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Abstract— Flow line are one of the most commonly en-
countered layouts in manufacturing industries, where several
product types (grades) are manufactured using a sequence of
sub-systems or machinery with different tasks. With increasing
prices of energy and specific customer demands employing
effective product scheduling strategies has become essential for
manufacturing industries to maintain their business viability.
In this paper, a new product scheduling method is proposed for
multi-machine, multi-product flow lines. The objective here is
to control the production start time for each grade so that the
product delivery time errors are minimised. It is also desired
to minimise the overall makespan variability caused by non-
Gaussian uncertainties formulated by the entropy of the de-
livery time errors. Therefore, the proposed product scheduling
strategy is a nonlinear multi-objective optimisation problem
with non-Gaussian uncertainties. To solve this problem, the
nonlinear dynamic flow line model is converted to a linear
dynamic equivalent using a (Max,+) algebraic approach.
Then, a Proportional-Integral (PI) scheduling controller is
used to control the production start time for each grade.
The scheduling controller coefficients are tuned by a Multi-
Objective Differential Evolution (MODE) algorithm. Simulation
results show the effectiveness of the proposed technique and a
comparison is made between MODE, Genetic Algorithm (GA)
and Particle Swarm Optimisation (PSO).

I. INTRODUCTION

Many production lines in manufacturing industries are

formed of material flow lines. In these flow lines the raw

materials are processed by a sequence of several machines

to form the finished product. Often, several product types (i.e.

grades) are manufactured based on customer-specific needs

and the capacity of machinery. Examples of such production

lines can be found in automotive, steel making, and pulp

and paper industries. With rising costs of energy and process

maintenance, manufacturing industries are increasingly chal-

lenged to deploy effective product scheduling strategies so

that their makespans (i.e. the total production time associated

to a certain product grade) and product delivery times are

kept at desired levels. This is particularly important for

manufacturing industries to maintain their business viability.

The product scheduling can be defined as planning of the

production or the sequence of operations according to which

jobs pass through machines and is optimal with respect to

certain optimisation criteria [1]. In this sense, the scheduling

can be a class of Discrete Event Systems (DES) [2]. A

variety of different solutions have been proposed to model

the system using DES. Among them, perhaps Petri Nets
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have been one the most popular techniques [3]. Also, several

attempts have been made to model the manufacturing system

behaviour using Markov Decision Processes (MDP) [4]. As

for MDP-based approaches, often Reinforcement Learning

(RL) methods [5] are chosen for solving the resulting optimi-

sation problem. Furthermore, Branch and Bound algorithms

as in [6] and Linear Programming (LP) algorithms as in

[7] have been applied to makespan minimisation problems.

In addition, variants of meta-heuristic methods have been

developed to multi-machine, multi-product manufacturing

systems ( [8] and references therein).

In all of the above mentioned techniques, the discrete

event models used to explain the system behaviour are

nonlinear. Therefore, the analysis and optimisation of such

models are often very difficult and optimisation algorithms

are computationally expensive. In addition, the scheduling

controllers found using above techniques do not have a

standard structure which makes it difficult to implement in

practice. Using the concept of (Max,+) algebra, nonlinear

discrete event dynamic systems can be expressed as a lin-

ear state system [9]. This way, the nonlinear optimisation

problem can be reduced to a closed loop control design.

Based on this, a number of product scheduling techniques

using Model Predictive Control (MPC) have been proposed

[10]. However, MPC-based methods still have a number of

control parameters which have to be set by the operators.

On the other hand, less attention has been drawn towards

the economic aspects of scheduling due to uncertainties

caused by raw material variations and operational failures.

These (often) unknown and non-symmetrically distributed

variations in turn cause random process variations which

cause random increase to processing time of each machine

and consequently increase to the energy consumption. It

has been shown that the entropy minimisation idea [11]

can be applied to minimise variations associated with non-

Gaussian uncertainties. The minimum entropy control is in

fact a generalisation of minimum variance control for non-

Gaussian uncertainties [12].

In order to address the gaps mentioned above, this pa-

per presents a new product scheduling approach for multi-

product, multi-machine flow shop manufacturing systems

considering non-Gaussian processing time variations for each

machine. For this purpose, firstly, a (Max,+) model of the

flow shop is developed. Then a fixed-structure PI scheduling

controller with tunable parameters is designed to control the

times when the production of a certain grade is started. The

scheduler parameters are then tuned so that the delivery delay

(i.e. Integral of Product Time Squared Error, IPTSE) for
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each grade as well process variations (i.e. Entropy of Prod-

uct Time Error, EPTE) caused by non-Gaussian processing

time variations are minimised. Apart from the fact that the

mentioned scheduling problem is inherently multiobjective, it

has been previously shown that minimum entropy objectives

can be non-differentiable, multi-modal and highly nonlinear

[13]. Therefore, in order to tune the scheduling controller, a

multiobjective differential evolution (MODE) search method

is applied. Fig.1 outlines the proposed scheme for the prod-

uct scheduling problem. As shown in the figure, product
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Fig. 1. General scheme of the proposed product scheduling solution

scheduling task is considered a high-level activity compared

to factory-level process optimisation and control tasks. It is

shown in this paper that this can be formulated as linear

(Max,+) algebra which facilitates replacing the nonlinear

scheduling controllers by fixed-structure controllers such as

PI. In the next section, the multi-product, multi-machine

scheduling problem is formulated for flow lines.

II. PROBLEM FORMULATION

Consider the production system shown in Fig.1, assuming

that m different product grades are required to be produced

by n sequentially arranged machines. Each machine can

process one grade at a time. The jth machine (1 < j < n)

start processing the material corresponding to the ith grade

(1 < i < m) only if it has finished the processing required

for the previous job. Also, the jth machine takes tj(i) time

units to process the ith grade. There is a material transfer

delay of dj(j+1) between the jth machine and its following

machine. In addition, the processing time associated with

the ith grade can be increased by τj(i) > 0 due to either

raw material variations or operational failures in the jth

machine. It is assumed that τj(i) are unknown, yet bounded

with a known Probability Density Function (PDF). The total

product delivery time for the ith grade is noted by y(i) and

each product has a delivery deadline of r(i). It is desired to

design a fixed-structure scheduler to control the processing

start time of each grade (i.e. u(i), the time when the ith

grade enters the flow line for processing). The objective of

this scheduling controller is to minimise:

• the Integral of Production Time Squared Error (IPTSE),

• the Entropy of the Production Time Error (EPTE).

Define xj(i) as the time when the jth machine starts

processing the ith job. This way, each machine will be

assigned a so called ‘state’. A simplified diagram of the flow

line with non-Gaussian processing time variations is shown

in Fig. 2.
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Fig. 2. Flow line with non-Gaussian processing time variations

A. Flow Line System Model Using (Max,+) Algebra

Based on the production policy explained, the time when

the first machine can start processing the ith job is when:

• it has finished processing the (i − 1)th job; and,

• the raw materials have arrived at its inlet.

Therefore, the state of the first machine can be defined as,

x1(i) = max
(

x1(i− 1) + t1(i− 1) + τ1(i− 1), (1)

u(i) + d01

)

,

where u(i) is the time when processing the ith begins.

Similarly, the second machine starts processing the ith grade

when it has finished its (i − 1)th job and the first machine

has finished its ith job. By replacing (1) into resulting state

equation, x2(i) can be obtained as,

x2(i) = max
(

x2(i − 1) + t2(i − 1) + τ2(i − 1), (2)

x1(i − 1) + t1(i − 1) + t1(i) + τ1(i − 1)+

τ1(i) + d12, u(i) + t1(i) + τ1(i) + d01 + d12

)

.

Applying the same approach, a nonlinear dynamics is ob-

tained for the jth machine. In addition, the product delivery

time can be expressed as,

y(i) = xn(i) + tn(i) + τn(i). (3)

Clearly, the resulting state dynamic system is a nonlinear

stochastic system. However, using the notations of (max,+)
algebra, the dynamics can be expressed as a max-plus linear

system with stochastic parameters. Defining

a⊕ b = max(a, b), a⊗ b = a+ b; (4)

the following dynamics can be obtained.

x(i) = A⊗ x(i − 1)⊕B ⊗ u(i) (5)

y(i) = C ⊗ x(i)

where x(i) =
[

x1(i), x2(i), · · · , xn(i)
]T

∈ R
n and system

matrices A and B are expressed as the sum of their deter-

ministic and stochastic parts, as,

A = Ad +As, B = Bd +Bs. (6)
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It can be verified that, Ad(p, q) = As(p, q) = 0, ∀p < q,

and

Ad(p, q) = tq(i− 1) +

p−1
∑

k=q

tk(i) + dk,(k+1) (7)

= tq(i− 1)⊗
[

p−1
⊗

k=q

tk(i)⊗ dk,(k+1)

]

,

for p ≥ q. In addition, it can be shown that ∀p < q

As(p, q) =τq(i− 1) +

p−1
∑

k=q

τk(i) (8)

= τq(i − 1)⊗
[

p−1
⊗

k=q

τk(i)
]

Similarly, it can be shown that,

Bd(p) = d01 +

p−1
∑

k=1

tk(i) + dk(k+1) (9)

= d01 ⊗
[

p−1
⊗

k=1

tk(i)⊗ dk(k+1)

]

and

Bs(p) =

p−1
∑

i=1

τi(k) =

p−1
⊗

i=1

τi(k). (10)

Also, the output matrix C can be written as

C(q) =

{

0, q 6= n;

tn + τn(k) = tn ⊗ τn(k), q = n.
(11)

where p, q = 1, · · · , n. The resulting flow line model is

max-plus linear, non-Gaussian stochastic dynamic system

represented by (5) to (11).

B. Objective Functions

By noting the delivery error time as e(i) = r(i) − y(i);
where r(i) is the delivery deadlines, the PI controller dy-

namics is given by,

u(i) = Kpe(i) +Kiξ(i) (12)

ξ(i) = ξ(i − 1) + Tse(i), (13)

where Ts is sampling time, ξ is the integrator, and {Kp,Ki}
are the PI controller parameters to be determined. As noted

in section I, the first objective is to minimise the delivery

time error for all product grades. This is formulated as the

IPTSE expressed as

J1 =
m
∑

i=1

e2(i) =
m
∑

i=1

(r(i)− y(i))2. (14)

Furthermore, the second objective is to minimise the process

variability caused by the non-Gaussian random processing

time changes for each machine by choosing an optimal

set of {Kp,Ki}. As for systems with non-symmetrically

distributed noise characteristics, the spread area of the noise

distribution cannot be described precisely by only using its

mean and variance. Therefore, entropy is used here to serve

as a measure of uncertainty [11]. In this paper, the α-order

Renyi’s entropy definition is used to formulate the EPTE, as

follows,

H(e) =
1

1− α
log(VRα(e(i))) (15)

where VRα(e) is often called the Information Potential (IP),

denoted by

VRα(e) =
∑

i

γα(e(i)). (16)

where γ(e) is the PDF of the production time error, which

can be estimated through Kernel Density Estimation (KDE)

method [14]. Application of KDE yields the following PDF

estimation,

γ(e) ≈ γ̂(e) =
1

Nh

N
∑

q=1

Kσ(
e− eq

h
) (17)

where Kσ is a Gaussian Kernel function and h is a bin-width.

The choice of the Kernel function and bin-width depends on

the required level of smoothness for PDF estimation. This

means that the EPTE objective function has the following

form,

J2 =
1

1− α
log

(

1

(Nh)α

N
∑

p=1

[

N
∑

q=1

Kσ

(ep − eq

h

)]α

)

.

(18)

Therefore, the task of scheduling is to find appropriate Kp

and Ki parameters (see (12)) so that the following multi-

objective cost function is minimised.

J(K∗
p ,K

∗
i ) = min{J1, J2} (19)

where J1 and J2 are defined in (14) and (18), respectively.

In the next section, a meta-heuristic solution based on

multiobjective differential evolution is proposed for solving

(19).

III. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION

Generally speaking, finding the best solutions to multi-

objective optimisation problem (19) can be a very difficult

problem, specially in the cases where the objectives are

nonlinear, non-smooth and non-differentiable, or when it

is not possible to determine initial estimates close to the

global minimum. In these cases, meta-heuristic optimisation

methods can be proven much more efficient as opposed to

conventional optimisation techniques. These methods gener-

ate a so called population of possible solution and update a

new population based on probabilistic rules. The aim of such

generation updates is to converge to the global minimum of

the objective functions with a high probability. The most

significant advantage of meta-heuristic techniques is their

simplicity as well as ability to optimise complex problems.

In this paper, a multiobjective version of the DE algorithm

(MODE) is chosen to tune the scheduling controller, as it

has consistently been reported to be the most efficient direct

search algorithm in several case studies [13].
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A. MODE Algorithm

The DE algorithms consist of four main stages, namely,

initialisation, mutation, crossover, and selection, which are

briefly explained as follows [15]. In order to initialise the

MODE, the initial population is chosen randomly to span the

initial boundary of decision variables ~x = [Kp,Ki]. That is,

P (0)
p ← ~x(0)

p = ~xL + ~ρn |10 (~xU − ~xL),

p = [1, . . . , Np], (20)

where Np is the total number of populations. Then the

mutation takes place by using a difference vector calculated

from members of the current populations as follows,

~tr
s+1

p = ~tr
s

p + F (~xk
v − ~xs

w), (21)

for ~δ = {v, w}. (22)

where ~tr
s+1

p is the trial vector of the pth member of the

(s + 1)th generation, F is the weighting factor and δj are

randomly chosen integers such that δl 6= δs 6= p, ∀s, l. In

the crossover stage, a random number is generated for each

member of the trial vector. If this number is lower than the

crossover rate Cr set by the user, then the gene of the new

trial vector is used, if not, the original trial vector ~xs
p =

(xs
p1, . . . , x

s
pN ) is kept. In other words,

trs+1
pq =

{

xs
pq , if ρ |10pq< Cr

trs+1
pq , else

q = [1, . . . , N ] (23)

Finally, to select the next generation members, the resulting

trial vector will only replace the original parent if it has

a lower objective function value for all objective functions.

That is,

~xs+1
p =

{

~xs
p, if J(~tr

s+1

p ) > J(~xs
p)

~tr
s+1

p , else
(24)

It must be noted that as the population converges to an

optimum, any randomly chosen difference vector becomes

smaller in magnitude. Eventually when all members converge

to a single solution, the difference vector will be zero and

the mutation operator will be disabled all together. Therefore,

the actual amount of mutation at each iteration is not only

determined by F but also by the population diversity. In the

next section, a simulation study is proposed to demonstrate

the effectiveness of the method.

IV. SIMULATION RESULTS

Suppose a flow line shown in Fig. 2 comprised of four

different machines. For simplicity, assume that the nominal

processing time is fixed for all grades. Also, the following

nominal processing times and transfer delays are set for the

flow line,

t =
[

3 1 2 1
]

, d =
[

5 4 5 1
]

Furthermore, due to non-Gaussian stochastic processing time

variations, the processing time will be randomly changing.

The τ values are not known, however, it is known that they

are a set of uniformly distributed independent additive noises

with the following ranges.

0 ≤ τ1(i) ≤ 0.3, 0 ≤ τ2(i) ≤ 0.2,

and,

0 ≤ τ3(i) ≤ 0.1, 0 ≤ τ4(i) ≤ 0.25.

Therefore, according to (7), (9), and (11), the following

deterministic system matrices can be obtained,

Ad =









5 0 0 0
13 4 0 0
18 9 5 0
25 16 12 1









, Bd =









5
13
18
25









Cd =
[

0 0 0 1
]

There are 10 orders to be manufactured, and based on the

customer orders, the following delivery deadline is also given

(measured by sample time);

r(i) = [30, 94, 157, 220, 285, 347, 410, 474, 537, 600]

A PI controller is designed as the high level scheduler

and is supposed to determine the times when each of the

grades i must enter the flow line (i.e. when the processing

starts). The controller is tuned by a multiobjective differential

evolution algorithm. As noted in section II-B, the controller

is optimised so that the two objectives IPTSE (14) and EPTE

(18) are minimised simultaneously. For this purpose, the

objective functions need to be calculated. As for the entropy,

a second order Renyi’s entropy measure (α =2) with the

following Gaussian Kernel is chosen,

K2(e) =
1√
2π

exp(− e2

2 ).

To solve the multi-objective cost function (19) for Kp and

Ki, a multiobjective differential evolution algorithm with

population size 500, maximum algorithm iterations are 100

and upper and lower bounds of the controller parameters

1 and 5. Also, the lower and the upper bounds for the

range from which the DE scaling parameter is taken are set

to -1.5 and +1.5, respectively. Furthermore, the cross-over

probability is set to 0.95. An experiment is set to compare

a manually-tuned scheduler to the one tuned by the MODE.

After 3 generations, the MODE yields the following values

for the Kp and Ki,

Kp = 2.6612, Ki = 1.8696

A. Optimal Schedule

Fig.3 compares the delivery time performance of the flow

line if either manually tuned or MODE-tuned schedulers

are chosen. The delivery deadline is indicated with a solid

line. As shown in the figure, the scheduler tuned by MODE

represent superior performance delivering almost all grades

on time. It must be noted that although by using the manually

tuned scheduler some grades (4, 9, 10) are finished earlier

than the required time, this might incorporate imposing new

storage costs to the system which are not desirable. It is

also worthwhile to examine the optimal schedule found by

the MODE-tuned scheduler. Fig. 4 compares the production

start times for each of the grades. As shown in the figure,
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the manual scheduler’s policy is to start processing of each

grade in the same order as they have been registered in the

order book, i.e. [1, 2, · · · , 10]. However, the MODE-tuned

scheduler has found the following optimal processing order,

opt sched = [3, 4, 5, 6, 9, 8, 2, 1, 7, 10].

B. Objective Functions

The algorithm chosen must minimise both objective func-

tions simultaneously. At each iteration, MODE finds mem-

bers of the new generation belonging to the Pareto front. The

best member (the point where both objectives are minimum)

is found at the end of 100 iterations. As for the flow line of

this study, the Pareto front found by MODE is illustrated

in Fig. 5. Furthermore, the individual objective functions

are examined to verify the effectiveness of the method.

Firstly, in Fig. 6, the product delivery error (delay) is shown.

Clearly, the scheduler tuned by MODE algorithm shows

considerably less IPTSE value. Under the manually tuned

scheduler, some grades, specially 6 require significant storage

as they have been finished earlier than the required time.

Also, to investigate the entropy minimisation, the PDF of

the delivery time error, comparing the two schedulers is

shown in Fig. 7. A narrowly-shaped PDF has significantly

less entropy value compared to a widely distributed one. As

shown in the figure, the scheduler tuned by MODE algorithm

has efficiently reduced the process variability which confirms
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the effectiveness of the algorithm proposed.

C. Comparison and Analysis

In this section, a comparison is performed to analyse

the performance of the proposed optimiser, MODE. For

this purpose, the same problem is solved using equivalent

multiobjective Genetic Algorithm (GA), and multiobjective

Particle Swarm Optimisation (PSO) methods. For all three

algorithms, 500 initial populations and a maximum iterations

100 are considered. As for the multiobjective GA, the

crossover probability and the mutation probability for each

individual are set to 0.25 and 0.1, respectively. Also, for

the GA algorithm, the coding (variable representation) is

set as binary and 52 bits are used per decision variable.

Furthermore, for the PSO algorithm the following parameters

are set; social factor (η1= 2), cooperative factor (η2=2),

nostalgia factor (η3=0.5), inertial constant (ω= 0.5), max-

imum number of neighbours is also set to 5 and a ‘star’

social network topology is chosen. Fig. 8 shows the resulting

Pareto front found by all three algorithms. In terms of

convergence speed, the PSO algorithm is relatively quick

in the first generation. However, its performance deteriorates

rapidly with proceeding to higher generations. The quickest

algorithm appears to be MODE with 2.6 msec to evaluate a

function. This figure is 3.3 msec for the GA and 2.93 msec

for the PSO algorithms. Also, DE required 3 generations
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for convergence while this figure was 5 for the GA and 2

for PSO. In terms of convergence performance, the GA and

DE show similar solutions, while PSO’s convergence was

relatively poor.

V. CONCLUSION

In this paper, a meta-heuristic algorithm is proposed for

scheduling multi-product, multi-machine flow lines with non-

Gaussian processing time variations. Existing scheduling

methods incorporate nonlinear dynamic programming tech-

niques which often result in complicated scheduler struc-

tures. Also, the effect of random variations in processing

time has not been addressed comprehensively. The pro-

posed framework employs a modelling strategy based on

the (max,+) algebra which assists to transfer the nonlinear

product delivery time model to a (max,+) linear dynamic

system. This in turn facilitates the design of fixed-structure

controlling schedulers. The proposed approach uses a PI

controller which controls the processing time corresponding

to each product grade. Therefore, the nonlinear dynamic

programming problem is simplified to a closed loop control

design problem. In this regard, the task of control is to tune

the PI controller coefficients so that two objectives, namely

the integral of the production time error, and the entropy of

production time error are minimised simultaneously. Since

the multiobjective optimisation problem is highly nonlinear,

a direct search algorithm based on differential evolution is

used to find the global solution to the scheduling problem.

Simulation results suggest that the proposed method can

schedule the production such that on-time delivery is realised

while the process variability is reduced which is a significant

improvement compared to manually tuned scheduler. Future

work incorporates studying the stability of the (max,+)
model as well as cases where parallel production lines exist.
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