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Abstract— This paper studies the controllability of linearly
diffusively coupled multi-agent systems when some agents,
called leaders, are under the influence of external control
inputs. We bound the system’s controllable subspace using
combinatorial characteristics of some partitions of the graph
describing the neighbor relationships between the agents. In
particular, when such graphs are distance regular, we provide
a full characterization of the controllable subspace for single
leader cases while for multi-leader cases, a necessary condition
and a sufficient condition for controllability are given respec-
tively. In the end, we discuss how to choose leaders among the
agents to guarantee controllability when the graphs are cycles
or complete graphs, which are special subclasses of distance
regular graphs.

I. INTRODUCTION

Recently significant work has been done to study distribut-
ed and cooperative control of multi-agent systems [1], [2]. It
is of particular interest to study the case when the agents are
linearly diffusively coupled since rich collective behaviors,
such as synchronization [3]–[5] and clustering [6]–[8], may
arise as a result of local interactions among agents without
centralized coordination and control. People are especially
interested in knowing how to influence the behavior of the
overall system by just controlling some, usually a small
fraction, of the agents [9], [10]. We call such agents that
are under the forcing of external control inputs the leaders
and correspondingly the rest of the agents followers. Hence,
to study whether any desired collective behavior can be
achieved in finite time by controlling the leaders is equivalent
to study the controllability of the overall systems where the
leaders and followers that are coupled together through linear
diffusive couplings.

Graphs describing the neighbor relationships in multi-
agent systems have been extensively used to study the
cooperative control of multi-agent systems [11], [12]. The
controllability problem of multi-agent systems has also been
formulated and studied using tools from graph theory [13],
[14]. In [14], the automorphism group and equitable parti-
tions of graphs are utilized to identify necessary conditions
for the controllability of the corresponding multi-agent sys-
tems. These results are further generalized in [15] to provide
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an upper bound of the system’s controllable subspace using
a more general notion of graph partitioning, called almost
equitable partitions [16]. Similar graphical approaches have
been taken to study the observability problem for multi-agent
systems in [17].

In this paper, we first bound the controllable subspace
for a given multi-agent system using the almost equitable
partition of the associated neighbor relationship graph. When
the graph is distance regular, it is shown that the controllable
subspace can be fully characterized if there is a single
leader and it is also shown that if there are multiple leaders,
a necessary and a sufficient condition can be constructed
respectively. In the end, we discuss how to choose leaders
among the agents in order to guarantee controllability when
the graphs are cycles or complete graphs, which are special
subclasses of distance regular graphs.

The rest of this paper is organized as follows. The control-
lability problem of linearly diffusively coupled multi-agent
systems is formulated in Section II. We then review and
discuss several facts about graph partitions in Section III.
In Sections IV and V, controllable subspaces for systems
associated with general graphs and distance regular graphs
are studied respectively using graph partitions. Then in
Section VI we show how to choose leaders for systems
associated with cycles and complete graphs to guarantee
controllability.

II. DIFFUSIVELY COUPLED MULTI-AGENT SYSTEMS WITH
EXTERNAL CONTROL INPUTS

A. Formulation of the controllability problem

We consider a multi-agent system consisting of n > 0
agents, labeled by 1, . . . , n, and use V = {1, . . . , n} to
denote the set of indices of all the agents. Let xi ∈ IR,
i ∈ V , denote the state of agent i. For a pair of distinct
agents i and j, i, j ∈ V , we say agent j is a neighbor of
agent i if xj(t), t ≥ 0, is known by agent i. We assume
that the neighbor relationships are fixed during the evolution
of the system and are symmetric, namely j is a neighbor
of i always implies that i is also a neighbor of j. We
assign the roles of the leaders and followers to the agents
and use VL,VF ⊆ V to denote the sets of indices of the
leaders and followers respectively. For a finite set S, let
card(S) denote its cardinality. Then we assume there are
altogether 0 < m = card(VL) < n control inputs ui ∈ IR,
1 ≤ i ≤ m and each leader is influenced by only one input.
The followers’ dynamics are governed by linear diffusive
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couplings

ẋi =
∑
j∈Ni

(xj − xi), i ∈ VF (1)

where Ni is the set of indices of the neighbors of agent i.
For a leader i ∈ VL, let [i] ∈ {1, · · · ,m} denote the index
of the control input acting on it. Then the dynamics of the
leaders are determined by

ẋi =
∑
j∈Ni

(xj − xi) + u[i]. (2)

Note that the neighbor relationships can be conveniently
described by graphs. We now define the graph G associated
with the system (1) and (2) and use the matrices associated
with G to write (1) and (2) into a more compact form.
Consider the graph G with a vertex set V and an edge set
E such that there is an edge in G from vertex j to i for
any i, j ∈ V if and only if j ∈ Ni. Since the neighbor
relationships are fixed and symmetric, G is time invariant
and undirected. The adjacency matrix A of G is an n × n
symmetric matrix whose element Aij , 1 ≤ i, j ≤ n, is
determined by

Aij =

{
1 if (i, j) ∈ E
0 otherwise.

In G, a vertex i’s degree is defined to be the number of edges
to i, denoted by deg(i). Then the degree matrix D of G is
defined by

D = diag(deg(1),deg(2), . . . ,deg(n)),

where diag(a1, a2, . . . , an), a1, . . . , an ∈ IR, is the diagonal
matrix whose diagonal elements are a1, a2, . . . , an. Then the
Laplacian matrix of G is defined to be

L = D −A.

Define x ∆
=
[
x1 . . . xn

]T
and u ∆

=
[
u1 . . . um

]T
, then

(1) and (2) can be rewritten into a compact form

ẋ = −Lx+Mu (3)

where for 1 ≤ i ≤ n and 1 ≤ j ≤ m, the elements of M
are defined by

Mij =

{
1 if j = [i]
0 otherwise.

The goal of this paper is to study the controllability of the
system (3). We denote its controllable subspace by K(L,M),
which, when the context is clear, is also written as K. It
is obvious that K is the smallest L-invariant subspace that
contains the subspace spanned by the columns of M , denoted
by imM .

We want to mention that in the literature, e.g. [11],
[14], the controllability problem of multi-agent systems is
sometimes studied in a different setting where it is assumed
that the dynamics of the leaders are completely determined
by the control input. In the next subsection, we show that the
setting used in [11], [14] is in fact equivalent to the setting
used in this paper.

B. Relationship to some different formulation of the control-
lability problem

In this subsection, we relabel the agents such that the first
n−m agents are followers and the last m agents are leaders.
Then one can partition L into block submatrices

L =

[
Lf lfl
lTfl Ll

]
where Lf and Ll are (n − m) × (n − m) and m × m
dimensional matrices respectively. Let xl ∈ IRm denote the
state of the leaders and xf ∈ IRn−m that of the followers.
Then in [11], [14] the following model is studied

ẋf = −Lfxf + lflxl (4)

where xl is taken as the control input.
Now we compare the controllable subspaces K(L,M) of

(3) and K(Lf , lfl) of (4). In fact, with the new agent labels
we can rewrite (3) into[

ẋf
ẋl

]
= −

[
Lf lfl
lTfl Ll

] [
xf
xl

]
+

[
0
I

]
u (5)

where I is the m × m identity matrix. Taking the control
input to be the state feedback u =

[
lTfl Ll

] [
xf xl

]T
+ v

with the new control input v ∈ IRm, we have[
ẋf
ẋl

]
= −

[
Lf lfl
0 0

] [
xf
xl

]
+

[
0
I

]
v.

This is equivalent to

ẋf = −Lfxf + lflxl and ẋl = v. (6)

Since controllable subspaces are invariant under state
feedback, it holds that

K(L,M) = K(Lf , lfl)× IRm.

In the sequel, we will use graph partitions to bound
K(L,M). Towards this end, in the next section we will first
introduce some definitions and results related to partitioning
graphs.

III. GRAPH PARTITIONS

For the vertex set V of a graph G and a constant 1 ≤ k ≤
n, we call its nonempty, disjoint subsets Ci, 1 ≤ i ≤ k, a
partition of V if

⋃
i Ci = V . We use π = {C1, . . . , Ck} to

denote the partition. Accordingly, we call Ci’s cells and k the
size of the partition. The characteristic matrix P (π) ∈ IRn×k

of the partition π is defined by

Pij(π) =

{
1 if i ∈ Cj ;
0 otherwise, 1 ≤ i ≤ n, 1 ≤ j ≤ k.
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A. Binary relations over the set of graph partitions

Let Π denote the set of all the partitions of G. We say that
a partition π1 is finer than another partition π2 if each cell
of π1 is a subset of some cell of π2 and we write π1 ≤ π2.
If π1 ≤ π2, the following two relations are immediate

card(π1) ≥ card(π2) and imP (π1) ⊇ imP (π2). (7)

With the ordering induced by the binary relation “≤”, Π
becomes a partially ordered set. Furthermore, it is also a
complete lattice [18], i.e. every subset of Π has the greatest
lower bound, also called the meet, and the least upper bound,
also called the join, within the set Π. For a subset Π′ of Π,
we use ∧Π

′
and ∨Π

′
to denote its meet and join respectively.

In particular, we use π1∧π2 and π1∨π2 to denote ∧{π1, π2}
and ∨{π1, π2}, respectively.

We prove the following result which will be used later.
Lemma 1: Let π1, π2 ∈ Π. Then,

imP (π1) ∩ imP (π2) = imP (π1 ∨ π2).
Proof : For any x ∈ IRn, let πx be the partition such that i, j
are within one cell if xi = xj for any 1 ≤ i, j ≤ n.

Consider a set κ = {πx | x ∈ imP (π1) ∩ imP (π2)}.
Then for any πx ∈ κ, it holds that imP (πx) ⊆ imP (πi)
and thus, πi ≤ πx for i = 1, 2. Let π∗ denote the partition
satisfying π∗ ≤ πx for any πx ∈ κ. Then one has πi ≤ π∗

for i = 1, 2. Then π1 ∨ π2 ≤ π∗ and hence,

imP (π∗) ⊆ imP (π1 ∨ π2). (8)

Also, since πi ≤ π1 ∨ π2 for i = 1, 2, it holds that

imP (π1 ∨ π2) ⊆ imP (π1) ∩ imP (π2). (9)

From (8) and (9), it is obvious that imP (π∗) ⊆
imP (π1) ∩ imP (π2). On the other hand, for any x ∈
imP (π1) ∩ imP (π2), there exists some πx ∈ κ such that
x ∈ imP (πx). Then it follows from imP (πx) ⊆ imP (π∗)
that x ∈ imP (π∗). Now it can be concluded that imP (π1)∩
imP (π2) ⊆ imP (π∗) and thus,

imP (π1) ∩ imP (π2) = imP (π∗). (10)

Finally, the conclusion can be achieved by combining (8),
(9) and (10). �

Clearly, one can generalize these relations to any number
of partitions as follows.

Lemma 2: It holds that
m⋂
i=1

imP (πi) = imP (∨mi=1πi). (11)

In the next subsection, we look at some useful classes of
graph partitions.

B. Equitable, almost equitable and distance partitions

A partition π = {C1, C2, . . . , Ck} of G is said to be an
equitable partition if for every pair of 1 ≤ i, j ≤ k (not
necessarily distinct) there exists a number bij such that any
vertex v ∈ Ci has bij neighbors in Cj [19]. Further, it is said
to be an almost equitable partition if for every pair of distinct
1 ≤ i, j ≤ k there exists a number bij such that any vertex

v ∈ Ci has bij neighbors in Cj [16]. For a given v ∈ V , π is
said to be an almost equitable partition relative to v if it is
almost equitable and {v} is one of its cells. In general, for a
given G, the above three classes of partitions are not unique.
Let ΠEP, ΠAEP and ΠAEP(v) denote the sets of all equitable,
almost equitable and almost equitable partitions relative to
v respectively. Obviously, it holds that ΠEP ⊆ ΠAEP and
ΠAEP(v) ⊆ ΠAEP.

Almost equitable partitions can be characterized in terms
of the invariant subspaces of the Laplacian matrix L of G as
follows.

Lemma 3: [16, Prop. 1] A partition π of G is almost
equitable if and only if imP (π) is L-invariant.

In view of (11) and Lemma 3, it is true that the maximal
partitions with respect to “≤” for almost equitable partitions
and almost equitable partitions relative to v are unique, which
are denoted by π∗AEP and π∗AEP(v) respectively.

Another class of graph partitions depends on the distance
of two vertices and the graph diameter. A path of length
r in G is a sequence of r + 1 distinct vertices i0, . . . , ir
such that (ik−1, ik) ∈ E for all k = 1, . . . , r. If there is a
path between any pair of distinct vertices in G, then G is
said to be connected. In what follows, G is assumed to be
connected. The distance between two vertices i, j ∈ V is the
length of the shortest path from i to j and is denoted by
dist(i, j). For convenience, we define dist(i, i) = 0 for any
i ∈ V . The diameter of G is defined by

diam(G) = max
i,j∈V

dist(i, j).

Obviously, when n > 1, it holds that 0 < diam(G) ≤ n−1.
A partition is called the distance partition relative to v

if each of its cells is of the form {u ∈ V|dist(u, v) = i}
for some 0 ≤ i ≤ diam(G). Hence, the distance partition
relative to a vertex v of G is always unique and denoted
by πD(v). Let Ci denote the cell {u ∈ V| dist(u, v) = i} in
πD(v). Then it is easy to prove the following result.

Lemma 4: For any z ∈ Ci and w ∈ Cj , it always holds
that dist(z, w) ≥ |i− j|.
From Lemma 4, it follows that if |i− j| > 1, then no vertex
in Ci has a neighbor in the cell Cj .

For any v ∈ V and π ∈ ΠAEP(v), one has

π ≤ πD(v), (12)

which implies the following result:
Lemma 5: For any π ∈ ΠAEP(v), it holds that

card(πD(v)) ≤ card(π∗AEP(v)) ≤ card(π).

IV. CONTROLLABILITY OF SYSTEMS WITH GENERAL
GRAPHS

First, we give an upper bound for the controllable subspace
of the system (3) in terms of almost equitable partitions. Such
a bound for a multi-agent system with a single leader can
be deduced from [15, Prop. 2] where almost equitable par-
titions are called relaxed equitable partitions. The following
proposition provides an upper bound when the system has
multiple leaders.
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Proposition 1: Let π ∈ ΠAEP be such that for each v ∈
VL, {v} is a cell of π. Then

K ⊆ imP (π).
Proof : It follows from Lemma 3 that imP (π) is L-invariant.
Since {v} is a cell of π for each leader v, we have imM ⊆
imP (π), i.e. imP (π) is L-invariant containing imM . Then
the claim follows from (7) and the fact that K is the smallest
of such subspaces. �

Next we present a lower bound for the dimension of the
controllable subspace when there is a single leader.

Proposition 2: If VL = {v}, then

card(πD(v)) ≤ dim(K).

Proof : Without loss of generality, we take v = 1 and
πD(1) = {C0, C1, . . . , Cr} where 0 < r ≤ diamG, C0 = {1},
and Cq = {iq+1, iq+2, . . . , iq+1} with 1 = i1 < i2 < . . . <
ir+1 = n. Then in view of Lemma 4, the matrix L becomes
a tri-diagonal matrix

L =



deg(1) 1T 0 0 ··· 0 0 0
1 L11 L12 0 ··· 0 0 0
0 L21 L22 L23 ··· 0 0 0
0 0 L32 L33 ··· 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 ··· Lr−2,r−2 Lr−2,r−1 0
0 0 0 0 ··· Lr−1,r−2 Lr−1,r−1 Lr−1,r

0 0 0 0 ··· 0 Lr,r−1 Lr,r

 (13)

where 1 is the column vector of 1’s with the dimension of
card(C1) and Lkl is a card(Ck) × card(Cl) matrix for all
1 ≤ k, l ≤ r; the matrix M becomes e1 which is the first
standard basis vector in the form of

[
1 0 · · · 0

]T
for

IRn.
Let E =

[
e1 Le1 · · · Lre1

]
, then it can be written

as

E =


1 deg(1) ∗ ∗ ··· ∗ ∗
0 1 ∗ ∗ ··· ∗ ∗
0 0 L211 ∗ ··· ∗ ∗
0 0 0 L32L211 ··· ∗ ∗
...

...
...

...
. . .

...
...

0 0 0 0 ··· Lr−1,r−2...L211 ∗
0 0 0 0 ··· 0 Lr,r−1...L211


where ‘*’ denotes the corresponding elements of less interest.
Since the graph G is connected, each diagonal block must
be nonzero. Then rankE = card(πD(1)) = r + 1. Since
r ≤ diam(G) ≤ n− 1, we have

rankE ≤ rank
[
e1 Le1 · · · Ln−1e1

]
= dim(K).

�
Combining Propositions 1 and 2, we obtain the following

bounds for systems with a single leader.
Proposition 3: If VL = {v}, then

card(πD(v)) ≤ dim(K) ≤ dim(imP (π∗AEP(v))). (14)
For a general graph, the bounds presented in Proposition

3 are tight and cannot be further improved. This can be
illustrated by the examples shown in Figure 1. The first
agent is chosen as the leader in each example. For the
first example shown in Figure 1 left, the lower bound is
achieved which is strictly less than the upper bound. For the
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Fig. 1. Examples of Proposition 3

second example shown in Figure 1 middle, the upper bound
is achieved which is strictly greater than the lower bound.
An interesting question to ask is whether the controllable
subspace can be expressed as the image of the characteristic
matrix of a certain partition. In general, the answer is not
affirmative as illustrated by the third example shown in
Figure 1 right. One can check that neither of the two bounds
in Proposition 3 is achieved for this example [20]. Moreover,
there is no partition π of the corresponding graph G such
that K = imP (π).

In the next section, we will focus on distance regular
graphs for which the lower and upper bounds discussed in
this section are identical. This will enable us to investigate
the minimum number of leaders needed to render a multi-
agent system controllable.

V. CONTROLLABILITY OF SYSTEMS WITH DISTANCE
REGULAR GRAPHS

We begin with a brief review of the properties of distance
regular graphs. For more details, readers can refer to [21].

A. Distance regular graphs and their properties

A graph G is said to be regular if deg(i) = deg(j) for
all i, j ∈ V . It is called distance-regular if it is regular
and for any pair of vertices u, v ∈ V with dist(u, v) = i,
0 < i < diam(G), there exist numbers ci and bi such that
there are ci neighbors of v that are of distance i− 1 from u
and bi neighbors of v that are of distance i+ 1 from u [21].

It is easy to see that if G is regular, then ΠEP = ΠAEP.
Consider a distance regular graph G. Let d = diam(G).

The sequence

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}

is called the intersection array of G. For a pair of vertices
u, v ∈ V with dist(u, v) = h, we define the numbers phij

∆
=

card({w ∈ V| dist(u,w) = i and dist(v, w) = j}) for all
0 ≤ i, j, h ≤ d. Then we have

Lemma 6: [21] For a distance regular graph, it holds that

bi−1 > 0, ci > 0 for all 1 ≤ i ≤ d

pi−hih =
bi−1 · · · bi−h
c1 · · · ch

for all 0 ≤ h ≤ i ≤ d.
Define the i distance regular graph of G for i = 0, 1, . . . , d,

denoted by Gi = (V, Ei), such that for u, v ∈ V , (u, v) ∈ Ei
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if and only if dist(u, v) = i in G. Denote the adjacency
matrix of Gi by Ai. Note that A0 = I and A1 = A. These
matrices satisfy

I +A1 + · · ·+Ad = J (15)

where J is the matrix of all 1’s. Further, there exist ith degree
matrix polynomials vi such that

Ai = vi(A). (16)

Moreover, the matrices {I, A1, . . . , Ad} are linearly indepen-
dent.

B. Single-leader cases
Consider system (3) with a distance regular graph G and

a single leader. When VL = {v}, we denote its controllable
subspace by K(v). Then K(v) can be fully characterized by
the following result.

Proposition 4: For any v ∈ V ,

K(v) = imP (πD(v)) = imP (π∗AEP(v)).
Proof : It follows from the definition of distance regularity
that the distance partition πD(v) is an almost equitable
partition relative to v. Hence, we have πD(v) ≤ π∗AEP(v).
Further, (12) implies that πD(v) = π∗AEP(v). Then the claim
follows from Propositions 1 and 2. �

It turns out that the dimension of K(v) does not depend
on the choice of the leader due to the distance regularity.

Proposition 5: For any v ∈ V ,

dim(K(v)) = d+ 1.
Proof : It follows from Lemma 6 that p0

dd > 0. This implies
that for each vertex v, there exists at least one other vertex
u such that dist(v, u) = d. Since d is the diameter of the
graph, we conclude that card(πD(v)) = d+1. Then the claim
follows from Proposition 4. �

Proposition 5 implies that system (3) with a distance
regular graph cannot be controllable with a single leader
unless n = d + 1. This condition is satisfied if and only
if the graph consists of two vertices and one edge.

In the next subsection, we will turn our attention to the
multi-leader case.

C. Multi-leader cases
Consider system (3) with a distance regular graph G and

multiple leaders. Let

N =
[
AdM Ad−1M · · ·A1M A0M

]
. (17)

where A`’s (0 ≤ ` ≤ d) are defined in (15). Then we have
the following result.

Proposition 6: It holds that

imN = K. (18)
Proof : For a subspace W ⊆ IRn, we denote its orthogonal
complement by W⊥. Let z ∈ IRn.

zT ∈ K⊥ ⇐⇒ zTLkM = 0 for all k = 0, 1, . . . , n− 1

⇐⇒ zTAkM = 0 for all k = 0, 1, . . . , n− 1
(15)⇐⇒ zTA`M = 0 for all ` = 0, 1, . . . , d
(16)⇐⇒ z ∈ kerNT .

The second relation follows from the regularity of the graph,
i.e. L = aI −A where a = deg(i) for an i ∈ V . �

Theorem 1: The system (3) with a distance regular graph
G is controllable only if the number of inputs m satisfies

dm ≥ n− 1 (19)

where d = diam(G).
Proof : Since the system is controllable, we have dim(K) =
n. Then, we get

n = dim(K)
(18)
= rankN

(15)
= rank

[
JM Ad−1M · · · A1M M

]
= rank

[
1 Ad−1M · · · A1M M

]
where 1 is the column vector of 1’s with the dimension of
n. It follows from linear independence of {I, A1, . . . , Ad}
and (15) that

rank
[
Ad−1M · · · A1M M

]
≥ n− 1.

Note that the matrix on the left has n rows and dm columns.
Hence, we get dm ≥ n− 1. �

D. Leader selection

We begin with a procedure of choosing leaders and later
we will show that this procedure guarantees controllability.
Consider w ∈ V . Denote the distance partition relative to w
by πD(w) = {C0, C1, . . . , Cd}. For each 1 ≤ ` ≤ d, choose
w` ∈ C`. Define V∗F to be the set of all such w`. Let V ′ =
V \ V∗F. Then w ∈ V ′ and card(V ′) = n− d.

The main result of the paper is stated as follows.
Theorem 2: When G is distance regular, system (3) is

controllable if VL = V ′.
Proof : Let z ∈ K⊥. Then we have z ∈ kerNT due to
Proposition 6. This means that

zTA`M = 0

for all ` = 0, 1, . . . , d. In particular, we have

zTM = 0.

If v ∈ VL then the vth standard basis vector must be a column
of M . This leads to

zv = 0 (20)

where zv is the vth element of z and v ∈ VL. We claim
that the other components of z are zero too. To see this, we
consider the relation

zTA`M = 0

with ` ∈ {1, 2, . . . , d}. Let q be the wth column of A`M .
Note that the jth element of q, 1 ≤ j ≤ n, is

qj =

{
1 if j ∈ C`
0 otherwise.

Since all elements of C` except w` belong to VL, it follows
from (20) that

0 = zT q = zw`
.
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This means that z = 0 and hence K = Rn. �
We have the following result as a direct consequence of

Theorem 2.
Corollary 1: Every distance regular graph can be rendered

controllable with n− d leaders.
In the next section, we will discuss how to choose leaders

for two special classes of distance regular graphs: cycles and
complete graphs.

VI. CHOOSING LEADERS FOR SYSTEMS WITH CYCLES OR
COMPLETE GRAPHS

Cycle and complete graphs are two classes of distance
regular graphs. A graph G is a cycle if deg(i) = 2 for all
i ∈ V and is complete if deg(i) = n − 1 for all i. In the
following, Cn and Kn are used to denote a cycle and a
complete graph with n vertices respectively. Note that n ≥ 3
for any Cn.

Consider system (3) with G being Cn. Let d = diam(Cn).
From Proposition 5 and the fact that n = 2d or n = 2d+ 1,
we know that such a system can never be controllable by a
single leader. Moreover, from Theorem 2, we know that it is
controllable by d leaders when n is even and d+ 1 leaders
when n is odd. In addition, we have the following result.

Theorem 3: System (3) with Cn and two leaders is con-
trollable if the two vertices corresponding to the leaders are
adjacent.
Proof : The two adjacent leaders are denoted by v1 and v2 and
their controllable subspaces K(v1) and K(v2) respectively.
We use K(v1, v2) to denote the joint controllable subspace
of v1 and v2.

From proposition 5, dimK(v1) = dimK(v2) = d + 1.
Note that when dist(v1, v2) = 1 in Cn, we have

dim(K(v1) ∩ K(v2)) =

{
2 if n is even
1 if n is odd.

The conclusion follows from the fact that dimK(v1, v2) =
dimK(v1) + dimK(v2)− dim(K(v1) ∩ K(v2)). �

As Theorem 3 suggests, the controllability of the system
with two leaders associated with Cn depends on the distance
between the two leaders. We illustrate this point by an
example of C6. We label the vertices of the graph clockwise
by 1 to 6 and choose vertices 1 and 4 to be the two leaders.
Then dim(K(u1) +K(u2)) = 4 < 6, which implies that the
system is uncontrollable when the distance between the two
leaders is 3.

When G is Kn, we have the following result.
Theorem 4: System (3) with Kn is controllable if and only

if at least n− 1 agents are leaders.
Proof : Since diam(Kn) = 1, the necessity and the suffi-
ciency directly follow from Theorems 1 and 2 respectively.
�

VII. CONCLUDING REMARKS

In this paper, graph partitions have been employed to
characterize controllable subspaces of multi-agent systems
associated with general graphs and distance regular graphs.

In particular, if the graphs are distance regular, this char-
acterization is complete when there is a single leader, and
a necessary condition and a sufficient condition have been
provided when multiple leaders are present. For systems
associated with cycles and complete graphs, we have shown
how to choose leaders to guarantee their controllability. For
the future work, we are interested in systematic ways of
choosing leaders for other classes of distance regular graphs.
It is also of great interest to deal with the challenging case
when G is time-varying.
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