigenvalue of Γ0. Then if there exists
a multiplier π∆ ∈ S2×2

A such that π∆, 11 ≥ 0, π∆, 22 ≤ 0,
∆k ∈ IQC(π∆) and

[
I

λkN0

1−λkN0

]∗
π∆

[
I

λkN0

1−λkN0

]
> 0,

for any nonzero eigenvalue λk, k = 1, . . . , N−p of Γ0. Then
the system synchronizes to the subspace Z = span {1}.

1) Leader following using reversible matrices: The pre-
vious paragraph dealt with the case πi > 0, ∀ i = 1, . . . , N .
In this paragraph we study what happens if some of them
are zero in the simple case ∆k = 0, k = 1, . . . , N for sake
of simplicity. Assume V = S1 ∪ S2, S1 = {1, . . . , q} and
S2 = {q + 1, . . . , N}, and πi > 0 if i ∈ S1 and πj = 0 if
j ∈ S2. By reversibility Γ0 has the structure

Γ0 =

[
ΓS1

0
ΓS12

ΓS2

]
.
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By suitably partitioning the system it is not difficult to see
that the agents in S1 evolve according to

{
yS1

= N0IS1uS1 +N0rS1 ,

uS1
= ΓS1

yS1
,

(20)

while the dynamics of those in S2 is

yS2
= (I − ΓS2N0)−1N0(ΓS12yS1

+ rS2). (21)

Because of the block–lower–triangular structure of Γ0, ΓS1

is minus a Laplacian while the eigenvalues of ΓS2 are all
stable and if the matrix Γ0 is chosen in such a way that
all its nonzero eigenvalues are able to stabilize N0, then
(I − ΓS2N0)−1N0 is a stable matrix of transfer functions.
Notice, moreover, that since Γ01 = 0, we have Γ−1

S2
ΓS12

1 =
−1. Since rS2

is a bounded signal and yS1
(t) → α(t)1,

we can conclude that the agents in S1 reach asymptotically
an agreement and act as leaders, while set S2 will follow it,
progressively forgetting initial conditions and external inputs.
Setting yS1

(t) = V y⊥ + y1, where y1 = α(t)1, we obtain

yS2
= −(Γ−1

S2
−N0)−1N0y1 + q

where q = (I − ΓS2
N0)−1N0Γ−1

S2
(ΓS12

V y⊥ + rS2
) ∈

HN−q . From this one may consider different cases. If α(t) =
α0 (a constant) and N0(z) has its only unstable pole at z = 1,
then the final value theorem gives

lim
t→∞

yS2
(t) = − lim

z→1
(Γ−1
S2
−N0(z))−1N0(z)α01 = α01.

Similarly if α(t) = A sin(ω0t + φ0) and N0(s) = 1+s
s2+ω2

0
,

yS2
(t) converges to the sinusoid A sin(ω0t+ φ0).

A numerical example: Consider a homogeneous network
of N = 8 oscillators whose nominal dynamics is N0(s) =

1+s
s2+ω2

0
where ω0 = 1. The network is divided in two

subsets (see Fig. 8), a first set S1 in which the agents are
interconnected in a circle and communicate via the matrix
ΓS1

= −I4 + 0.5C4 + 0.5C−1
4 , and a second set S2 in which

the agents are interconnected in a circle via a matrix ΓS2
and,

moreover, can receive information from one of the agents of
the set S1 via a matrix ΓS12

.

S1

S2

Fig. 8. Leader following for a network of perturbed oscillators. The graph
of communication. In black it is depicted the set S1 of agents, in blue it is
the set S2. The agents in S2 receive information from S1 without replying.

The two ΓS2 and ΓS12 , apart from the structure, are chosen
randomly with the only constraint that [ΓS12

ΓS2 ]1 = 0.
We simulate the system taking random initial conditions, and
obtain as a typical trajectory what is depicted in Fig. 9. As it
can be seen, the agents in S1 agree on a sinusoid of angular
frequency ω0 = 1rad/sec, the “nominal behavior”, followed
by the agents in S2 which forget their initial conditions and
slowly converge to the behavior of the former agents.
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Outputs of the subsystems

Fig. 9. Leader following for a network of perturbed oscillators. In thick
black the trajectory of the leaders, in thin blue the followers.

V. CONCLUSIONS AND FUTURE WORK
The paper presents a model for heterogeneous networks of

agents modeled by a perturbed nominal linear SISO system
and interconnected via a memoryless operator. We have in
preparation a second paper in which we rephrase the result
in the original variables and we study in detail the case in
which each perturbation operator ∆k is a LTI SISO system,
for which a Nyquist criterion can be stated similarly to what
we have done in [5]. Future work includes and is not limited
to dynamic interconnection operators and time–switching
networks.
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