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Abstract—In this paper, we investigate the problem of
assignment of K identical servers to a set of N parallel queues
in a time slotted queueing system. The connectivity of each
queue to each server is randomly changing with time; each
server can serve at most one queue and each queue can be
served by at most one server per time slot. Such queueing
systems were widely applied in modeling the scheduling (or
resource allocation) problem in wireless networks. It has
been previously proven that Maximum Weighted Matching
(MWM) is a throughput optimal server assignment policy for
such queueing systems [1], [2]. In this paper, we prove that
for a symmetric system with i.i.d. Bernoulli packet arrivals
and connectivities, MWM minimizes, in stochastic ordering
sense, a broad range of cost functions of the queue lengths
including total queue occupancy (or equivalently average
queueing delay).

I. INTRODUCTION

Optimal stochastic control of emerging wireless net-

works is one of the primary objectives in the design of such

networks. In general, the main goal in the stochastic control

of wireless networks is to distribute the shared resources in

physical (e.g. power) and MAC layers (e.g. radio interfaces,

relay stations and orthogonal channels) to multiple users

such that a certain stochastic performance attribute is

optimized. While various performance attributes including

the stable throughput region, power consumption and utility

functions of the admitted rates have been studied in many

papers, average queueing delay has been considered far

less in literature. This is due to the inherent difficulty of

delay optimal scheduling problems in queueing systems

with time varying channel conditions. In this paper, we

consider a discrete time queueing system which is suitable

in modeling of orthogonal resource assignment (e.g. radio

interfaces/channel allocation) in multi-user wireless access

networks. In our system, we model the available shared

resources by a set of identical servers. The model also con-

sists of a set of queues whose connectivities to each server

is changing by time randomly. Therefore, the resource

assignment problem is equivalent to finding a matching

between the queues and the servers at each time slot such

that some performance objectives are optimized. It has been

already shown that Maximum Weighed Matching (MWM)

is throughput optimal for such a system, i.e., it maximizes

the stable throughput region of the system [1], [2]. MWM

has also been extensively used in literature for treating

the scheduling problem in crossbar packet switches [3]–

[6]. In this paper, we prove that for a symmetric system

with i.i.d. Bernoulli arrivals and connectivities (i.e. with

the same arrival and connectivity parameters for all the

queues), MWM is also optimal in minimizing, in stochastic

ordering sense, a broad range of cost functions of queue

lengths including total queue occupancy (or equivalently

average queueing delay)1. In other words, we show that

MWM policy minimizes stochastically a broad range of

cost functions of queue length processes including the

expected total queue occupancy across all possible server

assignment policies.

The problem of optimal server allocation in queueing

systems with random connectivities was mainly addressed

in [1], [2], [7]–[13]. In [1], the authors introduced the

notion of stability region of a general queueing network

with time varying connectivities and they proposed back-

pressure algorithm as a throughput optimal resource alloca-

tion policy for queueing networks. In [7], they considered

a multi-queue single-server queueing system with random

connectivities. They characterized the stability region by

a set of linear inequalities and also proved that for a

symmetric system with the same arrival and connectivity

parameters for all the queues, LCQ (Longest Connected

Queue) provides the optimal performance in terms of

average queue occupancy.

In [11], Maximum Weight (MW) policy was proposed

as a throughput optimal server allocation policy for multi-

queue multi-server queueing systems with stationary chan-

nel processes. In [13], the authors characterized the net-

work capacity region of multi-queue multi-server queue-

ing systems with time varying connectivities. They also

obtained an upper bound for the average queueing delay

of AS/LCQ policy which is a throughput optimal server

allocation policy for these systems. The results were fur-

1We order two discrete time random processes A = {A(t)}∞
t=1

and
B = {B(t)}∞

t=1
stochastically as follows: We say A is stochastically

less than B and we write A ≤st B if Pr(A(t) > r) ≤ Pr(B(t) > r)
for all t = 1, 2, ... and all r ∈ R. The notion and relevant properties will
be discussed in more detail in Section III-B.
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ther extended in [14] for more general stationary channel

distributions (and not just i.i.d. Bernoulli channels).

The authors in [8] considered a queueing model with

a set of symmetrical parallel queues competing for K

identical servers. The connectivity of each queue to all

the servers is assumed to be the same at each time slot

and during each time slot, each queue can attract at most

one server. The authors proposed LCQ policy in which the

servers are allocated to the K longest connected queues at

each time slot. They proved the optimality of LCQ policy

by using dynamic coupling and stochastic ordering method.

The work in [9], [10], [12], [15] focuses on the opti-

mal server allocation problem in multi-queue multi-server

queueing systems in terms of average queueing delay. In

[9], [10], [15], the authors introduced MTLB (Maximum-

Throughput Load-Balancing) policy and showed that this

policy minimizes a class of cost functions including total

average delay for the case of two symmetric queues. The

work in [12] considers this problem for general number

of symmetric queues and servers. In [12], a class of Most

Balancing (MB) policies was characterized among all work

conserving policies which are minimizing, in stochastic

ordering sense, a class of cost functions including total

average delay. Note that in the model used in [9], [10],

[12], [13], [15], there is no restriction on the number of

servers that are serving a queue at each time slot. In [2],

it was shown that for a multi-queue multi-server system in

which queues are restricted to attract at most one server

at each time slot, Maximum Weighted Matching (MWM)

policy is throughput optimal. The authors also considered

the effect of infrequent channel state measurements on the

stability region.

The rest of the paper is organized as follows. Section II

describes the model and the notation required throughout

the paper. In section III, we introduce Maximum Weighted

Matching (MWM) policy as the optimal policy for the

described model. We will also review the concepts of

stochastic ordering and dynamic coupling method which

are the main mathematical tools used in proving the op-

timality of MWM policy. In section IV, we present the

main result of this paper, that is proving the optimality of

MWM server assignment policy. Section V summarizes the

conclusions of the paper.

II. MODEL DESCRIPTION

We consider a time slotted parallel queueing system with

a set of parallel symmetrical queues N = {1, 2, ..., N}
and infinite buffer space for each queue. Packets in this

system are assumed to have constant length and require

one time slot to complete service. The service to this set of

queues is provided through a set of identical servers namely

K = {1, 2, ...,K}. The connectivity of each queue n ∈ N
to each server k ∈ K at each time slot t is random and

follows a Bernoulli distribution. We denote the connectivity

of queue n to server k at time slot t by Cn,k(t). Note that
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Fig. 1: Discrete time queueing system with N parallel

queues and K servers

Cn,k(t) ∈ {0, 1} and E[Cn,k(t)] = p for all n ∈ N and

k ∈ K and t = 1, 2, ....

At each time slot, each server can serve at most one

packet from a connected non-empty queue. Note that in

the system we do not have server sharing i.e., a server can

serve at most one queue at each time slot. We also assume

that a queue which is being serviced by a server at a given

time slot, cannot get service from other servers during the

same time slot.

Let An(t) be the packet arrival process (number of

packet arrivals) to queue n at time slot t. We assume that

new arrivals at each time slot are added to the queues at

the end of the time slot. Assume that the arrival processes

An(t) at each time slot t are independent Bernoulli random

variables with the same parameter for all n and t. We

denote the length of queue n at the end of time slot t (i.e.,

after adding the new arrivals) by Xn(t). In other words,

Xn(t) represents the number of packets in the nth queue

at the end of time slot t (or beginning of time slot t+ 1).

A server assignment policy at each time slot determines

an assignment of servers of set K to the queues of set N . In

other words, at each time slot the scheduler has to decide

about a bipartite matching (matching in bipartite graphs)

between sets N and K. This should be accomplished

based on the available information about the connectivities

Cn,k(t) and also the queue length process at the beginning

of time slot t (which is X(t − 1) = (X1(t − 1), X2(t −
1), ..., XN (t − 1))). For a given policy π, suppose that

indicator variable I
(π)
n,k(t) is defined to be “1” if server

k is assigned to queue n at time slot t and “0” otherwise.

We define M (π)(t) = {I
(π)
n,k(t), ∀n ∈ N , k ∈ K} as the

employed matching by policy π at time slot t. Therefore, a

server scheduling policy π is defined as π = {M (π)(t)}∞t=1.

According to the above discussion, we can see that the

queue length random variable Xn(t), ∀n ∈ N evolves with

time according to the following rule:

Xn(t) =

(

Xn(t− 1)−
K
∑

k=1

Cn,k(t)I
(π)
n,k(t)

)+

+An(t)
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where (·)+ returns the term inside the brackets if it is

non-negative and zero otherwise. Note that a server can

be assigned to an empty queue however it cannot serve it

since there is no packet to be served. That is why we have

used operator (·)+ in (1).

As we discussed earlier, the queueing model introduced

in this section is useful in modeling the resource assign-

ment problem in various systems with shared resources. In

wireless communication systems, communication resources

such as communication sub-channels, relay stations, etc.

are shared among users and therefore can be studied

using our model (e.g. [2], [16]). Bipartite Matching also

has been extensively used in literature (e.g. [3]–[6]) to

model the scheduling problem in crossbar packet switching

systems. In this paper, random variables are represented

by CAPITAL letters and lower case letters are used to

represent sample values of the random variables.

III. BACKGROUND

A. Maximum Weighted Matching

In [1], [2], [17]–[19], it was shown that Back-pressure

algorithm maximizes the stable throughput region of a

general data network. For the model introduced in section

II, Back-pressure algorithm is equivalent to solving the

following optimization problem at each time slot t [2].

Maximize

N
∑

n=1

xn(t− 1)
K
∑

k=1

In,k(t)cn,k(t)

s.t.

K
∑

k=1

In,k(t) ≤ 1 (n = 1, 2.., N)

N
∑

n=1

In,k(t) ≤ 1 (k = 1, 2..,K) (1)

where xn(t − 1) and cn,k(t) are the values of random

variables Xn(t − 1) and Cn,k(t) at time slots t − 1 and

t, respectively. Note that finding the solutions of problem

(1) is equivalent to finding a maximum weighted matching

in the bipartite graph Gt = (N ,K, E) (see Figure 2).

In Gt, N and K are the two sets of vertices in each

part of the graph and E = {en,k, ∀n ∈ N , ∀k ∈ K} is

the set of edges between these two parts. Note that the

associated weight to each edge en,k is xn(t − 1)cn,k(t).
A matching in graph Gt is basically a sub-graph of Gt

in which no two edges share a common vertex. Note that

any matching M (π)(t) at any time slot t is corresponding

to a sub-graph of Gt namely G
(π)
t = (N ,K, E(π)) in

which en,k ∈ E(π) if and only if I
(π)
n,k(t) = 1. Suppose

that M (MWM)(t) = {I
(MWM)
n,k (t), ∀n ∈ N , k ∈ K} be

the matching whose indicator variables are the solution of

the optimization problem (1). Thus, we define Maximum

Weighted Matching (MWM) server assignment policy as

MWM = {M (MWM)(t)}∞t=1. There are several algorithms

to find the maximum weighted matching in bipartite graphs.

The most well known algorithm is Hungarian algorithm
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Fig. 2: Bipartite graph corresponding to problem (1)

whose complexity is of O((min{N,K})(max{N,K})2)
[20].

As explained before, MWM is known to be throughput

optimal for the queueing system described in section II [2].

Our contribution in this paper is to prove that MWM is also

optimal in minimizing, in stochastic ordering sense, a class

of cost functions of the queue length processes including

the total system occupancy (or equivalently total average

queueing delay) for the symmetric queueing system of

Figure 1 (which can be used to model a homogeneous

wireless access network). We will introduce a detailed

description of those class of cost functions in the following

section.

B. Stochastic Ordering and Dynamic Coupling

In this section, we briefly review the concepts of stochas-

tic ordering (stochastic dominance) and dynamic coupling

techniques. Consider two discrete time stochastic processes

A = {A(t)}∞t=1 and B = {B(t)}∞t=1 in R. We say A

is stochastically less than B and we write A ≤st B if

Pr(A(t) > r) ≤ Pr(B(t) > r) for all t = 1, 2, ... and all

r ∈ R [21], [22]. Some properties of stochastic ordering

are the following. If A ≤st B then f(A) ≤st f(B)
for all non-decreasing functions f . If A ≤st B then

E[A(t)] ≤ E[B(t)]. A is stochastically smaller than B

(A ≤st B), if there exists process Ã = {Ã(t)}∞t=1

defined on the same probability space as B with the same

probability distribution as A and satisfy Ã(t) ≤ B(t)
almost surely for every t = 1, 2, ... [8]. The last statement

is known as coupling of A and Ã. In fact, when applying

coupling technique, we are given the process A and we try

to construct a coupled process Ã with the same distribution

as A and Ã(t) ≤ B(t) a.s. for all t. This gives us

a tool for comparing processes A and B stochastically.

This is specially useful when it is infeasible to derive the

distributions of A and B (e.g. in our queueing model when

comparing the total occupancy process for different server

assignment policies).

IV. OPTIMALITY OF MWM

In this section, we present the main result of this paper,

that is proving the optimality of MWM with respect to

minimization of a class of cost functions of queue lengths
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including the average queueing delay. Suppose that Z+

be the set of non-negative integers and Z
N
+ be the N

dimensional Cartesian space of non-negative integers. We

define relation ” � “ over ZN
+ as follows.

Definition 1: For two vectors x , x̃ ∈ Z
N
+ , we write

x̃ � x if one of the following relations hold:

D1: x̃n ≤ xn for all n = 1, 2, ..., N
D2: x̃ is obtained by permutation of two distinct elements

of x, i.e., x̃ and x are different in only two elements n

and m such that x̃n = xm and x̃m = xn.

D3: x̃ and x are different in only two elements n and

m such that xn < x̃n ≤ x̃m < xm and the following

constraints are satisfied: x̃n = xn + 1 and x̃m = xm − 1.

In D3, we say that x̃ is more balanced than x and can be

obtained by decreasing a larger element of x (between m

and n) by “1” and increasing a smaller element (between

m and n) by “1”. We call such an interchange a balancing

interchange on vector x. Thus, the result of a balancing

interchange on a vector x would be a vector x̃ such that x̃ �
x. Suppose that vector x ∈ Z

N
+ represents the queue length

vector at a given time slot. Then, a balancing interchange

is equivalent to taking a packet from a larger queue and

adding it to a smaller queue.

We define the partial order ” �p “ on Z
N
+ as the

transitive closure of relation ” � “ [23]. In other words,

x̃ �p x if and only if x̃ is obtained from x by performing

a sequence of reductions, permutations of two elements

and/or balancing interchanges. When x and x̃ are two

queue length vectors, we write x̃ �p x if and only if queue

length vector x̃ is obtained from x by applying a series of

packet removal, two queues permutations and balancing

interchanges.

We define F as the class of real-valued functions on Z
N
+

that are monotone and non-decreasing with respect to the

partial order ” �p “, i.e.,

f ∈ F ⇐⇒ x̃ �p x ⇒ f(x̃) ≤ f(x). (2)

We can easily check that function f(x) =
∑N

n=1 xn

belongs to F . This function captures the total queue

occupancy of the system.

Let X ′(t) = (X ′

1(t), X
′

2(t), ..., X
′

N (t)) denote the queue

length vector at time slot t exactly after serving the queues

according to a server assignment policy π and before

adding the new arrivals of time slot t, i.e.,

X ′

n(t) =

(

Xn(t− 1)−
K
∑

k=1

Cn,k(t)I
(π)
n,k(t)

)+

. (3)

Given x′(t) as a sample value of random variable X ′(t),
we define a balancing server reallocation at time slot t as

follows:

Definition 2: A balancing server reallocation on vector

x′(t) is a matching that results in vector x̃′(t) such that

one of the following conditions is satisfied.

(C1): x̃′

n(t) ≤ x′

n(t) for all n = 1, 2, ..., N and there

exists m ∈ {1, 2, ..., N} such that x̃′

m(t) < x′

m(t).
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Fig. 3: Examples of balancing server reallocations

(C2): x̃′(t) and x′(t) are different in only two elements

n and m such that x′

n(t) < x̃′

n(t) ≤ x̃′

m(t) < x′

m(t) and

the following constraints are satisfied: x̃′

n(t) = x′

n(t) + 1
and x̃′

m(t) = x′

m(t)− 1.

Figures 3a and 3b show two examples of balancing server

reallocations in two sample graphs. In these figures, the

original allocations are specified by solid lines while the

balancing reallocations are specified by dashed lines.

Consider an arbitrary server assignment policy π with the

allocation variables {I
(π)
n,k(t)}

∞

t=1 for all k ∈ K and n ∈ N .

We introduce Matching Weight (MW) index associated to

a server allocation policy π at time slot t by

MWπ(t) =
N
∑

n=1

xn(t− 1)
K
∑

k=1

cn,k(t)I
(π)
n,k(t) (4)

Note that MW index is exactly the objective of the op-

timization problem (1). According to Definition 2 and

definition of MW index, we can prove the following

Lemma.

Lemma 1: For a given policy π employing matching

M (π)(t) at time slot t, by applying a balancing server

reallocation at time slot t (if there exists any) we will have

a new policy π̃ differing from π only at time slot t such

that MWπ(t) < MWπ̃(t).
The proof is omitted here due to space limitations. The

detailed proof of the lemma is given in [24]. Based on

Lemma 1, we can state the following corollary.

Corollary 1: For a given policy π at time slot t, if

MWπ(t) is maximized, i.e., policy π employs a maximum

weighted matching at time slot t, then there exists no

balancing server reallocation at that time slot.

Note that Lemma 1 just states that any balancing real-

location increases the matching weight index. However, it

does not imply the existence of a balancing server reallo-

cation when MWπ(t) is not maximized. In the following,

we will prove the reverse of Lemma 1.

Lemma 2: For a given policy π at time slot t, if MWπ(t)
is not maximized, i.e., MWπ(t) < MWMWM(t), then there

exists a balancing server reallocation at that time slot.

The proof is lengthy and is omitted here due to space

limitations. For the detailed proof, please refer to [24].

By ΠMWM, we denote the set of all policies who employ

maximum weighted matching at all time slots. We also
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define Πt as the set of all policies that employ maximum

weighted matching exactly until time slot t (including t).

We can easily observe that Πt ⊆ Πt−1 and ΠMWM =
⋂

∞

t=1 Πt. From Lemmas 1 and 2 we conclude that given a

policy π ∈ Πt−1 which is using an arbitrary matching at

time slot t, we can reach to a policy π⋆ ∈ Πt by applying

a sequence of balancing server reallocations. Suppose that

hπ
t represents the number of balancing server reallocations

required to convert the employed matching in policy π at

time slot t to a maximum weighted matching. In this case,

we say that the distance of π from Πt is hπ
t balancing

server reallocations. Note that if the distance of π from Πt

is hπ
t , after applying the first balancing server reallocation,

we get to a policy π̃ whose distance from Πt is hπ
t − 1

balancing server reallocations. By repeating this procedure

we finally get to a policy whose distance to Πt is zero, i.e.,

it belongs to Πt. By Πh
t (0 ≤ h ≤ hπ

t ) we denote the set

of all server assignment policies in Πt−1 whose distance

from Πt is at most h balancing sever reallocations. Note

that Π0
t = Πt.

Consider any two policies π and π̃ such that f(X̃) ≤st

f(X), f ∈ F where X = {X(t)}∞t=1 and X̃ = {X̃(t)}∞t=1

are the queue length processes when policies π and π̃ are

applied respectively. For such a system, we say policy

π̃ dominates π. Therefore, if π̃ dominates π we have

E[f(X̃)] ≤ E[f(X)]. Given f(x) =
∑N

n=1 xn, we

conclude that the average queue occupancy (or equivalently

average queueing delay) of policy π̃ is smaller than that of

policy π. According to the above discussion, we can prove

the following Lemma.

Lemma 3: For any policy π ∈ Πh
t and 0 < h ≤ hπ

t we

can construct a policy π̃ ∈ Πh−1
t such that π̃ dominates π.

Here, we just give the outline of the proof. For the

detailed proof please refer to [24]. The proof follows

by applying dynamic coupling method over random

variables C(t) = (Cn,k(t)), ∀n ∈ N , ∀k ∈ K and

A(t) = (A1(t), A2(t), ..., AN (t)). In other words, we

will show that given an arbitrary sample path ω =
(x(0), c(1), a(1), x(1), c(2), a(2), x(2), c(3), a(3), x(3)...)
we can construct policy π̃ and a new sample path ω̃ =
(x̃(0), c̃(1), ã(1), x̃(1), c̃(2), ã(2), x̃(2), c̃(3), ã(3), x̃(3), ...)
resulting in a new sequence of random variables

(X̃(0), C̃(1), Ã(1), X̃(1), C̃(2), Ã(2), X̃(2), C̃(3),...) with

X(0) = X̃(0) such that x̃(t) �p x(t) for all t. In fact, we

construct ω̃ and π̃ ∈ Πh−1
t in such a fashion that for all

the sample paths and all time slots we have x̃(t) �p x(t).
The construction of π̃ is consisting of two main steps:

construction for time slots before and including t and

construction for time slots after t. The construction before

and including t follows by using the matchings of policy

π for time slots before t. For time slot t, we apply the

balancing server reallocation. The construction after t

follows by using mathematical induction. The detailed

proof is lengthy and is omitted at this point. We refer the

interested readers to [24] for more detail.

Based on Lemma 3, we can prove the main result of this

paper in the following Theorem.

Theorem 1: Maximum Weighted Matching policy dom-

inates any server assignment policy.

Proof: Let π0 be any arbitrary policy. Then π0 ∈ Π0 =
ΠH1

1 where H1 = hπ0

1 . By applying Lemma 3 repeatedly,

we can construct a sequence of policies such that each

policy dominates the previous one. Thus, we obtain policies

that belong to Π0 = ΠH1

1 ,ΠH1−1
1 ,ΠH1−2

1 , ...,Π0
1 = Π1.

The last policy is called π1. Note that π1 ∈ ΠH2

2 where

H2 = hπ1

2 . By recursively continuing such argument we

obtain a sequence of policies πt ∈ Πt, t = 1, 2, ... such

that πj dominates πi for j > i. Note that this sequence

of policies defines a limiting policy π∗ that agrees with

MWM at all time slots. Thus, π∗ is an MWM policy who

dominates all the previous policies, including the starting

policy π0.

V. CONCLUSIONS

In this paper, we considered the problem of assignment

of K identical servers to a set of N parallel queues in

a symmetrical time slotted queueing system with random

connectivities from the queues to the servers. For such a

queueing system, it has been previously shown that MWM

is throughput optimal, i.e. has the maximum stability re-

gion. Our contribution in this work is the development of a

method to prove the optimality of MWM in minimizing, in

stochastic ordering sense, a class of cost functions of queue

lengths (including total queue occupancy or equivalently

average queueing delay). Our method to achieve this goal

used stochastic ordering and dynamic coupling techniques.
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