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Abstract— We consider the design of a robust H∞ filter
for sampled-data systems whose measurements are sampled
at uncertain and nonuniform sampling instants. A discrete-
time, fixed-structure filter is considered. The resulting error
system is time-varying, which makes the filter design difficult.
A procedure is presented to design the filter so that the error
system remains asymptotically stable for all possible variations
of the sampling period with an H∞ performance level. The
effectiveness of the proposed method is demonstrated through
numerical examples.

I. INTRODUCTION

The theory of sampled-data systems with uniform sam-
pling has been well-developed during the last two decades.
Many excellent references, e.g., [1], [2], [3], are available
for the analysis and design of these systems.

An important assumption in the development of con-
ventional sampled-data control and filtering theory is the
periodic sampling of the measurements. However, there are
situations where this assumption is not valid and the mea-
surement sampling period uncertainly varies. This could hap-
pen, for example, in event-based control systems [4]. Another
motivation is the wide spread use of networked/embedded
control systems [5], [6]. In fact, networked control systems
are the main cause of recent interest in nonuniformly sampled
systems [7], [8], [9], [10]. Yet another motivation is the
extension of the theory of sampled-data systems to the
nonuniform sampling case.

Many controllers use state feedback to generate the control
action; however, it is seldom the case that all the state
variables of a plant are measured. A state estimator is
designed to provide an estimate of the state variables using
the measurements from the plant. A popular estimator, when
the plant disturbances are not known, is the H∞ filter. The
problem of H∞ filter design for discrete-time systems with
uniform sampling has been well-studied, see, for instance,
[11], [12]. For the nonuniform sampling case, the H∞
filtering problem has been considered in [13], [14], [15].
In [13], the authors transform the nonuniformly sampled
system into a continuous-time one with time-varying delay in
the input; two types of H∞ filters are designed to minimize a
modified H∞ performance criteria. But, the filters are time-
varying in the discrete-time domain. In [14], a discrete-time,
robust H∞ filter is designed using a parameter-dependent
Lyapunov function; the filter design, however, requires the
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solution of bilinear matrix inequalities. In [15], a class of
nonuniformly sampled systems, where the measurement is
sampled nonuniformly but at an integer multiples of the state
estimation periods, is considered. A mode-dependent H∞
filter is designed using a Markovian jump systems approach.

This paper studies the design of an H∞ filter for nonuni-
formly sampled systems. The problem is addressed in the
discrete-time domain and a linear constant-parameter filter
is designed. It will be shown that the analysis and design
of the filter requires the solution of infinite many matrix
inequalities; because of the uncertainly varying sampling
period. We use the stability robustness idea presented in [7]
to generate a grid of finite sampling periods to solve the
matrix inequalities for the sampling periods in the grid only.
The grid is constructed in such a way that the resulting
solution of the matrix inequalities is valid for all possible
variations of the sampling period.

The rest of this article is organized as follows: In Section II
we formulate the robust H∞ filtering problem. Some prelim-
inary results are discussed in Section III. The main results
for the analysis and design of the H∞ filter are presented in
Section IV. Some extensions of the results are discussed in
Section V which are followed by two numerical examples in
Section VI to demonstrate the effectiveness of the proposed
approach.

II. PROBLEM FORMULATION

Consider a stable, continuous linear time-invariant system

ẋ(t) = Ax(t) +Bw(t), x(0) = 0

y(t) = Cx(t) +Dw(t),

z(t) = Lx(t),

(1)

where x(t) ∈ Rn is the system state, w(t) ∈ Rm is the
disturbance, y(t) ∈ Rr is the measured output, and z(t) ∈ Rs
is the signal to be estimated. A, B, C, D, and L are matrices
of compatible dimensions.

The measurement y(t) from the system is sampled when
t = τk where {τk : k ≥ 0} is a set of arbitrary sampling
instants with properties

τ0 = 0, and 0 < hl ≤ τk+1 − τk ≤ hu <∞, (2)

for given hl and hu. Note that (2) implies lim
k→∞

τk =∞.

Let hk denote the kth sampling period, namely, hk :=
τk+1 − τk, a discrete-time equivalent of (1) at the sampling
instants τk is given as

xk+1 = Φ(hk)xk + Γ(hk)wk,

yk = Cxk +Dwk,

zk = Lxk,

(3)
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where xk := x(τk), wk := w(τk), yk := y(τk), zk := z(τk),
and

Φ(hk) := ehkA, Γ(hk) :=

∫ hk

0

e(hk−η)AdηB.

Consider a discrete-time filter of the form

x̂k+1 = Af x̂k +Bfyk,

ẑk = Cf x̂k,
(4)

where x̂k := x̂(τk) and ẑk := ẑ(τk).
Define x̄Tk = [xTk x̂Tk ]; using (3) and (4), the error system

can be written as

x̄k+1 = Ā(hk)x̄k + B̄(hk)wk,

ek = C̄x̄k,
(5)

where

Ā(hk) =

[
Φ(hk) 0
BfC Af

]
, B̄(hk) =

[
Γ(hk)
BfD

]
,

C̄ =
[
L −Cf

]
.

The goal is to design a filter of the form in (4) for the system
in (1) such that the error system in (5) is asymptotically
stable with an H∞ performance level γ > 0.

Definition The error system in (5) is asymptotically stable
if, for wk ≡ 0 and x̄(0) 6= 0, x̄k → 0 as k →∞.

Definition For wk 6= 0, the error system is said to have an
H∞ performance level γ > 0 if

‖ek‖2 ≤ γ‖wk‖2.

III. PRELIMINARIES

In order to analyze the H∞ performance of the error
system we give the following lemma.

Lemma 1: Given 0 < hl < hu < ∞, γ > 0, and the
filter parameters Af , Bf , and Cf , the error system in (5)
is asymptotically stable with an H∞ performance level γ
if there exists a symmetric matrix P̄ > 0 such that the
following matrix inequality

−P̄ 0 Ā(hk)P̄ B̄(hk)
∗ −I C̄P̄ 0
∗ ∗ −P̄ 0
∗ ∗ ∗ −γ2I

 < 0 (6)

holds for all hk ∈ [hl, hu].
Proof: It is an extension of the discrete, time-invariant

H∞ filtering lemma [11] to the time-varying case.
If the sampling period is fixed, i.e., hk = h̃ ∈ [hl, hu],

this is the classical discrete-timeH∞ filtering problem which
has been discussed in [11], [12], [16]. However, when the
sampling period is time-varying, the filter design problem
becomes complicated as the matrix inequality in (6) has to
hold for infinite many values of the sample period hk ∈
[hl, hu]. The challenge is to convert the condition in (6) to
a numerically tractable form.

One approach is to use a finite grid, such as G =
{h1, h2, · · · , hN}, and test the condition in (6) for the
sampling periods in the grid. However, this approach does

Σ(h0)

∆(θk)

ξkηk

wkek

Fig. 1. LFT representation of error system

not imply, in general, that the matrix inequality in (6) holds
for all possible variations of the sampling period. In [7],
Fujioka proposed a stability robustness idea to construct a
grid G such that if the matrix inequality in (6) holds for the
finite number of sampling periods in the grid, it will hold
for all sampling periods in [hl, hu].

In this paper, we follow the idea given in [7] to test
the condition in (6) for filter design. For this, we need the
following lemma.

Lemma 2: The error system in (5) can be re-configured
as shown in Fig. 1, where

Σ(h0) :

x̄k+1 = Ā(h0)x̄k + B̄1ξk + B̄(h0)wk,

ηk = C̄1(h0)x̄k + D̄12(h0)wk,

ek = C̄x̄k,

(7)

ξk = ∆(θk)ηk, and ∆(θk) =

∫ θk

0

eηAdη. The matrices

in (7) are

Ā(h0) =

[
Φ(h0) 0
BfC Af

]
, B̄1 =

[
I
0

]
, B̄(h0) =

[
Γ(h0)
BfD

]
,

C̄1(h0) =
[
AΦ(h0) 0

]
, D̄12(h0) = AΓ(h0) +B.

Proof: Fix hk = h0 + θk, from (3) we can write

Φ(h0 + θk) = eθkAΦ(h0) = (I + ∆(θk)A)Φ(h0)

and

Γ(h0 + θk) =

∫ h0

0

e(h0+θk−η)ABdη

+

∫ h0+θk

h0

e(h0+θk−η)ABdη

= eθkAΓ(h0) + ∆(θk)B

= (I + ∆(θk)A)Γ(h0) + ∆(θk)B.

Re-write the matrices in error system (5) as

Ā(hk) =

[
Φ(h0) + ∆(θk)AΦ(h0) 0

BfC Af

]
=

[
Φ(h0) 0
BfC Af

]
+

[
I
0

]
∆(θk)

[
AΦ(h0) 0

]
,

B̄(hk) =

[
Γ(h0)
BfD

]
+

[
I
0

]
∆(θk)

[
AΓ(h0) +B

]
.

Define B̄1 =

[
I
0

]
and plug-in these expression in (5) to

get (7).
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Define

Σ11 = C̄1(h0)(zI − Ā(h0))−1B̄1,

Σ12 = D̄12(h0) + C̄1(h0)(zI − Ā(h0))−1B̄(h0),

Σ21 = C̄(zI − Ā(h0))−1B̄1,

Σ22 = C̄(zI − Ā(h0))−1B̄(h0).

The mapping from wk → ek is

ek = (Σ22 + Σ12∆(θk)(I − Σ11∆(θk))−1Σ21)wk

To ensure stability in the presence of variations of the
sampling period, it is required that {Σi,j | i, j = 1, 2} be
stable and

‖Σ11∆(θk)‖∞ < 1. (8)

One can easily find a scalar α such that α > ‖Σ11‖∞.
Therefore, the system will be robustly stable as long as

‖∆(θk)‖∞ ≤
1

α
.

Thus, in order to ensure robust stability, we need to bound
‖∆(θk)‖. We can define many different bounds for ∆(θk),
one such bounds is given in the following lemma.

Lemma 3 ([17]): For a given matrix A ∈ Rn×n and t ≥
0, we have

‖eAt‖ ≤ eµ(A)t,

where µ(A) is the logarithmic norm of A associated with
the 2-norm, and is given by

µ(A) = λmax

(
A+A∗

2

)
.

IV. MAIN RESULTS

A. Analysis

In this section, we state the main theorem to analyze the
robust stability and H∞ performance of the error system.

Theorem 1: Given h0 > 0, γ > 0, and the filter parame-
ters Af , Bf , and Cf , the error system in (5) will be robustly
stable for all hk ∈ H(h0, α) if there exists a symmetric
matrix P̄ > 0 such that (6) and (8) hold. Here α = ‖Σ11‖∞
and the interval H(h0, α) is defined as

H(h0, α) := (h, h) ∩ (0,∞), (9)

where h and h are given as follows:

L1) if µ(−A) = 0, h = h0 − α−1,
L2) elseif µ(−A) ≤ −α, h = −∞,

L3) else h = h0 −
1

µ(−A)
log(1 + α−1µ(−A)).

U1) if µ(A) = 0, h = h0 + α−1,

U2) elseif µ(A) ≤ −α, h =∞

U3) else h = h0 +
1

µ(A)
log(1 + α−1µ(−A)).

Proof: Assume minimal realizations of the system
in (1) and the filter in (4). If the matrix inequality (6) is

satisfied, this means there exists a symmetric and positive-
definite matrix P̄ such that ρ(Ā(h0)) < 1. Since, {Σij | i, j =
1, 2} have the same state matrix, they are stable.

The interval in (9) can be determined using (8) and
Lemma 3. See [7, Proof of Theorem 1].

As pointed out in [7], a direct use of Theorem 1 could be
conservative because of the small-gain type condition in (8).
This conservatism can be reduced by using a multi-model
representation of the error system.

Theorem 2: Given hi > 0 (i = 1, 2, · · · , N), γ > 0,
and the filter parameters Af , Bf , and Cf , if there exists a
symmetric matrix P̄ > 0 such that (6) and (8) hold, then the
error system in (5) will be robustly stable for all

hk ∈
N⋃
i=1

H(hi, αi)

Proof: Consider the case i = 1. Using similar argu-
ments as in Theorem 1 if (6) and (8) hold, there exists a
symmetric and positive-definite matrix P̄ when hk = h1.
Continuing the discussion for i = 2, 3, .., N , we can prove
there exists a P̄ if (6) and (8) hold for all hi.

B. Design

In this section, we discuss the H∞ filter design.
Theorem 3: Given hi > 0 (i = 1, 2, · · · , N) and γ > 0,

if there exist symmetric and positive-definite matrices Z ∈
Rn×n, Y ∈ Rn×n, and matrices F ∈ Rr×n, G ∈ Rs×n,
and Q ∈ Rn×n such that the small-gain condition in (8) and
the LMIs

−Z −Z 0 ZΦ(hi)
∗ −Y 0 Y Φ(hi) + FC +Q
∗ ∗ −I L−G
∗ ∗ ∗ −Z
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ZΦ(hi) ZΓ(hi)
Y Φ(hi) + FC Y Γ(hi) + FD

L 0
−Z 0
−Y 0
∗ −γ2I

 < 0,

(10)

hold for all hi > 0, then the error system in (5) is robustly
stable for all

hk ∈
N⋃
i=1

H(hi, αi)

with H∞ performance level γ for all hi (i = 1, 2, · · · , N)
with filter parameters

Af = −Y −1Q(I − Y −1Z)−1, Bf = −Y −1F,
Cf = G(I − Y −1Z)−1.

(11)

Proof: The LMI in (10) is obtained through a congru-
ence transformation on the matrix inequality (6). For that,
we take

P̄ :=

[
X U

∗ X̂

]
, P̄−1 :=

[
Y V

∗ Ŷ

]
,
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Algorithm 1 Robust H∞ Optimal Filter Design for Nonuni-
formly Sampled Systems

Given 0 < hl < hu <∞, and a large positive integer N0

0. Initialization: G ← {(hl + hu)/2}
1. if #G ≥ N0, stop without obtaining a filter.
2. Minimize δ = γ2 subject to (10) for all h′is where hi

is the ith smallest element in G.
3. If

[hl, hu] ⊆
#G⋃
i=1

H(hi, αi)

The error system in (5) will be robustly stable with H∞
performance γ =

√
δ with the filter parameters given

by (11). Stop. Here

αi := ‖Σ11(hi)‖∞.

4. Update G by

G ← G
⋃
{(Lj + Uj)/2}

for all j where Lj and Uj are determined so that

M⋃
j=1

(Lj , Uj) = (hl, hu)

#G⋃
i=1

H(hi,
√
αi),

L1 < U1 < L2 < U2 < · · · < LM < UM

are satisfied. Where M ≤ #G + 1. Go to step 1.

where X , X̂ , Y , and Ŷ are symmetric and positive-definite
matrices. Define

J1 :=

[
X−1 Y

0 V T

]
and perform a congruence transformation on (6) with J =
diag(J1, I, J1, I). From the definitions of P̄ and P̄−1, we
note that XY +UV T = I and XV +UŶ = 0. Using these
relations, defining Z := X−1, F := V Bf , Q := V AfU

TZ,
G := CfU

TZ, and replacing hk with hi, we get (10).
The difficulty in applying Theorem 3 is the selection of the
sampling periods {hi| i = 1, · · · , N} such that

[hl, hu] ⊆
N⋃
i=1

H(hi, αi)

We present Algorithm 1 to systematically generate the grid.
The step 2 in the algorithm is introduced to avoid numerical
issues which could happen when #G is too large.

V. SOME EXTENSIONS

In this section, we discuss some extensions of the preced-
ing theory.

A. Robust Performance

The Algorithm 1 gives a filter that is robustly stable but has
nominal H∞ performance; the condition in (10) guarantees
the H∞ performance for the sampling periods in the grid G

only. If we are interested in robust H∞ performance, it is
required that, in addition to (8), the following condition

‖Σ22 + Σ12∆(θk)(I − Σ11∆(θk))−1Σ21‖∞ ≤ γ (12)

holds [18] for all hk ∈ [hl, hu]. In the present framework,
this can be achieved by replacing the LMI in (10) with the
following LMI:

−Z −Z 0 0 ZΦ(hi)
∗ −Y 0 0 Y Φ(hi) + FC +Q
∗ ∗ −dI 0 AΦ(hi)
∗ ∗ ∗ −I L−G
∗ ∗ ∗ ∗ −Z
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

ZΦ(hi) Z ZΓ(hi)
Y Φ(hi) + FC Y Y Γ(hi) + FD

AΦ(hi) 0 AΓ(hi) +B
L 0 0
−Z 0 0
−Y 0 0
∗ −γ2I 0
∗ ∗ −γ2I


< 0.

(13)

The condition in (13) is based on minimizing the H∞ norm
of the nominal system in (7) for both channels. It also applies
a fixed D-scaling for the uncertainty channel. It should be
noted that the attempt to achieve the same H∞ performance
γ for both channels may lead to conservative results. A
trade-off can be made between the range of variations in
the sampling period and the H∞ performance by selecting
different performance measures for both channels.

B. Sampled-Data Approach to H∞ Filtering

In this paper, the H∞ performance is measured in discrete
time. Another approach could be to measure the performance
in continuous time. In the present framework, this can be
achieved by holding the state estimate using a zero-order-
hold. However, formulating the problem in this way may
not be very insightful; as there will always be an estimation
error. A more appropriate approach will be to consider a
continuous-time filter structure with sampled inputs. This
type of filter structure was considered in [13] and design
was presented using an input-delay approach.

VI. NUMERICAL EXAMPLES

In this section, we use two numerical examples to demon-
strate the applicability and effectiveness of the proposed
approach.

A. Example 1

We consider the same parameters as in [13] for the plant
in (1):

A =

[
0 1
−16 −4.8

]
, B =

[
0
16

]
,

C =
[
1 0

]
, D = 0.1, L =

[
1 0

]
.
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Fig. 2. Estimation error response

We take hl = 0.01 and hu = π/25 and apply the filtering
design procedure given in Algorithm 1. We can find a robust
H∞ filter with γ = 0.1017 and with only one element in
the grid G.

For the same system parameters, the authors in [13]
achieved H∞ performance γ = 0.4647 for the type 1 filter
and γ = 0.4876 for the type 2 filter. It is remarked that the
performance index in [13] is in continuous time whereas the
performance index in this paper is in discrete time.

B. Example 2
Consider the following matrices for the plant in (1):

A =

[
−b/J KT /J
−Kθ/La −Ra/La

]
, B =

[
2
2

]
,

C =
[
1 0

]
, D = 0, L =

[
0 1

]
.

The values of the constants are b = 0.1Nms, J =
0.01kgm2/s2, KT = Kq = 0.01Nm/A, Ra = 1Ω, and
La = 0.5H. This system was considered in [14] where the
authors designed a robust H∞ filter for hl = 0.001 and
hu = 0.099 with H∞ performance γ = 1.8174.

Following Algorithm 1, we can find a filter with
γ = 0.0952 and grid G = {0.05}. It should be noted
that this value of γ is based on the nominal performance
condition. The parameters of the filter are

Af =

[
−0.0440 0.0373
−1.0674 0.9048

]
, Bf =

[
0.6505
1.0666

]
,

Cf =
[
0 1

]
.

Let wk = 2 exp(−0.01k) sin(0.02πk) and x̄(0) = 0. Fig. 2
shows a plot of the estimation error and disturbance input.
We observe that the disturbance is effectively attenuated. The
corresponding measurement sampling intervals are shown in
Fig. 3.

VII. CONCLUSIONS

This paper presents a discrete-time, robust H∞ filter
design procedure for systems whose sampling period varies
between a lower and upper bounds. The designed filter
ensures robust stability of the error system for all possible
variations of the sampling period with an H∞ performance
level. The effectiveness of the approach is demonstrated
using numerical examples.
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Fig. 3. Variation of the measurement sampling interval

ACKNOWLEDGMENTS

This research was supported in part by the Natural
Sciences and Engineering Research Council of Canada
(NSERC), and the Higher Education Commission of Pakistan
(HEC) through the faculty development program of PIEAS.

REFERENCES
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