
A Distributed Fault Detection Methodology for a Class of Large-scale

Uncertain Input-output Discrete-Time Nonlinear Systems

Francesca Boem, Riccardo M. G. Ferrari, Thomas Parisini, and Marios M. Polycarpou

Abstract— This paper extends very recent results on a
distributed fault diagnosis methodology for nonlinear uncer-
tain large-scale discrete-time dynamical systems to the case
of partial state measurement. The large scale system being
monitored is modeled, following a divide et impera approach,
as the interconnection of several subsystems that are allowed
to overlap sharing some state components. Each subsystem
has its own Local Fault Diagnoser: the local detection is
based on the knowledge of the local subsystem dynamic model
and of an adaptive approximation of the interconnection with
neighboring subsystems. A consensus-based estimator is used in
order to improve the detectability of faults affecting variables
shared among different subsystems. Time-varying threshold
functions guaranteeing no false-positive alarms and analytical
fault detectability sufficient conditions are presented as well.

I. INTRODUCTION

In recent years, the need to develop autonomous and intel-

ligent systems that operate reliably in the presence of system

faults has increased, motivating the research on automated

fault diagnosis and accommodation. In dynamical systems,

faults are characterized by critical and unpredictable changes

in the system dynamics, thus requiring the design of suitable

fault diagnosis schemes [1], [2], [3]. Model-based schemes

have emerged as prominent approaches to fault diagnosis of

continuous and discrete-time systems [4], [5], [3], [6], [7],

[2]. This approach is built on a mathematical model of the

process that must be monitored, so that residuals can be

computed by taking the difference between the estimated

value of the system output variables and their measured

value. The residuals are then compared to suitable thresholds

by detection and isolation logics in order to provide a

fault decision regarding the health of the system. Model-

based approaches are well-suited to monitoring centralized

systems of moderate dimension, but suffer from scalability

and robustness issues when distributed and/or large–scale

systems are concerned (see, for instance [8]). This research

activity is motivated by several applications, especially in

complex large-scale systems, such as traffic networks, en-

vironmental systems, communication networks, power grid

networks, water distribution networks, etc. The study of
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controlling spatially distributed systems is not a new problem

[9] and there have been many enhancements in the design

and analysis of distributed control schemes. On the other

hand, one area where there has been much less research

activity is the problem of designing fault diagnosis schemes

specifically for distributed systems. Due to the complexity

of the problem, in practice it is difficult to achieve robust

fault diagnosis in large-scale distributed systems within a

centralized architecture. While considerable effort was aimed

at developing distributed fault diagnosis algorithms suited to

discrete event systems (see, among many others, [10]), much

less attention was devoted to discrete or continuous–time

systems (see [11], [12], [13], [14], [15], [16]). In a previous

work [17], a quantitative distributed fault detection and isola-

tion scheme for large-scale, nonlinear and uncertain discrete

time systems was developed. In the present paper, the results

reported in [17] will be extended to a class of input-output

non-linear uncertain discrete-time systems, where the system

states are only partially measurable. More specifically, the

unstructured uncertainty may affect either the discrete–time

state or the output equation. Though several papers dealing

with centralized fault diagnosis schemes for input-output

systems are present in the literature [18], [19], [20], [21],

[22], to the best of the authors knowledge this is the first

contribution addressing distributed schemes for input-output

large-scale nonlinear systems. The main contributions of

this paper are the design of a fault detection scheme in

a discrete-time framework with modeling uncertainty and

partial state measurement and the derivation of rigorous

analytical results for the detectability. The paper is organized

as follows. Section II formulates the problem under concern.

A distributed fault detection architecture is presented in

Section III, followed by the detailed development of the de-

tection analysis in Section IV. Then, in Section V, analytical

results are presented regarding the fault detectability. Finally,

Section VI reports some concluding remarks.

II. PROBLEM FORMULATION

Let us consider a multi-input multi-output uncertain non-

linear system, referred to as monolithic system, described by

the following discrete-time dynamic equations:

S :











x(t+ 1) =Ax(t) + f(x(t),u(t)) + ηx(x(t),u(t), t)

+ β(t− T0)φ(x(t),u(t))

y(t) =Cx(t) + ηy(x(t),u(t), t),
(1)
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where1 x ∈ R
n, u ∈ R

m and y ∈ R
p are the state, the

control input and the measured output vectors respectively,

the matrix A ∈ R
n×n and the vector field f : Rn × R

m 7→
R

n represent the nominal healthy dynamics, C ∈ R
p×n

is the nominal output equation, ηx and ηy are the uncer-

tainties in the state and in the output equations. The term

β(t − T0)φ(x(t),u(t)) denotes the changes in the system

dynamics due to the occurrence of a fault. More specifically,

the vector φ(x(t),u(t)) represents the functional structure

of the deviation in the state equation due to the fault and the

function β(t−T0) characterizes the time profile of the fault:

β(t− T0) ,

{

0 if t < T0

1− b−(t−T0) if t ≥ T0

. (2)

where T0 is the unknown fault occurrence time and b > 1
denotes the unknown fault-evolution rate, modeling either

incipient faults characterized by a decaying exponential time-

profile, or abrupt faults characterized by “step-like” time–

profiles, as b → ∞. The following assumptions are needed.

Assumption 1: At time t = 0 no faults act on the system.

Moreover, the state variables x(t) and control variables u(t)
remain bounded before and after the occurrence of a fault,

i.e., there exist some bounded regions R = Rx × Ru ⊂
R

n × R
n, such that (x(t),u(t)) ∈ Rx ×Ru, ∀t ≥ 0.

Assumption 2: The modeling and measuring uncertainty

terms represented by the vectors ηx and ηy are unstructured

and possibly unknown nonlinear functions of x, u, and t, but

are bounded by some positive, known and bounded functions

η̄x and η̄y , i.e.,

∣

∣

∣
η
(h)
x (x(t),u(t), t)

∣

∣

∣
≤ η̄

(h)
x (x(t),u(t), t)

and

∣

∣

∣
η
(k)
y (x(t),u(t), t)

∣

∣

∣
≤ η̄

(k)
y (x(t),u(t), t), for every h-

th and k-th component of the vector, with h = 1, . . . , n,

k = 1, . . . , p, for all (x,u) ∈ Rx and for all t.

As this paper considers only the fault detection prob-

lem and not the fault accommodation one, Assumption 1

is just required for well–posedness. Indeed, Assumption 2

is required for the analysis but, in practical situations, if

some a-priori knowledge on healthy and faulty behavior is

available, these assumptions do not cause a significant loss

of generality.

As in [17], here we consider the decomposition of the

monolithic system S into N subsystems SI , I = 1, . . . , N .

The decomposition of the monolithic system is based

on decomposing its structural graph G = {NG , EG},

having the node set NG ,
{

x(i) : i ∈ 1, ..., n
}

∪
{

u(i) : i ∈ 1, ...,m
}

and the arc set of ordered pairs

EG ,
{

(x(i), x(j)) : i, j ∈ 1, ..., n, “x(i) affects x(j)”
}

∪
{

(u(i), x(j)) : i ∈ 1, ...,m, j ∈ 1, ..., n, “u(i) affects x(j)”
}

,

where the superscripts ”(i)” and ”(j)” denote the i-th and

j-th state or control variables of the monolithic system S ,

respectively. As in [23], [24], the overlapping of certain

states x(s) is allowed. In other terms, certain states may

belong to more than one subsystem SI . It is worth noting

that in the present paper, for the sake of generality, we

consider the decomposition of the states graph, instead

1Here and in the following the use of boldface letters will indicate that
a given quantity is related to the monolithic system.

of a decomposition made only with respect to the output

variables. More specifically, we are concerned with a

scenario in which some subsystems may have common

state variables, but may differ in their output variables.

For example, consider the case of a subsystem where

the position of a rigid mechanical body is estimated by

measuring its acceleration, while in another subsystem

the same position is estimated by measuring its speed:

both subsystems share the body position state variable,

but they have no common output. After decomposing the

monolithic system (1), the I-th subsystem SI dynamics can

be described by:

xI(t+ 1) =AIxI(t) + fI(xI(t), uI(t)) + gI(CIxI(t),

uI(t), zI(t)) + β(t− t0)φI(xI(t), zI(t), uI(t))

yI(t) =CIxI(t) + ηy,I(xI(t), uI(t), t),
(3)

where xI ∈ R
nI , uI ∈ R

mI and yI ∈ R
pI are the local state,

the local control input, and the local measured output vectors

respectively, zI ∈ R
qI is the vector of the interconnection

variables, which are the neighbor subsystems nodes having

a connection with the elements of I . The term gI : RpI ×
R

mI × R
qI 7→ R

nI represents the interconnection function

where the effects of the local modeling uncertainty term ηx,I
have been incorporated. The following assumption is needed.

Assumption 3: The decomposition of the monolithic sys-

tem (1) is such that zI is made of measured variables only.

In this way, it turns out that all the arguments of the

interconnection gI are known: Assumption 3 is needed in

order to allow the learning of the interconnection function.

This is a key difference between input–output case and

the full–state case. Although this assumption is restrictive,

there exist some physical systems that satisfy it: an example

may be given by an electric distribution network, where we

measure power flows in and out different subsystems.

The matrix AI ∈ R
nI×nI and the vector field fI : RnI ×

R
mI 7→ R

nI represent the local nominal healthy dynamics,

CI ∈ R
pI×nI is the nominal local output matrix. ηy,I is the

uncertainty function in the local output equation and includes

the measurement error; φI : R
pI × R

mI × R
qI 7→ R

nI

is the local fault function. Finally, the following further

assumptions are in place.

Assumption 4: (AI , CI) is an observable pair.

Assumption 5: The interconnection function gI is an

unstructured and uncertain nonlinear function, whose

k-th component is bounded by some known and

bounded function, i.e.,

∣

∣

∣
g
(k)
I (CIxI(t), zI(t), uI(t))

∣

∣

∣
≤

ḡ
(k)
I (CIxI(t), zI(t), uI(t)), for all I = 1, . . . , N and for all

(x(t),u(t)) ∈ Rx ×Ru.

III. DISTRIBUTED FD ARCHITECTURE

The proposed Distributed Fault Detection (FD) architec-

ture is made of two layers: the physical system S , decom-

posed into N subsystems SI , and the detection architecture,

that is decomposed as well into N entities LI , the Local

Fault Diagnosers (LFD) (see Fig. 1). Each LFD is devoted

to monitor exactly one subsystem: by taking local measure-

ments and by communicating only with neighboring LFDs,
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Fig. 1. Scheme of the proposed DFD architecture, applied to a system
decomposed into S1, S2 and S3, represented in the first layer. In the
second layer each local fault diagnoser LI is rendered as a square. Thin
arrows symbolize physical interactions in the first layer, thick arrows stand
for consistent information flows between layer one and two and between
parts of layer two, and then dashed arrows correspond to the LFDs fault
decision, which are sporadic.

it produces a fault decision dFD
I regarding its subsystem

health (healthy or faulty). For detection purposes, each LFD

is equipped with a non-linear adaptive estimator of the local

state xI and of the local output yI , with I = 1, ..., N .

The local estimator, called Fault Detection Approximation

Estimator (FDAE), is based on the nominal model and is

used for fault detection. The difference between the estimated

output ŷI and the measurements yI is the output estimation

error ǫy,I(t) , yI(t) − ŷI(t), which plays the role of a

residual and will be compared, component by component, to

a suitable detection threshold ǭy,I(t) ∈ R
pI . The following

∣

∣

∣
ǫ
(k)
y,I(t)

∣

∣

∣
≤ ǭ

(k)
y,I(t), ∀k = 1, ..., pI (4)

is a necessary (but generally not sufficient) condition for the

fault-free hypothesis HI : “The system SI is healthy”. If

the condition is violated at some time instant t, then the

hypothesis HI is falsified.

Definition 3.1: The local fault detection time is defined as

Td,I = min
{

t : ∃k, k ∈ 1, ..., pI ,
∣

∣

∣
ǫ
(k)
y,I(t)

∣

∣

∣
> ǭ

(k)
y,I(t)

}

.

The local FDAE estimation, in the case of non-shared state

variables, can be computed as:










x̂I(t+ 1) = AI x̂I(t) + fI(x̂I(t), uI(t))+

ĝI(yI(t), uI(t), vI(t), ϑ̂I) + LI(yI(t)− ŷI(t))

ŷI(t) = CI x̂I(t)

,

(5)

where ĝI is the output of an adaptive approximator designed

to learn the unknown interconnection function gI and ϑ̂I ∈
Θ̂I denotes its adjustable parameters vector. Due to the

uncertain output measurements, it follows that, instead of

receiving the actual interconnection vector zI , each LFD

receives from its neighbors the vector vI(t) = zI(t) + ςI(t),
where ςI(t) is made with the components of ηy,J that

affect the relevant components of the neighboring subsystems

measurements yJ . In the case of variables x(s) shared among

more than one LFDs, we take advantage of the redundancy

obtained by means of the overlap. We propose a deterministic

consensus protocol defined on a generic communication

graph Gs , (Os, Es), whose nodes are the LFDs in the

overlap set Os of x(s) (see [17]):

x̂
(sI )
I (t+ 1) =

∑

J∈Os

W (I,J)
s

[

A
(sJ )
J x̂J(t)

+f
(sJ )
J (x̂J (t), uJ(t)) + ĝ

(sJ )
J (yJ(t), uJ(t), vJ (t), ϑ̂J )

+L
(sJ )
J (yJ(t)− ŷJ(t))

]

(6)

where the terms W
(I,J)
s are the components of a doubly

stochastic weighted adjacency matrix, as for instance the

Metropolis matrix [25], [26]:

W (I,J)
s ,















0 (I, J) /∈ Es
1

1+max
{

d
(I)
s ,d

(J)
s

} (I, J) ∈ Es, I 6= J

1−
∑

K 6=I W
(I,K)
s I = J

(7)

with d
(I)
s being the degree of the I-th node in the commu-

nication graph Gs. It is important to note that, in order to

implement (6), the I-th LFD does not need the information

about the expressions of A
(sJ )
J , f

(sJ )
J , ĝ

(sJ )
J and of L

(sJ )
J ;

instead, it is sufficient that each LFD computes locally the

term A
(sJ )
J x̂J (t)+f

(sJ )
J (t)+ ĝ

(sJ )
J (t)+L

(sJ )
J (yJ(t)− ŷJ(t))

and communicates it to other LFDs according to the com-

munication graph Gs.

IV. HEALTHY MODES OF BEHAVIOR: ANALYSIS

We now analyze the dynamics of the FDAE estimation

errors before the occurrence of a fault. In the non-shared

case, the i-th state estimation error component is:

ǫ
(i)
x,I(t+ 1) = A

(i)
I xI(t) + f

(i)
I (xI(t), uI(t))

+ g
(i)
I (CIxI(t), uI(t), zI(t)) −A

(i)
I x̂I(t)

− f
(i)
I (x̂I(t), uI(t))− ĝ

(i)
I (yI(t), uI(t), vI(t), ϑ̂I)

− L
(i)
I (yI(t)− ŷI(t))

=A
(i)
0,Iǫx,I(t) + ∆f

(i)
I (t) + ∆g

(i)
I (t)− L

(i)
I ηy,I(t),

(8)

where A0,I , AI − LICI is a stable

matrix (thanks to Assumption 4), ∆f
(i)
I (t) ,

f
(i)
I (xI(t), uI(t)) − f

(i)
I (x̂I(t), uI(t)) and ∆g

(i)
I (t) ,

g
(i)
I (CIxI(t), uI(t), zI(t))− ĝ

(i)
I (yI(t), uI(t), vI(t), ϑ̂I). We

denote with A(i) the i-th row of the matrix A.

In the case of shared variables, the dynamics of the LFD

state estimation error component can be written as:

ǫ
(sI)
x,I (t+ 1) = x

(sI )
I (t+ 1)− x̂

(sI )
I (t+ 1) = A

(sI )
I xI(t)

+ f
(sI)
I (xI(t), uI(t)) + g

(sI)
I (CIxI(t), uI(t), zI(t))

−
∑

J∈Os

W (I,J)
s

[

A
(sJ )
J x̂J (t) + f

(sJ )
J (x̂J (t), uJ (t))

+ĝ
(sJ)
J (yJ(t), uJ(t), vJ (t), ϑ̂J ) + L

(sJ )
J (yJ(t)− ŷJ(t))

]

.
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Because of the way the model decomposition was obtained

[17], the following holds for shared variables, ∀J ∈ Os:

A
(sI )
I xI + f

(sI)
I (xI , uI) + g

(sI)
I (CIxI , uI , zI)

= A
(sJ )
J xJ + f

(sJ )
J (xJ , uJ) + g

(sJ )
J (CJxJ , uJ , zJ)

= A(s)x+ f (s)(x, u) + η(s)x (x, u, t);

Moreover, by assumption it holds
∑

J∈Os
W

(I,J)
s = 1. Then,

the state estimation error component can be rewritten as:

ǫ
(sI)
x,I (t+ 1) =

∑

J∈Os

W (I,J)
s

[

A
(sJ )
0,J ǫx,J(t)

+f
(sJ )
J (xJ (t), uJ (t))− f

(sJ )
J (x̂J (t), uJ (t))

+g
(sJ )
J (CJxJ (t), uJ(t), zJ (t))

−ĝ
(sJ )
J (yJ(t), uJ (t), vJ (t), ϑ̂J )− L

(sJ )
J ηy,J(t)

]

. (9)

Summing up, the dynamics of a component of the state

estimation error can be written as in (8) in the case of non-

shared state variables, while, for shared state variables:

ǫ
(sI)
x,I (t+ 1) =

∑

J∈Os

W (I,J)
s

[

A
(sJ )
0,J ǫx,J(t) + ∆f

(sJ )
J (t)

+∆g
(sJ )
J (t)− L

(sJ )
J ηy,J(t)

]

. (10)

We now introduce a general formulation of the state error

equation for analysis purpose. To this end we define the

extended state estimation error vector ǫx,E ∈ R
nE×1, with

nE =
∑N

J=1 nJ , that is a column vector collecting the state

estimation error vectors of the N sub-systems: ǫx,E(t) ,

col (ǫx,J(t) : J = 1, ..., N). The dynamics of ǫx,E(t) are:

ǫx,E(t+ 1) = W [A0,Eǫx,E(t) + ∆fE(t) + ∆gE(t)

−LEηyE(t)] (11)

where W is a N ×N block matrix

W ,





W1,1 . . . W1,N

. . . . . . . . .
WN,1 . . . WN,N



 ,

such that each block WI,J , with J = 1, ..., N and I =
1, ..., N collects the consensus weights of the subsystem I
with regard to the subsystem J . The diagonal blocks WI,I are

square diagonal matrices in R
nI×nI , whose sI–th diagonal

element, with sI = 1, ..., nI , is equal to the weight W
(I,I)
s

defined in Eq. (7) if x
(sI )
I is a shared variable, and is equal to

1 otherwise. The matrices WI,J ∈ R
nI×nJ , with J 6= I , have

non-null elements only in positions (sI , sJ) corresponding

to shared variables xs, and here they take the value of

the consensus weight W
(I,J)
s . This results in W being a

symmetrical, sparse and doubly–stochastic nE × nE matrix.

A0,E is a N ×N diagonal block matrix:

A0,E ,











A0,1 0 0 0
0 A0,2 0 0
. . .

. . .
. . .

. . .

0 0 0 A0,N











,

where the generic block is A0,J = AJ − LJCJ ∈ R
nJ×nJ ,

for J = 1, .., N , resulting in A0,E being a sparse nE × nE

matrix. ∆fE(t) is a nE × 1 matrix, collecting the values

∆f
(sJ )
J (t), for each sJ = 1, ..., nJ and for every J =

1, ..., N . ∆gE(t) is defined in an analogous way as ∆fE(t).
Furthermore, LE , blkdiag(LJ : J = 1, .., N) is a

N × N diagonal block matrix with dimension nE × pE ,

where pE ,
∑N

J=1 pJ , while ηy,E(t) is a pE × 1 column

vector collecting the uncertainty terms of the N subsystems:

ηy,E , col (ηy,I : J = 1, ..., N). The state estimation error

solution can be written as:

ǫx,E(t) =

t−1
∑

h=0

(WA0,E)
t−1−h [W∆fE(h) +W∆gE(h)

−WLEηy,E(h)] + (WA0,E)
tǫx,E(0) (12)

The extended output estimation error is then defined as:

ǫy,E(t) , CEǫx,E(t) + ηy,E(t) (13)

where CE , blkdiag(CJ : J = 1, .., N) is a N×N diagonal

block matrix, with dimension pE × nE . From (11), (13)

and the definition of CE , the following learning law for the

adjustable parameter vector ϑ̂I of the adaptive approximator

ĝI , I ∈ 1, . . . , N can be derived:

ϑ̂I(t+ 1) = PΘ̂I

[

ϑ̂I(t) + γI(t)H
⊤
I (t)W⊤

I,IC
⊤
I ǫy,I(t+ 1)

]

(14)

H⊤
I (t) = ∂ĝI(t)/∂ϑ̂I

γI(t) =
µI

εI +
∥

∥

∥
H⊤

I (t)W⊤
I,IC

⊤
I

∥

∥

∥

2

F

,

where PΘ̂I
is a projection operator restricting ϑ̂I within

Θ̂I [27], ‖ · ‖F denotes the Frobenius norm and εI > 0 ,

0 < µI < 2 are design constants that guarantee the stability

of the learning law [28], [29], [30], [27], [31], [32]. The

component-wise output estimation error can be written as:

ǫ
(k)
y,E(t) = C

(k)
E ǫx,E(t)+ η

(k)
y,E(t), for all k = 1, ..., pE . Since

each row of CE , because of the way the matrix was defined,

presents non-null values only in correspondence to the state

components of a single subsystem, it is possible to write:

ǫ
(k)
y,I(t) = C

(k)
I ǫx,I(t) + η

(k)
y,I (t), for all k = 1, ..., pI , and for

each subsystem SI , I ∈ 1, . . . , N . In the general form, the

component-wise output estimation error can be bounded by

the following threshold, that can be computed in a distributed

way:

∣

∣

∣
ǫ
(k)
y,E(t)

∣

∣

∣
≤

∣

∣

∣
C

(k)
E ǫx,E(t)

∣

∣

∣
+
∣

∣

∣
η
(k)
y,E(t)

∣

∣

∣

≤
∣

∣

∣
C

(k)
E

{

t−1
∑

h=0

(WA0,E)
t−1−h

[

W∆fE(h) +W∆gE(h)

−WLEηy,E(h)
]

+ (WA0,E)
tǫx,E(0)

}
∣

∣

∣
+ η̄

(k)
y,E(t)
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≤
∣

∣

∣
C

(k)
E

∣

∣

∣

{

t−1
∑

h=0

∥

∥(WA0,E)
t−1−h

∥

∥

∣

∣

∣
W

[

∆fE(h) + ∆gE(h)

−LEηy,E(h)
]∣

∣

∣
+
∥

∥(WA0,E)
t
∥

∥ |ǫx,E(0)|
}∣

∣

∣
+ η̄

(k)
y,E(t)

≤
∣

∣

∣
C

(k)
E

∣

∣

∣

{

t−1
∑

h=0

αδt−1−hW
[

∆̄fE(h) + ∆̄gE(h)

+ |LE| η̄y,E(h)] + αδtǭx,E(0)
}

+ η̄
(k)
y,E(t) , ǭ

(k)
y,E(t) (15)

where we denote with |A| the element by element absolute

value of the matrix A; α and δ, analogously to [33], are

two constants such that ‖(WA0,E)
t‖ ≤ αδt ≤ ‖WA0,E‖

t
,

α > 0, 0 < δ ≤ 1. Furthermore,

∆̄f
(s)
E (t) = max

x(s)∈Rx(s)

{
∣

∣

∣
∆f

(s)
E (t)

∣

∣

∣

}

,

ǭ
(s)
x,E(0) = max

x(s)∈Rx(s)

{∣

∣

∣
x(s) − x̂(s)(0)

∣

∣

∣

}

,

for every s = 1, ..., nE . As far as the ∆̄gE(t) term is

concerned, some considerations are necessary. Although the

aim of the adaptive approximator ĝI is to learn the uncertain

function gI , generally it cannot be expected to match the

actual term gI even if the weights of the adaptive approxi-

mator could be optimally selected. This may be formalized

by introducing an optimal weight vector [34] ϑ̂∗
I :

ϑ̂∗
I , arg min

ϑ̂I∈ΘI

sup
xI ,zI ,uI

‖gI(CIxI , zI , uI)−

ĝI(CIxI , zI , uI , ϑ̂I

∥

∥

∥
, (16)

with xI , zI , uI taking values in their respective domains.

This leads to the definition of the Minimum Functional

Approximation Error (MFAE) νI , which describes the least

possible approximation error that can be achieved at time t
if ϑ̂I were optimally chosen: νI(t) , gI(CIxI , zI , uI) −
ĝI(CIxI , zI , uI , ϑ̂

∗
I). By defining the parameter estima-

tion error ϑ̃I , ϑ̂∗
I − ϑ̂I and the function ∆ĝI ,

ĝI(CIxI , zI , uI , ϑ̂I) − ĝI(yI , vI , uI , ϑ̂I), it turns out that

∆gI(t) = HI ϑ̃I + νI(t) + ∆ĝI(t).
We can upper bound this term with: ∆̄gI(t) ,

‖HI‖κI(ϑ̂I) + ν̄I(t) + maxηyI
maxςI |∆ĝI(t)|, with the

function κI being such that κI(ϑ̂I) ≥
∥

∥

∥
ϑ̃I

∥

∥

∥
. The extended

upper bound ∆̄gE(t) simply collects the upper bounds of the

N subsystems. The threshold in Eq. (15) guarantees that no

false-positive alarms will be issued until T0 because of the

uncertainties. This, of course and in rough terms, comes at

the cost of the impossibility of detecting faults ”hidden by

the uncertainties in the system dynamics”. This is formalized

in the following section in which a distributed detectability

sufficient condition will be devised.

V. FAULTY MODES OF BEHAVIOR: ANALYSIS AND

DETECTABILITY SUFFICIENT CONDITIONS

Let us assume that at time t = T0 a fault φ occurs in the

monolithic system. φE denotes the extended fault function

vector collecting the N subsystems fault functions. After the

occurrence of the fault, for t > T0, the state estimation error

dynamics becomes

ǫx,E(t+ 1) = W [A0,Eǫx,E(t) + ∆fE(t) + ∆gE(t)

−LEηy,E(t)] + (1− b−(t−T0))φE(t) (17)

and the output estimation error equation for the k-th com-

ponent is:

ǫ
(k)
y,E(t) = C

(k)
E ǫx,E(t) + η

(k)
y,E(t) =

C
(k)
E

{

t−1
∑

h=0

(WA0,E)
t−1−h

[

W∆fE(h) +W∆gE(h)

−WLEηy,E(h)+(1−b−(h−T0))φE(h)
]

+(WA0,E)
tǫx,E(0)

}

+ η
(k)
y,E(t) (18)

Now, we are able to state and prove a sufficient condition

for distributed fault detectability.

Theorem 5.1 (Fault Detectability): If there exists a time

instant t1 > T0 such that the fault φE satisfies the inequality

∣

∣

∣

∣

∣

t1−1
∑

h=T0

C
(k)
E (WA0,E)

t1−1−h(1− b−(h−T0))φE(h)

∣

∣

∣

∣

∣

> 2ǭ
(k)
y,E(t1) (19)

for at least one component k ∈ {1, ..., pE}, then the fault

will be detected at time t1, that is

∣

∣

∣
ǫ
(k)
y,E(t1)

∣

∣

∣
> ǭ

(k)
y,E(t1).

Proof: At time instant t1 > T0, the output estimation

error can be written as:

ǫ
(k)
y,E(t1) =

t1−1
∑

h=0

C
(k)
E (WA0,E)

t1−1−h [W∆fE(h)

+W∆gE(h)−WLEηy,E(h)] + C
(k)
E (WA0,E)

t1ǫx,E(0)

+η
(k)
y,E(t1)+

t1−1
∑

h=T0

C
(k)
E (WA0,E)

t1−1−h(1−b−(h−T0))φE(h)

Using the triangle inequality we obtain:

∣

∣

∣
ǫ
(k)
y,E(t1)

∣

∣

∣
≥ −

∣

∣

∣

∣

∣

t1−1
∑

h=0

C
(k)
E (WA0,E)

t1−1−h [W∆fE(h)+

W∆gE(h)−WLEηy,E(h)] + C
(k)
E (WA0,E)

t1ǫx,E(0)+

η
(k)
y,E(t1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t1−1
∑

h=T0

C
(k)
E (WA0,E)

t1−1−h(1− b−(h−T0))φE(h)

∣

∣

∣

∣

∣

By recalling how the threshold was defined (Eq. 15), it is

easy to see that the following inequality is implied:
∣

∣

∣
ǫ
(k)
y,E(t1)

∣

∣

∣
≥ −ǭ

(k)
y,E(t1)

+

∣

∣

∣

∣

∣

t1−1
∑

h=T0

C
(k)
E (WA0,E)

t1−1−h(1− b−(h−T0))φE(h)

∣

∣

∣

∣

∣

.

In this way the fault detection condition

∣

∣

∣
ǫ
(k)
y,E(t1)

∣

∣

∣
>

ǭ
(k)
y,E(t1) is implied by the theorem hypothesis.
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Theorem 5.1 represents a sufficient condition for the off-

line characterization, in a non-closed form, of a class of faults

that can be detected by the proposed FD methodology.

VI. CONCLUDING REMARKS

In this paper, a distributed fault detection scheme for

a class of large-scale input-output non-linear discrete-time

uncertain systems was proposed, that relies on nonlinear

adaptive estimators based on a nominal model of the healthy

system dynamics. Each subsystem is monitored by a local

fault detection unit, which is able to detect the presence of

faults affecting the corresponding subsystem based on its

own measurements and on communication with neighboring

subsystems. An adaptive approximation scheme is developed

in order to learn the functional uncertainty in the intercon-

nection between neighboring subsystems, before any fault

is detected. Both abrupt and incipient kinds of faults were

addressed and theoretical results characterizing the ability

of the FD scheme to detect a fault were derived. Future

research efforts will be devoted, first of all, to show the effec-

tiveness of the proposed technique by extensive simulation

trials on models of large-scale systems of practical interest.

Moreover, a thorough analysis of the conservativeness of the

detectability conditions will be carried out. Besides, ongoing

research aims at weakening some of the assumptions made

in the paper like, for instance, Assumption 3, restricting the

decomposition to be such that the interconnection variables

are measurable.
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