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Abstract— This paper proposes a new approach to identifi-
cation of the poles in a linear system from frequency domain
data. The discrete rational transfer function is represented in
a rational Laguerre–basis, where the basis elements can be
expressed by powers of the Blaschke–function. This function
can be interpreted as a congruence transform on the Poincaré
unit disc model of the hyperbolic geometry, leading to a
nice geometric interpretation of the identification algorithm.
Convergence results in hyperbolic metrics will be given. The
full procedure is illustrated by simulation examples.

I. INTRODUCTION

Determining the pole locations associated to signals and

systems modeling is needed in many applications and several

approaches are known to cope with this problem. Detection

of spectral peaks in noisy signals – a frequent task in

analyzing vibrating mechanical systems, electrical rotating

machines, or industrial plants (such as nuclear power plants)

– is in essence a pole-identification problem. The phase angle

associated with the pole can be identified as the frequency,

and its absolute value – corresponding to the attenuation

represented by the pole – can be connected with the height

and width of a spectral peak. The spectral peak-analysis can

be performed by Fourier-analysis of the signals that can

efficiently be realized by using the Fast-Fourier-Transform

(FFT) algorithm. However the exact pole locations cannot be

determined by this way, spectral peaks cannot be separated

in many cases, as well as analyzing the height and width of

the peaks does not result in unique solutions for determining

the poles attenuations.

For use of parametric methods in time domain one can cite

variations of Prony–methods [1] and that assuming linear

signal- and system-models – and autoregressive (AR) or

autoregressive moving-average (ARMA) model identifica-

tions and associated spectral analysis, identification of matrix

partial fraction models, see [2], [3]. Disadvantage of these

approaches is that associated to the parametrization problem,

both the structure and the parameters have to be estimated,

leading to, in many situation, unreliable results.
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Another approach is the use of rational orthogonal bases

[4] that needs a priori knowledge upon the pole locations.

Special attention paid on the problems of pole selection and

validation [5], [6]. There exist methods to refine the pole

locations starting from an approximate placement of poles

[7], however the general identification problem has not been

solved so far.

This paper proposes a new approach that is closely related

to signal and system representations using discrete rational

Laguerre–basis in the space H2 upon the unit disc D. The

Laguerre–Fourier coefficients of the rational transfer function

will be computed using frequency domain data obtained

from non-uniformly distributed measurements defined by the

Laguerre–basis parameter. These Fourier coefficients will be

analyzed in terms of the basis parameter. Since the basis

functions can be expressed by the Blaschke–function that

have an interpretation in term of congruent transform on the

Poincaré unit disc model of the hyperbolic geometry. This

will allow a nice geometric interpretation of the resulting

identification algorithm.

It will be shown that for a transfer function f analytic on

the closed unit disc D, computing the quotients of consec-

utive conjugated Laguerre–Fourier coefficients as qn(b) =
cn+1(b)/cn(b) the limit exists for almost all basis parameter

b. The set of those points where this limit exists, can be

described by perpendicular bisectors of hyperbolic geometry.

Using the inverse Blaschke - maps, one of the poles of f can

be computed. The procedure is continued until more new

poles can be reconstructed.

The main result of the paper is formulated in Theorem

1 and this is directly used in the identification algorithm

proposed. Numeric example for illustration of the theoretical

results and providing geometric interpretation is given, too.

II. LAGUERRE SYSTEM REPRESENTATIONS,

BLASCHKE – FUNCTIONS AND HYPERBOLIC

GEOMETRY

A key concept in the H2(D) system and signal representa-

tions is the Blaschke function based upon a parameter b ∈ D,

which can be considered as an inverse pole (b = 1/p) of the

function. The Blaschke function is defined as

Bb(z) := ǫ
z − b

1− bz
(z ∈ C, b = (b, ǫ) ∈ B := D×T), (1)

where D and T denotes the open unit disc and the unit circle,

respectively. If b ∈ B, then Bb is an 1− 1 map on T and D,

respectively. The restrictions of the Blaschke functions on the

set D or T with the operation (Bb1
◦Bb2

)(z) := Bb1
(Bb2

(z))
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form a group. In the set of the parameters B := D×T let us

define the operation induced by the function composition in

the following way Bb1
◦ Bb2

= Bb1 ◦ b2
. The group (B, ◦)

will be isomorphic with the group ({Bb, b ∈ B}, ◦). The

neutral element of the group (B, ◦) is e := (0, 1) ∈ B and

the inverse element of b = (b, ǫ) ∈ B is b
−1 = (−bǫ, ǫ).

It can be proved that the map

ρ(z1, z2) :=
|z1 − z2|

|1− z1 z2|
= |Bz1(z2)| (2)

(Bz1 := B(z1,1), z1, z2 ∈ D)

is a metric on D, called pseudohyperbolic metric (see [8],

[9], [10]. Moreover the Blaschke functions Bb (b ∈ D) are

isometries with respect to this metric, i.e.

ρ(Bb(z1), Bb(z2)) = ρ(z1, z2) (b ∈ D, z1, z2 ∈ D). (3)

The lines in this model are the sets

Lb := {Bb(r) : −1 < r < 1} (b ∈ B),

i.e. circles crossing perpendicularly the unit circle. This

model is known in the hyperbolic geometry as the unit disc

Poincaré model.

The discrete Laguerre–functions are defined by

Lb
n(z) :=

√

1− |b|2

1− bz

(

z − b

1− bz

)n

(4)

(z ∈ D, b ∈ D, n ∈ N).

Using the function

Fb(z) :=

√

ǫ(1− |b|2)

1− bz
(5)

(b := (b, ǫ) ∈ B, b ∈ D, ǫ ∈ T, z ∈ D),

and the Blaschke maps according to (1), the discrete

Laguerre–functions can be expressed in the form

Lb
n = FbB

n
b

(b = (b, 1) ∈ B, n ∈ N). (6)

Denote H = H2(T) the Hardy space with the usual scalar

product

〈f, g〉 :=
1

2π

∫ π

−π

f(eit)g(eit) dt (f, g ∈ H2(T)). (7)

We introduce the collection of operators Ub : H2(T) →
H2(T) (b ∈ B) defined by

Ubf := Fb−1 f ◦Bb−1 (f ∈ H2(T), b ∈ B). (8)

It is known that Ub, (b ∈ B) is a unitary representation of

the Blaschke group B [11], i.e.

(i) Ub1
(Ub2

f)) = Ub1 ◦ b2
f ,

(ii) 〈Ubf, Ubg〉 = 〈f, g〉 (f, g ∈ H2(T)).

The discrete Laguerre–functions Lb
n can be introduced as im-

age of the power function hn(z) := zn by the representation

Ub:

Lb
n := U−1

b
hn (n ∈ N, b = (b, 1) ∈ T). (9)

Since Ub is unitary, U∗
b
= U−1

b
= Ub−1 and consequently

for any m,n ∈ N

(i) 〈Lb
n, L

b
m〉 = 〈Ub−1hn, Ub−1hm〉 =

= 〈hn, hm〉 = δmn

(ii) 〈f, Lb
n〉 = 〈f, Ub−1hn〉 = 〈Ubf, hn〉.

Thus the discrete Laguerre–Fourier coefficients of f are

equal to the trigonometric Fourier coefficients of the function

Ubf . This relation can be used to compute the discrete

Laguerre–Fourier coefficients.

The representation of any function f ∈ H2(D) in the

Laguerre–system can be expressed as

f(z) =
∞
∑

n=0

cn,fL
b
n(z), (10)

where cn,f coefficients – i.e. the so called Laguerre–Fourier

coefficients belonging to function f – can be computed by

the scalar products 〈f, Lb
n〉 (n ∈ N).

III. ANALYZING THE LAGUERRE-FOURIER

COEFFICIENTS

Let R denote the set of rational functions with poles falling

outside the closed unit disc. It is obvious that functions

rn,a(z) :=
zn

(1− az)n+1
(a ∈ D, z ∈ D, n ∈ N) (11)

belong to R. a∗ := 1/a is a pole of multiplicity (n+ 1) of

the function rn,a, which is the inverse map of a with respect

to the unit circle. a will be referred as the ”inverse pole”

of the function rn,a in the subsequent part of the paper. It

is well known that the functions of form (11) generate the

function class R, i.e. any f ∈ R can be expressed in the

form

f :=

P
∑

k=1

Λak
Λak

:=

mk−1
∑

i=0

λkiri,ak
, (12)

where ak ∈ D (k = 1, . . . , P ) denote the inverse poles of

the function f with their multiplicity mk.

The following lemma will be used in computing the

Laguerre–Fourier coefficients of f .

Lemma 1: For every function g ∈ R

〈g, rn,a〉 =
g(n)(a)

n!
(n ∈ N, a ∈ D). (13)

Proof: By definition

〈g, rn,a〉 =
1

2π

∫ π

−π

g(eit)e−int

(1 − ae−it)n+1
dt =

=
1

2π

∫ π

−π

g(eit)eit

(eit − a)n+1
dt =

=
1

2πi

∫

|ζ|=1

g(ζ)

(ζ − a)n+1
dζ.

Hence by Cauchy’s integral formula we get (13).

In the case if mk = 1 the associated term will be r0,ak
, and

the conjugate of the Laguerre–Fourier coefficients belonging

to it are directly given by (13) as

〈Lb
n, r0,ak

〉 = Lb
n(ak), (14)
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Fig. 1. Domains Di belonging to a pair of poles.

that is equal to coefficient cn,f . To indicate that cn,f co-

efficients belong to the parameter b used in the Laguerre

representation, let us denote them as cn,f (b).
Suppose that the system under consideration contains only

a single pole of multiplicity 1, in this case the conjugated

Laguerre–Fourier coefficients are given as cn,f (b) = Lb
n(a),

and the quotients

qn(b) =
cn+1,f (b)

cn,f (b)
= Bb(a) (n ∈ N), (15)

form a constant sequence and its elements equal to a

Blaschke function applied to a. This fact can be used to

identify the position of inverse pole a,

a = Bb−1

(

cn+1,f(b)

cn,f(b)

)

, (16)

where Bb−1 is the inverse of Bb, i.e. a is given by applying

a hyperbolic transform corresponding to the inverse group

element belonging to b.
This concept can be extended to multiple poles, it will be

shown that in the case of multiple poles there exist a region

of D where the sequence of the quotients generated by the

conjugated Laguerre–Fourier coefficients converge.

Let the inverse poles a1, a2 . . . , aP ∈ D of function f be

fixed. Applying the hyperbolic distance as defined by (2) let

us introduce subsets of D as follows:

Di : = {b ∈ D : ρ(b, ai) > max
1≤j≤P,i6=j

ρ(b, aj)},

D : =

P
⋃

j=1

Di (i = 1, 2, . . . , P ).
(17)

Concerning these sets a rather informative interpretation can

be given: the set

Lij := {b ∈ D : ρ(ai, b) = ρ(aj , b)} (18)
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Fig. 2. Domains Di belonging to three poles, one of them isolated.

can be considered as the hyperbolic perpendicular bisector of

the points ai, aj that divides D in two hyperbolic half-planes.

Let the following notations be introduced:

Dij := {b ∈ D : ρ(ai, b) > ρ(aj , b)}

Dji := {b ∈ D : ρ(ai, b) < ρ(aj , b)}.
(19)

The sets Di can be generated as an intersection of the

hyperbolic half-planes, i.e. according to the definitions in

(17) and (19)

Di =

P
⋂

k=1,k 6=i

Dik (i = 1, 2, · · · , P ). (20)

As a consequence the sets Di are hyperbolically convex

regions, i.e. any hyperbolic line segment connecting two

points belonging to any Di is located as a whole in the same

region.

An example illustrating the placement of regions Di

belonging to 2 poles can be seen in Figure 1. The limit

between the two regions is a hyperbolic line satisfying the

condition (18). In Figure 2 an additional pole has been taken

(pole no. 3), however it cannot generate a nonempty region,

i.e. region D3 cannot be seen.

It will be shown that in any point of D the limit

(Qf)(b) := lim
n→∞

cn+1,f (b)

cn,f (b)
(f ∈ R) (21)

does exist, and it can be used to reconstruct the poles of

function f . It should be mentioned that operator Q defined

on domain R is nonlinear.

Theorem 1: For any rational function f of form (12) in

any point b of D the limit (21) exists, and

(Qf)(b) = Bb(ai), b ∈ Di (i = 1, 2, . . . , P ). (22)
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In the case of poles of multiplicity 1 for the speed of

convergence the estimation

∣

∣

∣

∣

cn+1,f (b)

cn,f (b)
−Bb(ai)

∣

∣

∣

∣

= O(qni ) (n ∈ N, b ∈ Di, qi < 1)

can be given.

For simplicity only a proof for the case of poles with

multiplicity 1 is presented in the current paper. The general

case has been discussed in [12].

Proof: Suppose that b ∈ Di, and introduce the quotients

as follow:

qik(b) :=
|Bb(ak)|

|Bb(ai)|
=

ρ(b, ak)

ρ(b, ai)
(k = 1, 2, . . . , P ).

In this case

qi := max
1≤k≤P,i6=k

qik < 1 (i = 1, 2, . . . , P ).

It is assumed that all the poles of the function f ∈ R are

of multiplicity 1. In this case according to (12) and (13), by

applying the notation λk = λk0,

cn,f (b) =
P
∑

k=1

λkL
b
n(ak) = (23)

= Bn
b (ai)

(

λiFb(ai) +
P
∑

k=1,k 6=i

λkFb(ak)
Bn

b (ak)

Bn
b (ai)

)

=

= Bn
b (ai)λiFb(ai)(1 + ǫn),

by using the notation

ǫn :=

P
∑

k=1,k 6=i

λk

λi

Fb(ak)

Fb(ai)

Bn
b (ak)

Bn
b (ai)

.

From this

|ǫn| ≤ κiq
n
i , κi :=

P
∑

k=1,k 6=i

|λk|

|λi|

|Fb(ak)|

|Fb(ai)|
.

follows. By using the obtained form in (21)

cn+1,f

cn,f
= Bb(ai)

1 + ǫn+1

1 + ǫn
→ Bb(ai) (n → ∞)

is given that proves the first assertion of the theorem. For

the speed of convergence

∣

∣

∣

∣

cn+1,f

cn,f
−Bb(ai)

∣

∣

∣

∣

=

∣

∣

∣

∣

1−
1 + ǫn+1

1 + ǫn

∣

∣

∣

∣

≤ O(qni )

(n ∈ N, i = 1, 2, · · · , P )

is given.

According to Theorem 1

B−1
b ((Qf)(b)) = ai (b ∈ Di, i = 1, 2, · · · , P ) (24)

which can be used to reconstruct all the poles with region

Di 6= ∅ belonging to them.

IV. THE ALGORITHM FOR IDENTIFYING POLES

On the basis of Theorem 1 and its corollary (24) a

practically realizable method can be constructed for the

reconstruction of system poles by using frequency-domain

signal measurements. Two problems has to be solved within

the procedure:

1) The design of the frequency points to obtain data and

the estimation of Laguerre–Fourier coefficients.

2) Reconstruction the poles from the Laguerre–Fourier

coefficients.

It is assumed that the frequency points where the mea-

surements are to be performed can be assigned arbitrarily.

The concept of estimating the Laguerre–Fourier coefficients

is based on the unitary representation of the Blaschke

group, that implies that the Laguerre–Fourier coefficients

of a function f are equal to the Fourier coefficients of the

function Ubf , see (8). This means that the coefficients can be

computed by the evaluation of Fourier-integrals, in discrete

case by Fast Fourier Transform (FFT). This results in a non-

uniformly spaced sampling scheme in the frequency scale.

This non-uniform scale depends on the b parameter of the

Laguerre–system and can be constructed from the inverse of

the argument-function associated with the Blaschke function

Bb. Let the argument function of Bb be denoted by βb(t) and

denote the value of βb by s. The inverse function t = β−1
b (s)

can be expressed in the form

t = ϕ+ 2 arctan
(1− r

1 + r
tan

s− γ

2

)

(25)

where b = reiφ and γ is a parameter chosen such a way that

βb : [−π, π] → [−π, π].

An adequate selection for γ is

γ = 2 arctan
(1− r

1 + r
tan

ϕ

2

)

,

see for details in [13]. The interval [−π, π] of parameter

t corresponds to the physical frequency band [−fN , fN ],
where fN denotes the Nyquist frequency associated with the

sampling rule applied in the time-domain signals.

Hence the estimation step can be performed by executing

the following steps:

1) Derive a nonuniform sampling scheme associated to

parameter b in the frequency scale and obtain N
frequency measurement points.

2) Compute the values of the unitary representation Ub.

3) Compute the Laguerre–Fourier coefficients by apply-

ing FFT.

The pole reconstruction procedure – by assuming that the

number of poles is P – consist of the following steps:

1) using N frequency measurements, estimate the

Laguerre–Fourier coefficients {cn(b)} for the basis

parameter b.
2) Compute the quotient sequence {qn(b) = cn+1(b)

cn(b)
}

(n = 0, 1, . . . , N − 1).
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3) Estimate the limit Q(b) according to (23) and (24) of

the sequence {qn} – a practical method that ensures

some tolerance to noise – can be the estimation of the

mean value of the tail of sequence {qn} from starting

from an adequately large index.

4) Apply hyperbolic transform by using the inverse group

element of Bb. This step provides one out of the system

poles, i.e. Bb−1(Q(b)) = ai (1 ≤ i ≤ P ).

The above procedure identifies one of the poles. Since in a

practical identification there is no a priori knowledge on the

pole locations, to find all the poles a sequence of parameters

b should be selected and the procedure should be repeated.

The selection of b parameters can be arbitrary, or one can

use any practically suitable scheme.

The poles that has no nonempty regions Di cannot directly

be found. An obvious method to identify them can be the

removal of the already identified poles. This can be done by

filtering the input signal data, or to put the known poles into

an orthogonal rational basis.

There are various options to implement the above pro-

cedure numerically, but these are not detailed here. The

complete identification and pole reconstruction procedure has

been realized for test purposes in Matlabr environment,

however the complexity of computations required allow

realizations either in embedded platforms.

V. NUMERIC EXAMPLES

In the current phase of the research some simulation

examples are provide with the purpose of conceptual testing

of methods. The procedure is the following.

• Fix a set of system poles ai and the associated coeffi-

cients λi of the fractional terms in (12).

• Compute the function values according to the form

(12) in the specific scale used in the analysis, i.e. the

nonuniform scale generated by b (this step substitutes

the real measurement).

• Perform the pole identification process as described in

Section IV.

• Test the result qualitatively, and compute the errors in

the function reconstruction.

The system to be identified is specified by 3 poles, one real

pole with inverse pole position a1 = 0.8 and residue λ1 =
1.5, as well as a conjugated complex pair of poles in position

a2,3 = 0.8 ∗ e±iπ
4 , with associated residues λ2,3 = 1.

Figure 3 and 5 presents a visualization of the iteration

processes for finding specific poles. The poles that belong

to a given ai and the Laguerre representation are drawn

by grayscale shaded and white circles, respectively. The

elements of the quotient sequence generated by (15) are

transformed by the hyperbolic transform Bb−1 to locate them

at the same region where the poles are located, and these are

drawn by white points in the Figures. Furthermore, the Di

regions, that are given in (17), and belong to several poles ai
are visualized in the figures with shades identical with those

of poles.

The pole to be identified in Example 1 is a1, hence the

parameter b is selected to lie in the region D2, i.e. b =
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Fig. 3. Example1: – Finding pole a1.
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Fig. 4. Example1 – Abs of L-F coefficients, Abs–Phase of sequence qn.

0.2ei
15π
16 . Similarly, in Example 2 b = 0.7e−iπ

2 has been

selected in the region D2 with the purpose to find a2.

It can be observed that the transformed sequences of the

quotients converge to the specific poles in both examples.

The convergence can be checked on the lower two diagrams

in Figures 4 and 6 for both examples respectively. The

absolute value and the phase of the quotient sequences has

been plotted against the indices. The upper diagram in these

figures depicts the absolute value of the Laguerre-Fourier

coefficients belonging to the specific representation.

The reconstruction error – defined as a root-mean-square

difference – is rather small in both examples, typically it falls

in the magnitude 10−5 . . . 10−7.

The third pole a3 can be identified analogously to a2, due

to the symmetry of the current pole locations. The identified

poles represent the function f with high accuracy, f can

be reconstructed by them with root-means-quare error in the

magnitude less than 10−5.
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Fig. 5. Example2 – Finding pole a2.

VI. CONCLUSIONS

In this paper a new method has been proposed that can ef-

ficiently be used to identify the poles in a linear system from

frequency domain data. The discrete rational transfer func-

tion is represented in a rational Laguerre–basis, where the

basis elements can be expressed by powers of the Blaschke–

function. This function can be interpreted as a congruence

transform on the Poincaré unit disc model of the hyperbolic

geometry, leading to a nice geometric interpretation of the

identification algorithm. The identification of poles can be

done on the basis of Theorem 1; the reconstruction of a

pole is given as a hyperbolic transform of the limit of

a sequence formed of quotients of the Laguerre–Fourier

coefficients belonging to the function. The Laguerre-Fourier

coefficients can be estimated from frequency domain data by

using an efficient FFT-based algorithm Convergence results

in hyperbolic metrics has been given. The full procedure has

been illustrated by simulation examples.
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