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Abstract— The problem of finding a set of design param-
eters in the well-known IDA-PBC approach for a class of
nonlinear underactuated mechanical systems to realize desired
time behavior of the closed loop Port-Hamiltonian system in
a transparent way is considered. Using a local coordinate
transformation, the effect of the homogeneous solution of the
potential energy matching PDE is isolated. By comparison of
desired local linear dynamics with the parametrized lineariza-
tion of the closed loop dynamics a set of linear equations
for the IDA-PBC design parameters is derived. Besides the
possibility to assign predefined dynamics the definiteness check
of the potential energy can be omitted. With an Acrobot-
type mechanical system the design steps are illustrated and
simulations validate the performance of the approach.

Keywords: Nonlinear Control, Passivity Based Control, Un-
deractuated Mechanical Systems.

I. INTRODUCTION

Underactuated mechanical systems are a challenging sys-
tem class for nonlinear controller design. The fact that not
all degrees of freedom are equipped with actuators results in
restrictions with respect to achievable closed loop dynamics
which are tackled in different ways. Besides techniques that
depart from partial feedback linearization, see e.g. [11], [7],
approaches which exploit and maintain the physical structure
of the mechanical system are of major interest, e.g. the
Controlled Lagrangian method [3] or its counterpart from
the Hamiltonian viewpoint Interconnection and Damping

Assignment Passivity Based Control (IDA-PBC) [12], [2].
In IDA-PBC the structure of the closed loop system is

fixed to be Port-Hamiltonian, while the high number of
unassigned design parameters and ansatz functions represents
huge design freedom. This freedom is successively reduced
by matching the original and the closed loop system with
respect to potential and kinetic energy as well as dissipation.
The remaining parameters are then used to adjust closed
loop dynamic behavior, which due to the interdependence of
different classes of design parameters is rather intransparent.

The assignment of local linear dynamics procedure has
been presented, see e.g. [9], to simplify the application
of IDA-PBC for input affine nonlinear systems. Desired
closed loop dynamics of the linearized system is predefined
by the designer. From the quadratic approximation of the
achievable closed loop energy a system of linear equations
is derived to fix the design parameters (while the solvability
conditions of the occuring PDEs have to be respected).
To sum up, properties of the linearization are exploited
to find a parametrization of nonlinear IDA-PBC such that
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beyond local exponential stability a well defined estimate of
the region of attraction (through the non-quadratic energy
function) is achieved. Consider the recent work [5] where
stabilizability of mechanical systems with IDA-PBC is re-
lated to the controllability of the linearization.

In Section II IDA-PBC for mechanical systems is reviewed
and assumptions on the class of systems1 are stated. The
solution of the potential energy PDE is discussed applying
an appropriate coordinate change. In Section III a linearized
version of the transformation leads to an expression of the
closed loop potential energy Hessian matrix which is used
to match local linear dynamics. The result is a set of linear
equations for the design parameters in the n DOF case
which are solved successively. The stability statement is
derived from a converse Lyapunov theorem for linear systems
and standard IDA-PBC arguments. For 2 DOF systems an
analytic expression of the nonlinear coordinate change is
given. The exposition in Section III is a generalization of
the preliminary results for 2 DOF systems [8] to the n
DOF case in a more concise form. The controller design
is illustrated for an Acrobot-type system in Section IV.
Simulations underscore the quality of the nonlinear IDA-PBC
controller with predefined local linear dynamics. Section V
concludes the paper with an outlook to future work.

II. PRELIMINARIES

A. IDA-PBC for mechanical systems

Some known facts and results are repeated to make the
paper self-contained. A simple n DOF mechanical system in
Hamiltonian formulation is described by
[
q̇
ṗ

]

=

[
0 In

−In −R(q, p)

] [
∇qH(q, p)
∇pH(q, p)

]

+

[
0

G(q)

]

u (1)

with q ∈ R
n and p ∈ R

n the generalized coordinates
and momenta, respectively, H(q, p) = V (q) + 1

2p
TM(q)p

the total energy (Hamiltonian), M(q) ∈ R
n×n the positive

definite mass matrix and M(q) = M−1(q) its inverse2,
R(q, p) ∈ R

n×n a positive semidefinite symmetric dissipa-
tion matrix, G(q) ∈ R

n×m the input matrix and u ∈ R
m

the vector of generalized forces/torques. We assume systems
with underactuation degree one:

Assumption A.1: The input matrix has the form

G(q) =

[
0Tn−1

Gα(q)

]

, rank Gα(q) = n− 1, (2)

1Corresponding to the first class of systems discussed in [7]: rigid bodies
connected in a tree structure with an unactuated pivot (an unactuated cyclic
variable) while friction in actuated joints is neglected/compensated.

2A bar indicates the inverse of a matrix in the following.
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i.e. m = n − 1. qν := q1 is the unactuated coordinate.
For simplicity and without loss of generality Gα = In−1

is considered. The greek letters α and ν indicate “actuated”
and ”unactuated” quantities, respectively.

The goal of IDA-PBC is to transform (1) by static state
feedback into a closed loop system of more general structure
[
q̇
ṗ

]

=

[
0 J1(q)

−JT
1 (q) J2(q, p)−R2(q, p)

][
∇qHd(q, p)
∇pHd(q, p)

]

(3)

with a (virtual) closed loop energy Hd(q, p) = Vd(q) +
1
2p

TMd(q)p where Md(q) > 0 in a (sufficiently large)
neighborhood of the desired equilibrium (q∗, 0) and

∇Vd(q)|q∗ = 0, Qd := ∂2
q2Vd(q)

∣
∣
q∗

> 0 (4)

ensures that q∗ is a strict minimum of Vd(q). By

J1(q) = M(q)Md(q) (5)

the relation q̇ = M(q)p between generalized velocities and
momenta in the closed loop system is preserved. J2(q, p) =
−JT

2 (q, p) and R2(q, p) = RT
2 (q, p) ≥ 0 remain free design

parameters. Considering the second rows of (1) and (3), each
multiplied by a full rank left hand annihilator G⊥(q) ∈
R

(n−m)×n such that G⊥(q)G(q) = 0, one gets the matching
PDE (omitting the arguments)

G⊥(−∇V −∇q(
1
2p

TMp)−RMp) = (6)

= G⊥(−JT
1 ∇Vd − JT

1 ∇q(
1
2p

TMdp) + (J2 −R2)Mdp).

This single equation can be split into three equations, which
need to be valid at the same time, concerning closed loop
potential energy, kinetic energy and the dissipation:

G⊥∇V = G⊥MdM∇Vd (7)

G⊥∇q(p
TMp) = G⊥MdM∇q(p

TMdp) (8)

−G⊥RMp = G⊥(J2 −R2)Mdp. (9)

In the following the unity row vector G⊥ = eT1 = eTν
is taken as the simplest left hand annihilator of (2). The
potential energy PDE consequently takes the form

∂qνV (q) = mT
d,ν(q)M(q)∇Vd(q) (10)

where mT
d,ν(q) is the first (unactuated) row of the symmetric

closed loop mass matrix according to

Md(q) =

[
mT

d,ν(q)

Md,α(q)

]

,
mT

d,ν(q) ∈ R
1×n

Md,α(q) ∈ R
(n−1)×n.

(11)

While the solution of the scalar linear PDE (10) for the
potential energy Vd(q) is rather down-to-earth, kinetic energy
matching is much more challenging, see e.g. [2], [13]. We
assume to have found a solution Md(q) which satisfies (8).

Assumption A.2: The kinetic energy matching PDE (8)
admits a full rank solution (11).

Observe that the first part of condition (4) can only
be fulfilled if (q∗, 0) is an admissible equilibrium, i.e.
∂qνV (q)|

q∗
=0. It can further be shown [8] that ∇Vd(q)|q∗ =

0 is then realized by appropriately shaping the first order
terms of the homogeneous part of the solution of (10).

Remark 1: Assuming underactuation degree one makes
the solution of (10) quite tractable in contrast to the case
m < n−1 where a system of linear PDEs with non-constant

coefficients has to be examined for solvability and solved.
We consider kinematic chains which are only unactuated

in the first link. For this class of systems the mass matrix
M(q) depends only on the actuated coordinates:

Assumption A.3: M(q) = M(qα), qα = [q2, . . . , qn]
T .

Under this assumption the kinetic energy PDE (8) becomes
homogeneous, which allows for a construction of a solution
Md(qα), see [13]. The kinetic energy PDE is trivially solved
for Md = const., which will be assumed in the following.

Finally dissipation in the unactuated joints is excluded:
Assumption A.4: eT1 R(q, p) = 0T .
In this case equation (9) is met for eT1 (J2(q, p) −

R2(q, p)) = 0T . We assume a block diagonal form with
n−1 dimensional (skew-)symmetric matrices J ′

2 and R′
2:

(J2(q, p)−R2(q, p)) = diag{0, (J ′

2(q, p)−R′

2(q, p))}. (12)

Remark 2: The presence of dissipation in the unactuated
coordinates is a major obstacle in the application of IDA-
PBC, see [6]. The lab example presented in this paper
violates the dissipation condition therein for arbitrary mag-

nitudes of damping in the unactuated joint. It can be shown
that for the given configuration it is not possible to achieve
(4) from the solution of (7) and at the same time R2 ≥ 0
such that the damping is matched according to (9) with
Md(q) > 0. There exist approaches to cope with dissipation
in the unactuated coordinates like [1]. However the method
proposed therein can not be applied to Acrobot-type systems
like the one considered in Section IV.

B. Solution of the potential energy PDE

Under the above assumptions the potential energy PDE is

b(q) =

n∑

i=1

ai(qα)∂qiVd(q) (13)

with b(q) = ∂qνV (q) and ai(qα) = mT
d,ν(qα)mi(qα), i =

1, . . . , n. mi denotes the i-th column of M . This inhomoge-
neous first order linear PDE admits a solution of the form

Vd(q) = Ψ(q) + Φ(zα) (14)

where Ψ(q) solves (13) and Φ(zα) is a solution of the
homogeneous PDE

0 = aT (qα)∇Vd(q), (15)

with aT (qα) = [a1(qα) . . . an(qα)] the vector of coefficient
functions of the PDE.

The characteristic coordinates zα in which the energy
(14) can be shaped freely are invariants of the corresponding
system of characteristic ODEs

q̇i = ai(qα), i = 1, . . . , n, (16)

or q̇ = a(qα), i.e.

∂qzα,i(q)a(qα) = 0, i, . . . , n− 1 (17)
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holds. Together with an appropriate function zν(q) such that

∂qzν(q)a(qα) = 1 (18)

a coordinate transformation z = [zα,1 . . . zα,n−1 zν ]
T = t(q)

is defined (locally) rendering (13) an ODE

b̃(z) = ∂zν Ṽd(z), (19)

which can be integrated. Determining the coordinate change
z= t(q) (i.e. solving the PDEs (17),(18)) demands in general
the use of computer algebra. For 2 DOF z= t(q) can be easily
expressed, see Section III-E.

Having solved the matching PDE the control law is
extracted comparing the actuated parts of (1) and (3).

C. Local linear dynamics assignment

In local linear dynamics assignment for input affine sys-
tems, see e.g. [9], [10], [8], the IDA-PBC design parameters
are determined solving a (usually underdetermined) system
of linear equations. For details we refer to the references as
the procedure presented in this paper is self-contained.

III. MAIN RESULT: PARAMETER CHOICE FOR

MECHANICAL UNDERACTUATED SYSTEMS

Three groups of design parameters in the IDA-PBC setup
are distinguished: (i) The elements of the closed loop mass
matrix Md(q), (ii) the free parameters in (J ′

2−R′
2)(q, p) and

(iii) the free parameters – and also the ansatz of the function
Φ(zα) – in the homogeneous solution of the potential energy
PDE. The design parameters as a whole determine the closed
loop behavior of the system and it is not transparent how
individual parameters affect stability, the estimate of the
domain of attraction and (transient) dynamics, respectively.
As an example, consider the mass matrix Md(q). Clearly
positive definiteness is necessary for the stability proof and
the virtual kinetic energy 1

2p
TMd(q)p heavily influences the

dynamics in the closed loop. However, also the shape of
the potential energy and thus the estimate of the domain of
attraction is affected by the “unactuated” part mT

d,ν(q).
To realize desired closed loop dynamics – at least in its

local approximation – and at the same time achieve a well
defined estimate of the domain of attraction, in the sequel
we follow the three steps:

• Establish a linearized version of the coordinate change
that transforms the potential energy PDE into an ODE.

• Express the Hessian of the closed loop potential energy
in new coordinates without solving the ODE/PDE.

• Replace the Hessian in the closed loop linearization and
determine the IDA-PBC design parameters from com-
parison with predefined desired local linear dynamics.

A. Linearized coordinate change

We assume an(qα) ≡ 1, which can be easily achieved by
dividing (13) by the last coefficient function.

Notation: For brevity the arguments of functions are
sometimes omitted and a star indicates that the function
is evaluated at the equilibrium (q∗, 0). The vectors â =

[a1 . . . an−1]
T and q̂ = [q1 . . . qn−1]

T denote the n − 1
dimensional subvectors of a and q.

The coordinate change z = [zTα (q) zν(q)]
T = t(q)

according to (17) and (18) renders the matching PDE (13) an
ODE (19). Observe that arbitrary functions of zα,i(q) (i.e. the
characteristic coordinates) may be added to the coordinate
function zν(q) without changing the validity of (18). This
degree of freedom is used to achieve the local property

∂qzν(q)|q∗ = eTn , (20)

where eTn denotes the n-th unity row vector.
The linear approximation of the coordinate change is

∆z = T∆q with T = ∂qt(q)|q∗ . The linearized versions
of conditions (17), (18) and (20) are

Ta∗ = en (21)

eTnT = eTn , (22)

from which the structure of the transformation matrix T and
its inverse follows:

T =

[

T̂ −T̂ â∗

0T 1

]

, T =

[

T̂ â∗

0T 1

]

. (23)

The (n − 1) square matrix T̂ is the Jacobian of the (char-
acteristic) coordinate functions zα(q) w.r.t. q̂ in q∗. The
local linear transformation matrix T will be fruitfully used
to derive the structure of the Hessian of the closed loop
potential energy in the equilibrium.

B. Hessian of the closed loop potential energy

To derive an expression of the Hessian of Vd in q∗ the
Taylor series expansion of the potential energy PDE (13) is
considered and the terms of order 0 and 1 are compared on
both sides. The terms of order 0 are

(a∗)T∇V ∗

d = b∗, (24)

which reflects that (q∗, 0) must be an admissible equilibrium
to enable ∇Vd(q)|q∗ = 0, the first condition for a minimum
of the potential energy. The first order terms of the power
series, considering ∇V ∗

d = 0 are

(a∗)TQd = ∂qb
∗. (25)

Multiplying the equation by T from the right and expanding
with TTT

T
we get

(a∗)TTT

︸ ︷︷ ︸

=eTn

T
T
QdT

︸ ︷︷ ︸

=Q̃d

= ∂qb
∗T , (26)

where Q̃d = ∂2
z2 Ṽd(z)

∣
∣
∣
z∗

is the Hessian of the energy in z-
coordinates. Equation (26) determines the last row (and by
symmetry the last column) of Q̃d. Note that Ṽd(z) can be
shaped freely in the characteristic zα-coordinates such that
Q̃α= ∂2

z2
α
Ṽd(z)

∣
∣
∣
z∗

contains open design parameters of IDA-
PBC. Putting the pieces together the Hessian of a solution
of the potential energy PDE in z-coordinates has the form

Q̃d =

[

Q̃α T̂
T

∂T
q̂ b

∗

∂q̂b
∗T̂ ∂qb

∗a∗

]

, (27)
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where Q̃α is free, a∗ and b∗ depend on the elements of mT
d,ν ,

which enter the potential energy PDE as well as T̂ which
results from the definition of the characteristic coordinates.
The Hessian in original coordinates is calculated by

Qd = TT Q̃dT (28)

with T according to (23).

C. Matching of local linear dynamics

In order to determine the IDA-PBC design parameters
such that desired local linear dynamics is realized the lin-
earization of the closed loop Port-Hamiltonian dynamics (3)
[
∆q̇
∆ṗ

]

=

[
0 M

∗

−M∗

dM
∗

Qd (J∗
2 −R∗

2)M
∗

d

] [
∆q
∆p

]

(29)

is compared with desired dynamics that results e.g. from pole
placement for the linearized original system (Ad,12 = M

∗

):
[

∆q̇
∆ṗ

]

=

[
0 Ad,12

Ad,21 Ad,22

]

︸ ︷︷ ︸

=Ad

[
∆q
∆p

]

. (30)

The two matrix equations

−M∗

dM
∗

Qd = Ad,21 (31)

(J∗

2 −R∗

2) = Ad,22M
∗

d (32)

are solved in four steps for the unknown values of the design
parameters in the equilibrium:

(i) The Hessian matrix Qd must be symmetric for any
parametrization, such that from Eq. (31) the condition

Ad,21M
∗

M∗

d −M∗

dM
∗

AT
d,21 = 0 (33)

can be derived. The condition represents n(n−1)
2 linear

equations which have to be met by the elements of M∗

d .
(ii) To reflect the structure of (J2−R2) in (12) the first row

and column of Ad,22M
∗

d must be zero. eT1 Ad,22M
∗

d = 0T is
ensured by Assumption A.4 (no dissipation in the unactuated
joint). As the first element is already zero it remains to ensure

[ 0 In−1 ]Ad,22m
∗

d,ν = 0 (34)

with md,ν the first column of the symmetric mass matrix
Md. The condition represents n− 1 linear equations for the
parameters in m∗

d,ν . Together with (i) there are n(n+1)
2 − 1

linear equations for the entries of M∗

d i.e. one less than the
number of independent elements.

(iii) For a given parametrization of Md the nonzero
southestern submatrix of J2 −R2 in the equilibrium can be
evaluated from (32):

(J ′

2 −R′

2)
∗ =

[
0 In−1

]
Ad,22(M

∗

d,α)
T . (35)

(iv) Finally the values of the n(n+1)
2 open parameters in

Q̃α are deduced from Eq. (31), with Qd according to (28)
and rearranged for Q̃α:

Q̃α = −
[

T̂
T

0

]

M∗M
∗

dAd,21

[

T̂
0

]

. (36)

The following steps to determine the values of the IDA-
PBC design parameters in the equilibrium for the considered
class of underactuated mechanical systems are proposed:

• Solve the PDEs to determine the coordinate transforma-
tion (17), (18) and adjust zν(q) such that (20) holds.

• Determine the linear transformation submatrix T̂ .
• Successively evaluate the design parameters in (q∗, 0)

from the linear equations (33)–(36).

D. Asymptotic stability

The very simple idea of local linear dynamics assignment
is the comparison of the closed loop linearized dynamics with
unassigned design parameters to a desired asymptotically
stable state matrix Ad. If (29) and (30) match, asymptotic
stability of the equilibrium follows immediately from Lya-
punov’s indirect method:

Fact 3: If the free parameters of Md, (J2(q, p)−R2(q, p))
and Hd(q, p) are determined such that the linearized match-
ing equations (31) and (32) hold in the equilibrium (q∗, 0),
with Ad a matrix with eigenvalues only in the open left com-
plex half plane, then the equilibrium is locally asymptotically
stable.

Exploiting the Port-Hamiltonian structure, an appropriate

solution of the linearized matching equations allows to
extend the stability statement beyond the unspecified borders
of local stability:

Proposition 4: If the solution of the linearized matching
equations (31) and (32), with Ad,21 and Ad,22 submatrices of
an asymptotically stable matrix Ad according to (30), yields
R∗

2 ≥ 0 then M∗

d > 0 and Qd > 0 hold.
Proof: The time derivative of the closed loop energy

Hd is Ḣd = −pTMd(q)R2(q, p)Mdp and its quadratic
approximation ∆Ḣd = −∆pTM

∗

dR
∗
2M

∗

d∆p. On the other
hand the quadratic approximation of the energy is ∆Hd =
− 1

2∆xTP∆x with ∆xT = [∆qT ∆pT ] and the block
diagonal matrix P = diag{Qd,M

∗

d}. The time derivative,
substituting matched linear dynamics ∆ẋ = Ad∆x is
∆Ḣd = −∆xT

(
AT

d P + PAd

)
∆x . Setting equal both

expressions for ∆Ḣd results in a Lyapunov equation for
P = diag{Qd,M

∗

d} which has at least a positive semidefinite
solution for Ad asymptotically stable and R∗

2 ≥ 0 [4]. Qd

and M
∗

d (and M∗

d , respectively) are positive definite if in
addition they are regular. For Ad asymptotically stable with
the structure indicated in (30) the submatrix Ad,21 is regular.
From Eq. (31), which is true when local linear dynamics is
matched, follows regularity of Qd and M∗

d .
If in addition ∇Vd(q)|q∗ = 0 is ensured, then the closed

loop potential energy has an isolated minimum in the desired
equilibrium. Hence Vd(q) (in the region where at the same
time R2(q, p) ≥ 0 and Md > 0) can be used to estimate the
domain of attraction of the equilibrium along the standard
IDA-PBC arguments: The estimate of the domain of attrac-
tion is enclosed by the closed contour surfaces of Vd with
maximum value, where the above inequalities hold.

Two advantages of the procedure are obvious: (i) The
definiteness check of the potential energy function is omitted.
(ii) From linear asymptotic stability of the equlibrium, which
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is achieved by matching the linearized dynamics, local
exponential stability of (q∗, 0) is deduced even if R2 is only
positive semidefinite (cf. Section 4.2 in [6] on a disussion of
local exponential stability in the case of strong dissipation).

E. 2 DOF systems

For systems with 2 DOF and Md = const. the transforma-
tion into z-coordinates can be easily expressed analytically.
The matching PDE for the closed loop potential energy is

mT
d,1m1(q2)∂q1Vd(q) +mT

d,1m2(q2)∂q2Vd(q) = ∂q1V (q),
(37)

where mi denotes the i-th column of M . Division by the
second coefficient function yields

a1(q2)∂q1Vd(q) + ∂q2Vd(q) = b(q) (38)

with a1(q2) =
mT

d,1m1(q2)

mT
d,1

m2(q2)
and b(q) =

∂q1
V (q)

mT
d,1

m2(q2)
. A solution

of Eqs. (17) and (18) to determine the coordinate change is

zα = q1 −

∫ q2

q∗
2

a1(s)ds, zν = q2, (39)

which also satisifies (20). The inverse transformation is
simply

q1 = zα +

∫ zν

z∗

ν

a1(s)ds, q2 = zν . (40)

Local linear dynamics is matched as follows.
(i) and (ii): The symmetry condition on Qd according to

Eq. (33) boils down to

eT2 Ad,21M
∗

[ md,11

md,12

1

]

−
[

1
md,22

md,12

]

M
∗

AT
d,21e1 = 0, (41)

while (34) becomes

eT2 Ad,22

[ md,11

md,12

1

]

= 0. (42)

Observe that both equations have been divided by md,12 6= 0
such that two linear equations can be solved for the two
quantities md,11/md,12 and md,22/md,12.

(iii) In the 2 DOF case we have simply (J ′
2 −R′

2) = −r2
such that Eq. (35) for the given Matrix Md is

r2 = −eT2 Ad,22

[
1

md,22

md,12

]

md,12.

The sign of r2 can be adjusted by the choice of md,12, i.e.
r2 ≥ 0 is achievable and with this parametrization Md > 0
is guaranteed according to Proposition 4.

Remark 5: In the case n > 2 (m > 1) positive semidef-
initeness of R2 will not be achievable by tuning the single

remaining parameter in Md. However, in the MIMO case the
additional design freedom in the pole placement problem can
be preassumably used to achieve R2 ≥ 0 (by means of the
variation of Ad,22).

(iv) The second order partial derivative of the potential
energy in the characteristic coordinate is calculated by

q̃α = −eT1 M(q∗2)MdAd,21e1,

q2

q1

S2

S1

D2

D1

u

Fig. 1. Sketch of the experimental apparatus

TABLE I

SYMBOLS USED IN THE MODEL, ALL COORDINATES IN THE

CORRESPONDING MOVING FRAME

(s1, h1) Coordinates of the center of gravity in link 1
(0, h2) Coordinates of the center of gravity in link 2
(0, d) Coordinates of the rotation axis for link 2 w.r.t. link 1
m1,2,mD Masses of the links and the drive
J1,2, JD Moments of inertia around the rotation axis

where T̂ = ∂q1zα(q)|q∗ = 1 has been used.
With the parameters of Md the potential energy PDE is

solved by computer algebra and q̃α is realized by adding the
homogeneous solution, e.g. Φ(zα) = 1

2 q̃α(zα − z∗α)
2.

IV. EXAMPLE: TILTING ROBOT MODEL

The sketch of the lab experiment depicted in Fig. 1 rep-
resents a two dimensional 2 DOF underactuated mechanical
system which – in an elementary way – mimics a tilting
walking machine. A critical situation occurs when the robot
has lost complete foot contact. The stabilizing controller
initially tries to balance the underactuated robot before stable
standing and hence full degree of actuation can be regained.
Joint 1 is unactuated while joint 2 is driven by a DC gear
motor with transmission ratio i = q̇I2/q̇

II
2 . The example is

from [8] with the controller derived using the systematic
procedure presented in this paper.

A. Modeling

The model of the 2 DOF system has been derived using
the Euler-Lagrange formalism for both links (index 1 and 2)
and the drive (index D). The mass matrix results to be

M(q2) =

[
c1 + c20 + 2c3 cos q2 c21 + c3 cos q2

c21 + c3 cos q2 c22

]

(43)

with constants c1 = J1 + (m2 +mD)d2, c2k = J2 + JDik,
k = 0, 1, 2 and c3 = m2dh2. The potential energy whose
gradient appears in the equations of motion is

V (q) = c4 cos(q1 + q2) + c5 cos q1 + c6 sin q1 (44)

with c4 = m2h2g, c5 = ((m2 +mD)d+m1h1)g and c6 =
m1s1g. All symbols are explained in Table I, g denotes the
gravitational acceleration.
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B. Controller design

The IDA-PBC controller (neglecting friction in q1) is
parametrized according to the procedure presented in Section
III-E with double eigenvalues of the predefined matrix Ad at
−6 an −7. The equilibrium to be stabilized is chosen such
that link 2 is perpendicular to the ground, i.e. q∗2 = −q∗1 .
The ansatz of the homogeneous solution of the potential
energy PDE is quadratic in zα − z∗α. The design steps and
the solution of the potential energy PDE are executed with a
computer algebra system. Some contour lines of the closed
loop potential energy around q∗ are depicted in Fig. 2.

C. Simulation

The nonlinear IDA-PBC controller is compared to the
corresponding linear state feedback and the linear reference
system (i.e. the simulation of the linear target dynamics (30)),
see Fig. 3. The simulations start from an initial position
q(0) = 0 6= q∗. From t = 2s on rectangular disturbance
torques are applied to the unactuated link which leads to
a deviation of the state from the equilibrium. Obviously the
IDA-PBC controller, which accounts for the nonlinear nature
of the plant, forces the state to stay closer to the equilibrium.
This on the one hand leads to the better accordance with the
reference, on the other gives evidence of improved robustness
of stability.

Remark 6: Unfortunately the simulations could not be
validated in the experiment so far due to the friction in
the unactuated coordinate of the experimenal apparatus.
The mainly viscous friction violates (independent of its
magnitude!) the dissipation condition for controller redesign
in [6]. Until now we have not succeeded in accounting for
this friction in a Port-Hamiltonian structure of the closed
loop system.

V. CONCLUSIONS AND OUTLOOK

This contribution presents the adaptation of local linear

dynamics assignment in IDA-PBC to mechanical systems
with underactuation degree one. For the considered class of
systems the kinetic energy PDE can be trivially solved with a
constant virtual mass matrix. To derive a parametrization of
the IDA-PBC approach the solution of the potential energy
PDE is discussed. Based on a local linear coordinate trans-
formation the structure of the achievable potential energy
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Fig. 3. Transients: IDA-PBC vs. reference system vs. linear state feedback

Hessian matrix is revealed. As a consequence a four step
procedure is presented to calculate the design parameters
such that linearized closed loop dynamics is matched with
a predefined linear target system. As in the case of general
input affine systems an explicite definiteness check of the
closed loop energy Hessian is not required.

The problem of matching the damping of the unactuated
coordinate in a closed loop Hamiltonian structure – which
to the best of our knowledge is unsolved so far for the
considered class of systems – gives rise to future work. A
possibility could be to allow cross terms of coordinates and
momenta in the Hamiltonian.
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