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Abstract— Macro Fiber Composites (MFC) are planar actua-
tors comprised of PZT fibers embedded in an epoxy matrix that
is sandwiched between electrodes. Due to their construction,
they exhibit significant durability and flexibility in addition to
being lightweight and providing broadband inputs. They are
presently being considered for a range of applications including
positioning and control of membrane mirrors and configurable
aerospace structures. However, due to the noncentrosymmetric
nature of PZT, MFC also exhibit hysteresis and constitutive
nonlinearities that must be incorporated in models and control
designs to achieve their full potential. In this paper, we
discuss issues associated with the estimation of parameters and
uncertainty quantification (UQ) for a distributed model that
quantifies the hysteretic dynamics of the devices. Statistical
parameter estimation techniques are used to construct densities
for model parameters. These uncertainties are subsequently
propagated though the model to construct error bounds.

I. INTRODUCTION

Macro Fiber Composites (MFC), developed at NASA

Langley Research Center, exhibit the capability to generate

strains and displacements greater than those that could be

obtained by many prior actuators. MFCs consist of active

unidirectional piezoceramic fibers embedded in an adhesive

polymer matrix with an interdigitated electrode pattern on

polyimide films at top and bottom. A detailed overview

of the manufacturing process is presented in Williams et

al. [14]. Due to their flexibility, they can be easily bonded

to structures and used to apply or detect strains. The MFC

is being considered for a variety of applications including

drag, vibration, and noise reduction along with structural

health monitoring. It has significant potential for improving

the performance of aerospace structures such as rotor blades,

jet tailfins and telecommunication satellites.

Since their first fabrication, there has been an increasing

number of investigations focusing on the behavior of the

MFC. In [16], Williams et al. present the response of the

MFC to increasing voltage, and provide a model for a

piezoelectric continuum subjected to an increase in electric

field under constant mechanical load. The same authors
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discuss in [15] the modeling of the coefficients of thermal

expansion for the MFC actuator as a function of temperature.

Nonlinearities in the tensile and shear behavior are investi-

gated by Williams et al. [17]. In that work, the nonlinear

tensile and shear stress-strain behavior and Poisson effects

using various plastic deformation models are characterized.

In this paper, we investigate the response of a cantilever

beam driven by a MFC actuator patch. The homogenized

energy model (HEM) [12], [13] is used to quantify the

nonlinear relationship between the electric field applied to

the patch and the resulting polarization. It is a multiscale

approach in which mesoscopic behavior is quantified by

energy principles and a macroscopic model is subsequently

constructed using stochastic homogenization techniques. The

model was chosen due to its capability for characterizing

a range of minor loop behavior under highly varied oper-

ating conditions. An Euler-Bernoulli beam model is used

to characterize the behavior of the cantilever. Optimization

routines are employed to estimate model parameters along

with probability density functions (pdf’s) charactering their

uncertainties. These uncertainties are subsequently propa-

gated though the model to construct error bounds. The

displacement of the beam, as a response to different input

voltages at the patch, is computed by the model, and used

to predict experimental behavior of other input voltages.

In Section II, the experimental setup is summerized. A

short description of the homogenized energy model (HEM)

and its use to construct a discretized PDE model for a

vibrating beam is provided in Sections III and IV. In

Section V-A the beam model with polarization quantified

by the homogenized energy model is compared with the

experimental data. It is illustrated that the model accurately

quantifies the nonlinear behavior of the MFC patch in

phase space as well as time domain. The uncertainties of

the estimated parameters are then analyzed by a bootstrap

method in Section V-B. In Section V-C, uncertainties of the

model are quantified by constructing error bounds for the

displacement of the beam.

II. EXPERIMENTAL SETUP

For the experiments, an aluminum cantilever (with density

2700 kg/m3, and Young’s modulus 69 GPa) was compressed

between two aluminum blocks to provide a clamped bound-

ary condition. The cantilever was 114 mm long, 25.4 mm

wide and 1 mm thick. At the top side of the cantilever, a MFC

actuator of type M-4010-P1 [11] with lateral, expanding
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motion was attached. The driving patch had a thickness of

0.3 mm and the same width as the cantilever and covered

the region from 12.7 mm to 55.88 mm measured from the

fixed end. The location of the patch was chosen to yield large

displacements. In four experiments, an input voltage in the

range of 0-100 VDC, 0-200 VDC, 0-400 VDC and 0-800

VDC was applied on the MFC patch. The driving frequency

was 1 Hz and the input voltage V (t) (in volts) could be

represented by the functions,

Vi(t) = 2(i−1) × 50(1 + sin(2π(t − ti))), i = 1, 2, 4

V3(t) = 200 + 200 cos(2π(t − t3)), (1)

where time t is measured in second and ranges from 0 to 5

seconds in all experiments. In Fig. 1(a), all four experimental

inputs are plotted as a function of time. As the applied input

voltages increase, the patch starts to stretch on top of the

cantilever which induces a bending stain in the composite

structure and causes out-of-plane deflections. A non-contact

capacitor probe was placed 69.85 mm from the fixed end to

measure the displacement of the cantilever. Since the device

used in the experiments to measure displacement of the beam

has no set zero position, all data was shifted so that the

displacement is 0 when the input is 0, and all displacements

are negative. In Fig. 1(b), the resulting displacement data

(shifted) is plotted versus the input field E(t) (in MV/m)

which is equal to the input voltage divided by the thickness

of the patch.
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Fig. 1. (a) Experimental input voltages as a function of time, and (b)
measured displacements as a function of input field.

III. HOMOGENIZED MACROSCOPIC POLARIZATION

MODEL

To model the polarization response of the MFC to the

input voltage, we employed the homogenized energy model

(HEM) [12], [13]. In this model, stochastic homogeniza-

tion techniques are used to incorporate material nonho-

mogeneities, polycrystallinity, and variable interaction field

effects by positing that certain parameters are manifesta-

tions of underlying distributions rather than constants. More

specifically, the bulk polarization P (E) is formulated as

[P (E)](t) =

∫

∞

0

∫

∞

−∞

νc(Ec)νI(EI)

×[P̄ (E + EI ; Ec, ξ)](t) dEI dEc (2)

where P̄ is the local polarization kernel, E is the input

electric field, EI is the field due to dipole interactions,

Ec is the coercive field value at which the dipoles switch

orientation, and ξ denotes the initial distribution of dipoles.

The model parameters Ec and EI vary through the material

and have associated densities νc and νI .

In this work, the coercive field density function is modeled

by a lognormal distribution

νc(Ec) =
1

σc

√
2πEc

e
−

“

ln Ec−ln Ēc
√

2σc

”

2

(3)

whose corresponding normal distribution has mean ln Ēc,

and standard deviation σc. The interaction field density

function is modeled by a normal distribution

νI(EI) =
1

σI

√
2π

e
−

E2

I

2σ2

I (4)

with mean 0 and standard deviation σI .

For general operating regimes, which include the possi-

bility of thermal relaxation mechanisms, it is necessary to

include the effects of thermal activation when quantifying

P̄ , and this is accomplished through the Bolzmann relation

µ(G) = Ce−GV/kT (5)

which balance the Gibbs energy G and relative thermal

energy kT/V . The local polarization is given by

P̄ = 2PRx+ +
E + EI

η
− PR (6)

where PR is the remanence polarization, η is the local inverse

susceptibility
dE

dP
after switching, and x+ is the positively

oriented dipoles. Here x+ evolves via the differential equa-

tion

ẋ+ = −(p+− + p−+)x+ + p−+, (7)

involving the likelihoods of switching from negative to

positive (p+−) and conversely (p−+). As detailed in [2], we

employed the likelihood relations

p+− =
1

τ

√

2V η

πkT

1

erfcx(E+)
,

p−+ =
1

τ

√

2V η

πkT

1

erfcx(E−)
, (8)

where erfcx(x) = ex2 2√
π

∫

∞

x

e−t2 dt (the scaled comple-

mentary error function), E+ = −
√

V

2kTη
(Ec + (E + EI)),

E− = −
√

V

2kTη
(Ec − (E + EI)), and τ is the relaxation

time. Note that the relaxation time τ is the reciprocal of the

frequency at which dipoles attempt to switch.

Let γ = V/kT , we need to identify seven parameters p =
{η, PR, Ēc, σc, σI , γ, τ} to calculate the bulk polarization.

Finally, to approximate the double integrals in (2), we used

the midpoint rule with integration points Eci
, EIj

and with
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the corresponding step sizes vi and wj , to yield

[P (E)](t) =

Ni
∑

i=1

Nj
∑

j=1

νc(Eci
)νI(EIj

)

×[P̄ (E + EIj
; Eci

, ξ)](t)viwj . (9)

Examples of the two sampled densities are shown in Fig. 2.
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Fig. 2. (a) Sampled lognormal density νc with 80 points. (b) Sampled
normal density νI with 80 points.

IV. EULER-BERNOULLI BEAM MODEL

To quantify the dynamics of the cantilever in the experi-

ments, we employ an Euler-Bernoulli model. Based on the

experimental setup, we consider a thin cantilever beam of

length ℓ, width b and thickness hI that is clamped at x = 0
and free at x = ℓ and a MFC patch with thickness hA is

mounted on the region [x1, x2], where x1 = 12.7 mm and

x2 = 55.88 mm. We let ρ, α, Y I , and cI denote the effective

linear density, the air damping coefficient, the stiffness (in

terms of the Young’s modulus and the geometry) and the

combined Kelvin-Voigt damping coefficient, respectively. We

also let w(t, x) denote the transverse displacement of the

beam at time t. Following the model detailed in Chapter 7

of [12], force and moment balancing yields

ρ
∂2w

∂t2
+ α

∂w

∂t
− ∂2M

∂x2
= 0 (10)

where the moment M is

M(t, x) = −Y I
∂2w

∂x2
− cI

∂3w

∂x2∂t
−k[P (E(t)) − P (0)]χpe(x), (11)

and χpe(x) is the characteristic function that isolates the

input to the region covered by the patch. The polarization P
is specified by (2). The system is closed with the boundary

and initial conditions

w(t, 0) =
∂w

∂x
(t, 0) = 0, M(t, ℓ) =

∂M

∂x
(t, ℓ) = 0,

w(0, x) =
∂w

∂t
(0, x) = 0. (12)

In (10), the linear density ρ is given by ρ(x) = hIbρI +
χpe(x)hAbρA, with ρI and ρA being the linear density of

the cantilever and the patch, respectively. In (11),

Y I(x) = YI
h3

Ib

12
+ YAc3χpe(x)

cI(x) = cI
h3

Ib

12
+ cAc3χpe(x)

where

c3 = b

∫ hI/2+hA

hI/2

z dz =
b

2

[

(

hI

2
+ hA

)3

−
(

hI

2

)3
]

,

and YI , YA, cI and cA are the Young’s moduli and the

Kelvin-Voigt damping coefficients of the cantilever and the

patch, respectively.

To solve (10) numerically, we employ the weak formula-

tion
∫ ℓ

0

ρ
∂2w

∂t2
φdx +

∫ ℓ

0

α
∂w

∂t
φ dx

+

∫ ℓ

0

Y I
∂2w

∂x2

∂2φ

∂x2
dx +

∫ ℓ

0

cI
∂3w

∂x2∂t

∂2φ

∂x2
dx

= −k[P (E(t)) − P (0)]

∫ x2

x1

∂2φ

∂x2
dx, (13)

where φ ∈ H2
0 (0, ℓ); see Chapter 8 of [12].

More specifically, the modified cubic B-splines {φj(x)}
subjected to the essential boundary conditions at x = 0 are

used. With N splines (in this work N is taken to be 20), w
is approximated by

wN (t, x) =

N+1
∑

j=1

wj(t)φj(x). (14)

For w = [w1(t), · · · , wN+1(t)]
T , substitution of (14)

into (13), yields the semi-discrete system

Mẅ + Qẇ + Kw = −k[P (E(t)) − P (0)]b (15)

where the mass, damping and stiffness matrices and the force

vector are defined by

[M]ij =

∫ ℓ

0

ρφiφj dx (16)

[Q]ij =

∫ ℓ

0

αφiφj + cIφi
′′φj

′′ dx (17)

[K]ij =

∫ ℓ

0

Y Iφi
′′φj

′′ dx (18)

[b]i =

∫ x2

x1

φi
′′ dx. (19)

To formulate a first-order semi-discrete system that facil-

itates implementation using standard ODE routines, such as

‘ode15s’ in MATLAB, we let z = [w, ẇ]T and define the

system matrix A and the vector B by

A =

[

0 I

−M−1K −M−1Q

]

,

B =

[

0
−M−1

b

]

.

The second-order system (15) can be subsequently be

reformulated as

ż(t) = Az(t) − k[P (E(t)) − P (0)]B (20)

z(0) = 0. (21)
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V. RESULTS

A. Optimization scheme

To identify the seven parameters listed in Sect. III, we

consider the minimization problem

p̂ = argmin
p

M
∑

i=1

|wN (ti, x̄; p) − ŵ(ti)|2 (22)

where p is the set of parameters, wN (ti, x̄; p) is the numerical

displacement at x̄ = 69.85 mm (the observation point in

experiments), and ŵ(ti) is the collected experimental data at

time ti. In this work, we have chosen to optimize using the

largest input voltage available, 800 VDC. As shown in Fig. 1,

displacement data was collected for five identical loading

cycles. It is sufficient to use the average displacements of

five loading cycles in (23) to estimate parameters. A MAT-

LAB standard nonlinear least-squares optimization scheme,

‘lsqnonlin’, is evoked for the function defined in (22).

A critical issue when estimating parameters for problems

of this type concerns the determination of initial parameters

estimates. In [6], we provide data-driven algorithms for esti-

mating parameters in the analogous ferromagnetic homoge-

nized energy model based on major loop magnetization mea-

surements. We are presently investigating the development

of robust data-driven algorithms to obtain initial parameter

estimates based on minor loop displacement data such as that

plotted in Fig. 3. In this investigation, we employed initial

estimates based on values obtained in previous investigations

for similar devices. The initial parameter values are listed in

the second row of Table I and the estimated parameter values

are shown in the third row.

The model, with the estimated parameters, is then used to

predict the experimental data for the other three input volt-

ages. Figure 3 shows a comparison of the resulting numerical

fits (800 VDC), predictions (100, 200, and 400 VDC) and the

experimental data. In Fig. 3(a), the displacement is plotted

versus the electric field, and in Fig. 3(b), the displacement is

plotted versus time. In Fig. 3(c), the simulated polarization

is plotted as a function of the electric field. Since the 800

VDC level was used to obtain the model parameters, the fit

of the model to that data is the most accurate and the relative

error in L2 norm is 5%. The 200 VDC level shows a good

prediction to the data with a 10% relative error. The 100 and

400 VDC levels yield a bigger discrepancy from the data.

The relative error of the 100 VDC is 18% and that of the

400 VDC is 19%.

B. Confidence intervals for parameters estimates

In Table I, we summarize the parameter estimates for the

seven unknown parameters of the model; however, these

values are point estimates only. It is also important to

understand the accuracy and reliability of these parameter

values. Confidence intervals for the parameters estimates

are often used to provide an indication of the reliability of

the estimated parameters. More specifically, the wider the

derived confidence interval of a parameter, the less reliable

the estimated value.
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Fig. 3. Model fit to 800 VDC experimental data and model predictions for
100, 200 and 400 VDC data in the (a) phase space and (b) time domain.
In (a) and (b), blue solid: experimental data and red dash-lines: simulation
results. (c) Modeled polarization plotted versus the electric field.

The traditional asymptotic theory to establish confidence

intervals for the estimated parameters involves the calculation

of the sensitivity matrix χ(p̂) [1], [3] with components

χij(p̂) =
∂wN (ti, x̄; p)

∂pj

∣

∣

∣

∣

p=p̂

, (23)

for i = 1, · · · , M , and j = 1, · · · , 7. The covariance matrix

V can then be estimated from the relation V = σ2
(

χT χ
)−1

,

where σ2 is the variance estimate. For this work, the entries

of χT χ (the Fisher Information Matrix) vary from 10−10 to

107, and based on the singular value decomposition of χT χ,

the rank of the matrix is 2. Since the matrix does not have

full rank and is poorly conditioned, the matrix inversion can

not be carried out with confidence. Therefore, asymptotic

theory for this problem does not provide a computationally

feasible solution.

As an alternative to the asymptotic theory to derive con-

fidence intervals for the estimated parameters, we employ

a wild bootstrap method, which was originally proposed by

Wu [18] and rigorously expanded by Liu [7] as a general

method for resampling residuals in the presence of error

variance heteroscedasticity. The method is referred to as
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TABLE I

INITIAL (SECOND ROW) AND IDENTIFIED (THIRD ROW) PARAMETER VALUES OBTAINED THROUGH NONLINEAR LEAST-SQUARES FIT TO THE 800 VDC

DATA.

η (m/A ) PR (C/m2) Ēc (MV/m) σc (dimensionless) σI (MV/m ) γ (m2/N) τ (s)

0.8×108 0.23 1.0 0.35 1.0 0.6×10−2 0.2×10−4

0.7380×108 0.2286 0.8608 0.3485 1.9147 0.6004×10−2 0.2007×10−4

“wild” because n different distributions are estimated from

only n observations. The method is summarized below.

First, the least-squares estimate p̂ is obtained from (22).

Then the residuals ri = w(ti) − wN (ti, x̄; p̂) are calculated

for i = 1, · · · , M . The bootstrapped data value w̄k
i for k =

1, · · · , K is given by

w̄k
i = wN (ti, x̄; p̂) + riv

k
i , (24)

where each vk
i satisfies a two-point distribution

vk
i =











1 −
√

5

2
with probability q = (

√
5 + 1)/2

√
5

1 +
√

5

2
with probability 1 − q.

The reader is referred to [4], [8], [9], [10] for more details

regarding the definition of the bootstrapped data value w̄k
i .

Finally, the least-squares estimate p̂k is determined from

p̂k = arg min
p

M
∑

i=1

|wN (ti, x̄; p) − w̄k
i |2. (25)

Note that from the bootstrap simulations (25), there are

total of K estimates of p. Fig. 4 illustrate the resultant

histograms of parameter estimates from the wild bootstrap

with K = 500. The vertical lines in each plot indicate the

original estimates p̂. The percentiles of these histograms may

be used to construct confidence intervals for p̂ [5]. Table II

summarizes the 98% confidence intervals for each parameter.

From the width of each confidence interval, we observe that

PR, σc, γ and τ are most reliable, Ēc is in the second tier,

and σI and η are relatively less reliable.

C. Model Uncertainty quantification

The results of the bootstrap method can also be used to

approximate the correlation coefficients using the relation

ρX,Y =
cov(X, Y )

σXσY
=

∑K
k=1(X − µX)(Y − µY )

KσXσY
, (26)

where X and Y are bootstrapped results, µX,Y is the mean

of all K bootstrapped parameter estimates, and σX,Y is the

standard deviation of X and Y . The correlation coefficients

for all seven parameters are presented in the matrix format
2

6

6

6

6

6

6

6

6

6

4

η PR Ēc σc σI γ τ
η 1 0.25 0.49 −0.1 −0.27 −0.66 −0.11

PR 0.25 1 0.39 −0.30 0.05 −0.27 −0.20
Ēc 0.49 0.39 1 −0.26 −0.80 0.06 −0.05
σc −0.1 −0.30 −0.26 1 0.01 −0.22 −0.17
σI −0.27 0.05 −0.80 0.01 1 −0.20 −0.03
γ −0.66 −0.27 0.06 −0.22 −0.20 1 −0.28
τ −0.11 −0.20 −0.05 −0.17 −0.03 −0.28 1
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Fig. 4. Histograms of bootstrapped parameter estimates for η, PR, Ēc,
σc, σI , γ and τ .

We note from the the correlation matrix that the parameter

τ is only slightly correlated to all other parameters, with

the strongest correlation to γ (note that τ and γ are the

two dynamic parameters). However η and Ēc are strongly

correlated to other parameters. This suggests that we perform

an uncertainty quantification analysis on τ and Ēc. Here 100

points are sampled from each of the bootstrap results of

τ and Ēc, and then combined with nonlinear least-squares

estimates (Table I) for the other 5 parameters to form 10,000

parameter sets. The displacements at the observation point

are calculated using the Euler-Bernoulli beam model (20)-

(21) for the 10,000 parameter sets over a single loading cycle.

In Fig. 5, the resultant displacements are plotted together

with the corresponding error bars (two standard deviations).
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TABLE II

98% CONFIDENCE INTERVALS DERIVED FROM THE WILD BOOTSTRAP METHOD USING THE PERCENTILE METHOD.

η/108 (m/A ) PR (C/m2) Ēc (MV/m) σc (dimensionless) σI (MV/m ) γ/10−2 (m2/N) τ/10−4 (s)

(0.6826, 0.8019) (0.2275, 0.2296) (0.8518, 0.8731) (0.3472, 0.3493) (1.8491, 1.9390) (0.5995, 0.6017) (0.1995, 0.2019)
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Fig. 5. (a) Displacement results for the 10,000 parameter sets with error
bars showing two standard deviations. (b) Expansion of the region around
the maximum displacement.

We observe that all error bars are very small with the largest

values coincide with the maximum of the displacements.

VI. CONCLUSIONS

The results of the numerical simulations show that the

beam model in combination with the homogenized energy

model is able to accurately describe the nonlinear behavior of

a structure driven by a MFC patch. The estimated parameters

for the 800 VDC driving regime yield a model that accurately

predicts at the other drive levels. The uncertainty analysis of

the estimated parameters, using a “wild” bootstrap method,

yields non-Gaussian behavior for some of parameters; e.g.,

Ēc, PR and σI . The confidence intervals of each parameter

suggest that the estimated values of PR, σc, γ and τ are

most reliable. The error bars of displacements using the

parameter values from the bootstrap results are very small

with the largest errors coinciding with the maximum of

displacements. We are currently determining error bounds

from the experiments for further analysis.

In the future, we will investigate the formulation of the

homogenized energy model for 90◦ ferroelastic switching in

the MFC. Whereas the 180◦ switching model employed here

accurately characterizes the MFC dynamics, it is relying on

phenomenological properties of ferroelectric switching. The

90◦ ferroelastic switching more physically quantifies the ma-

terial behavior that produces strains and hence displacements

in PZT-based devices such as MFC and THUNDER.
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