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Abstract— This research introduces a novel concept of prac-
tical relative degree and presents a numerical method of
practical relative degree identification. The concept efficacy
is demonstrated by computer simulation of a High-Order
Sliding-Mode controller, effectively stabilizing the blood glucose
concentration for two well known models with different relative
degrees.

I. INTRODUCTION

Automatic insulin infusion for diabetic patients has been
subject of an extensive research [1] [2] [3], but to date, all in-
sulin pumps commercially available work with an open loop,
except for a single model that has a hypoglycemia detection
to avoid insulin overshot. The glucose-insulin regulation
system is non linear and time variable. The identification
of the patient’s parameters is expensive, and invasive and
uncertainties are always present due to the most important
parameters, such as insulin resistance, can be temporarily or
permanently changed depending on the personal habits. The
operation range is wide, in a diabetic patient, blood glucose
can vary from 40 to 500mg/dl [4]. These characteristics
make difficult to use a linear control.

High Order Sliding Mode Control (HOSMC) [5] [6] [7]
[8] [9] is a black-box oriented control i.e. it only needs
knowledge of the relative degree of the system and reasona-
ble bounds for few expressions. Thus HOSMC presents an
attractive alternate approach to blood glucose control. Due
to its nonlinearity, it can work in the whole operating range
of the system. Its design does not depend on parametric or
system model uncertainties, which guarantees the required
robustness.

There are several known mathematical models describing
the glucose insulin regulatory system. Improved models
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involve additional dynamics, which significantly increase the
model order.

The Bergman Minimal Model (BeM) has relative degree
3, and it contains the fewest number of parameters that
describe the glucose-insulin regulatory system with sufficient
accuracy. There are some other models, such as the Candas
and Radziuk Model [10], and the Cobelli Model [11], which
concur with BeM and also have relative degree 3. More
detailed models are the Hovorka Model [12] and the Dalla
Model [13], having relative degree 5. One of the most
complete models is the Sorensen Model (SoM). It describes
the action of each group of organs, having some influence
on glucose regulation. SoM has relative degree 5.

The same patient can be physiology described by all the
mentioned models, while the output and the input of the
system, the glucose concentration and the insulin infusion,
remain the same. It is assumed in this research that all models
share the same practical relative degree featuring the actual
process. The idea is that all models might be considered
as general small perturbations of some unknown simple
model. The perturbations can include small disturbances, as
well as singular perturbations. Both types of perturbations
can change the relative degree [14]. The relative degree
of this unknown simplest model is functionally called the
practical relative degree. This practical relative degree is to
be identified and used in order to construct a HOSMC to
be effective for all models. The resulting HOSMC reveals
robustness with respect to the corresponding relative-degree
fluctuations [14].

In this work a black-box HOSMC of third order is
designed for the two most accepted models, BeM and SoM,
using the novel concept of practical relative degree. The
practical relative degree of the glucose insulin regulatory
system is identified by a numerical method, while SoM is
assumed to be a singular perturbed representation of BeM.
The same HOSMC blood glucose concentration controller
has been tested via simulation for both models, BeM and
SoM, and has demonstrated very good performance.

II. MODELS

A. Bergman Model

Following is the Bergman Model (BeM):

Ḃ1 = −p1[B1 −Gb]−B1B2,

Ḃ2 = −p2B2 + p3[B3 − Ib],
Ḃ3 = −n[B3 − Ib] + γ[B1 − h]t+ u(t).

(1)
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Here B1, B2 and B3 are plasma glucose concentration, the
insulin influence on glucose concentration reduction, and
insulin concentration in plasma respectively. The control
input u(t) represents the insulin infusion rate, p1 is the
insulin-independent glucose-utilization rate, p2 is the rate of
decrease of the tissue glucose uptake ability, p3 is the insulin-
dependent increase of the glucose uptake ability. The term
γ[B1−h]t represents the pancreatic insulin secretion after a
meal intake at t = 0. As this work is focused on insulin
therapy which is usually administrated to type-1 diabetes
mellitus patients, the parameters p1 and γ are assumed to be
zero in order to represent the dynamic of this disease [15].
The parameter n is the first order decay rate for insulin in
blood. The parameters to simulate the BeM in silico patients
where obtain from [16].

The relative degree r is defined as the order of the total
time derivative of σ where the input variable u explicitly
appears for the first time [17]. Thus, calculating

B
(3)
1 = φB(B, t)− p3B1u(t) (2)

where

φB(B, t) =
B1[−p1(p2

1 + 3p3Ib)− p3Ib(p2 + n)− p3γ[(B1 − h)+t]]
+B2[−p2

1(1 +Gb) + p1p2(2Gb − 1) + 2D(p1 + p2)]
+B3[−2p3(p1 +D)] +B1B2[−(p1 + p2)2 − 3p3Ib]
+B1B3[p3(3p1 + p2 + n)] +B1B

2
2 [−3(p1 + p2)]

+B2
2(p1Gb +D) + 3p3B1B2B3 −B1B

3
2

+D̈ + (p1Gb +D)(p2
1 + 2p3Ib)

(3)
shows that the relative degree BeM is 3.

B. Sorensen Model

SoM is a physiological model with tissue and organs
compartments, 8 for glucose and 7 for insulin. It was
developed writing the mass balance equation account for
blood flow, the exchange between the compartments and
metabolic processes causing addition or removal of glucose,
insulin and glucagon [18]. SoM is a non-linear model of
relative degree five. The original model and the detailed
explanation of parameters can be found in [18]. In order to
get a form comparable with BeM, SoM could be rewritten
as

Ṡ1 =
1
V G

H

(−QG
HS1 +QG

LS2 + S7 − FRBGU )

Ṡ2 =
1
V G

L

(QG
AS1 +QG

GS6 −QG
LS2 + fHGPS8 − fHGUS3)

Ṡ3 =
1
τ1

(2 tanh(0.55SN
4 )− S3)

Ṡ4 =
1
V I

L

(QI
AS5 +QI
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1
V I

H

(QI
LS4 −QI
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Ṡ6 =
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G

V G
G

(S1 − S6) +
1
V G

G

(FMEAL −RGGU )

Ṡ7 = QG
KĠK +GG

P ĠPV +QG
BĠBV

Ṡ8 =
1
τ1

(1.21− 1.14 tanh[1.66(SN
4 − 0.89)]− S8)

Ṡ9 = QI
B İB +QI

K İK +QI
P İPV

Ṡ10 =
QI

G

V I
G

(S5 − S10)

Ṡ11 =
1
VC

(FPCR − FMCCS
N
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where

fHGP = FB
HGP 2.7tanh(0.39SN

11)− f2 (4)
[1.42− 1.41tanh(0.62(SN

2 − 0.497))]
fHGU = FB

HGU5.66 + 5.66tanh(2.44(SN
2 − 1.48))

TABLE I
SORENSEN MODEL STATE SPACE VARIABLES

Variable Description Units

S1 Glucose in blood mg/dl
S2 Glucose in liver circulation mg/dl
S3 Hepatic glucose uptake mg/dl
S4 Insulin in liver circulation mg/dl
S5 Insulin in blood mg/dl
S6 Glucose in gut circulation mg/dl
S7 Glucose in kidney, periphery and brain circulation mg/dl
S8 Hepatic glucose production mg/dl
S9 Insulin in kidney, brain an periphery circulation mU/l
S10 Insulin in gut circulation mU/l
S11 Glucagon secretion pg/ml

The upper index N means the normal value of the corre-
sponding variable.
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To simulate the SoM in silico patients the parameters
where obtained from [18], but the parameters that describe
patient metabolic portrait where significantly changed in or-
der to have patients with the same complexion, but different
disease characteristics (Table II).

TABLE II
SOM in silico PATIENTS METABOLIC PORTRAIT

Variable Patient 5 Patient 4 Patient 6 Units

FBGU 70 70 70 mg/min
FRBGU 10 5 15 mg/min
RGGU 20 10 11 mg/min

F B
PGU 35 20.5 11 mg/min

F B
HGP 155 123.5 200 mg/min

F B
HGU 20 10 10 mg/min

FPIC 0 0 0

Calculate the SoM relative degree. Differentiating S1

obtain that for the first time the control appears in its fifth
derivative. Indeed,

S1(t)(5) = φS(S, t) + Sidu(t) (5)
Sid = (−2fHGU0.55QI

A)(V H
G τ1V

I
LV

I
HI

B
L )−1 (6)

φS(S, t) =
1
V H

G

(QG
HS

(4)
1 +

QG
L

V G
L

QG
AS

(3)
1 (7)

+S(4)
7 +

QG
L

V G
L

(S(3)
6 − S(3)

2 ) + fHGPS
(3)
8

−fHGU

τ1
(−S(2)

3 − 1.1SN
4 S

(2)
4 tanh(0.55SN

4 S4)2

−1.1SN
4 S

(1)
4 (2tanh(0.55SN

4 S4))
(1− tanh(0.55SN

4 S4)20.55SN
4 S4))

Thus, the SoM relative degree equals 5.

III. HOSMC ROBUSTNESS WITH RESPECT TO RELATIVE
DEGREE FLUCTUATIONS

It is well known that any small general perturbation or
model inaccuracy can lead to a decrease of the model relative
degree, or even to its disappearance. On the other hand
unaccounted-for fast dynamics of the system can increase the
system’s relative degree. It was recently proved that homo-
geneous HOSMC with a HOSM differentiator inside feature
ultimate robustness with respect to all such perturbations
[14]. In particular, singular perturbations often appear at the
inputs and outputs of systems [19], [20]. For simplicity the
following consideration is restricted to singular perturbations
at the system input. Consider the system

ẋ = a(t, x) + b(t, x)v, σ = σ(t, x) (8)

where x ∈ Rn, v ∈ R is the input, a, b and σ : Rn+1 → R
are unknown smooth functions, n can be also uncertain. The
output σ is measured in real time.

Assumption 1. Smooth uncertain functions a, b and σ are
defined in some open region Ω ⊂ Rn+1. It is supposed that
provided the input v is a Lebesgue-measurable function of
time, |V | ≤ vM , all solutions starting from an open region
Ωx ⊂ Rn at t ∈ ta can be extended in time up to t = tb >
ta without leaving the region Ω. The constant vM > 0 is
introduced in Assumption 4.
Assumption 2. The relative degree rp of the system is
assumed to be constant and known. It means that for the
first time the input variable v appears explicitly in the rpth
total time derivative of σ [21]. It can be checked that

σ(rp) = h(t, x) + g(t, x)v (9)

where h(t, x) = σ(rp)|v=0, g(t, x) = ∂
∂vσ

(rp) are some
unknown smooth functions, which can be expressed in the
terms of Lie derivatives. The set Ωx is supposed to contain
rp−sliding points at the time t = ta.
Assumption 3. It is supposed that

0 < Km ≤
∂

∂v
σ(rp) ≤ KM , |σ(rp)|v=0| ≤ C (10)

hold in Ω for some Km, KM , C > 0. Conditions (10) are
formulated in terms of input-output relations.

Let the unaccounted-for dynamics is described by the
equations

µż = f(z, u), v = v(z) (11)

where z ∈ Rm, u ∈ R is the control and the input of the
unaccounted-for dynamics, output v(z) is continuous and
f(z, u) is a locally bounded Borel-measurable function, the
time constant µ > 0 is a small parameter. All differential
equations are understood in the Filippov sense [22].

The control u is determined by a feedback

u = U(σ, σ̇, . . . , σ(r−1)) (12)

where U is a function continuous almost everywhere, and
bounded by some constant uM , uM > 0, in its absolute
value. Being applied directly to (8), i.e. with

v = u, (13)

it is supposed to locally establish the rp−sliding mode σ ≡ 0.
Assumption 4. Initial values of z belong to some compact
region Ωz0. The unaccounted-for dynamics is assumed to be
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Bounded-Input-Bounded-State (BIBS), with µ = 1. Since
|u| ≤ uM , this provides for the infinite extension in time of
any solution of (12) and for z belonging to another compact
region Ωz independent of µ. Indeed, µ can be excluded by
the time transformation τ = t/µ. This assumption causes
also the “internal” output v to be bounded in its absolute
value by some constant vM > uM > 0.
Assumption 5. The dynamic output feedback (12) is sup-
posed to be rp−sliding homogeneous [21], which means that
the identity

U(σ, σ̇, . . . , σ(rp−1)) ≡ U(κrpσ, κ(rp−1)σ̇, . . . , κσ(rp−1))
(14)

is kept for any κ > 0. It is also assumed that the control
function U is locally Lipschitz everywhere except a finite
number of smooth manifolds comprising a closed set Γ in the
space with coordinates Σ = (σ, σ̇, . . . , σ(rp−1)). Note that,
due to the homogeneity property (14), the set Γ contains
the origin Σ = 0, where the function U is inevitably
discontinuous [21].

Quasi Continuous HOSMC [23] satisfies Assumption 5.
As follows from (9) and (10),

σ(rp) ∈ [−C,C] + [Km,KM ]v. (15)

Assumption 6. It is assumed that with control (12) applied
directly to inclusion (15), a finite-time stable inclusion, (12),
(13), (15) is created. Note that the right-hand sides of the
differential inclusions are enlarged at the points of the control
discontinuity according to the Filippov procedure [21].
Assumption 7. The unaccounted-for dynamics are assumed
exact in the following sense. With µ = 1 and any constant
value of u the output v uniformly tends to u. That means
that for any δ > 0 there exists T > 0 such that with any u,
u = const, |u| ≤ uM , z(0) ∈ Ωz , the inequality |v− u| ≤ δ
is kept after the transient time T. It is required also that the
function f(z, u) in (11) be uniformly continuous in u, which
means that ||f(z, u)−f(z, u+4u)|| tends to 0 with4u→ 0
uniformly in z ∈ Ωz , |u| ≤ uM .
Assumption 8. It is supposed that the change of (12), (13)
at the set Γ to

v ∈
{

U(Σ), Σ /∈ Γ
[−VM , VM ], Σ ∈ Γ (16)

does not destroy the finite-time convergence, i.e. (15), (16)
is also finite-time stable.

Theorem 1: [19] Let assumptions 1-8 hold. Then there
exist a vicinity Q of the rp−sliding set in Ωx at t = ta,
a time moment t1 ∈ (ta, tb), and a0, a1, . . . , ar−1 > 0,
such that with sufficiently small µ > 0 for any trajectory
of (8), (11), (12) starting within Q at t = ta the inequalities

|σ| < a0µ
r
p, |σ̇| < a1µ

rp−1, . . . , |σ(rp−1)| < arp−1µ are kept
within t ≥ t1.

Usually different system variables feature different rates,
some of them are faster than the others and do not affect the
controllable outputs [24]. Unfortunately, it is very difficult to
check the assumptions of theorem 1 in practice. For example,
in our case BeM and SoM have the same output and input,
but dimensions of the models are different, and, moreover,
the physical meaning of variables is also different. This
means that it is also difficult to rewrite SoM in the form
(8), (11), as a singularly perturbed reduced system, while
the reduced system is close to BeM.

IV. PRACTICAL RELATIVE DEGREE

According to theorem 1, HOSMC are robust with respect
to relative degree fluctuations due to singular perturbations,
that are always present in practice. In fact they are robust
also with respect to much more general perturbations [20],
[14]. Therefore, it is important to identify a reasonable value
of the relative degree, in order to use HOSMC as a black
box control for a real process.

HOSMC robustness with respect to relative degree fluctua-
tions allows the use of a controller of order rp for system (8),
neglecting the increment of the relative degree due to (11).
However, it is not easy to present the original mathematical
model of blood glucose dynamics given by eqs. (4) in the
singular perturbation form (8), (11). It makes difficult to
construct a robust HOSMC controller that can stabilize the
blood glucose concentration using a variety of mathematical
models of glucose dynamics with different relative degrees.

A. Practical relative degree identification method

It is supposed that practical relative degree (rp) of system
(8) exists, but it is unknown. In order to identify practical
relative degree, a Heaviside step function u = H(x− tH) is
applied to equation (9):

σ(rp) = h(t, x) + g(t, x)H(x− tH) (17)

If a discontinuity is observed in σ(rp) at t = tH , and
consequently a slope change appears in σ(rp−1), with the
increment of σ(rp) always having the same sign, then the
practical relative degree of the system is identified as rp.

V. IDENTIFICATION OF THE PRACTICAL RELATIVE
DEGREE OF THE GLUCOSE-INSULIN REGULATORY

SYSTEM

A Heaviside step function, u = H(x − 15) was applied.
The third derivative was analyzed to find the discontinuity at
t = 15min and the second derivative was analyzed to find
the slope change which takes place at the same time. The
robust third-order differentiator [25] was used for this sake.

It is clear from Fig. 1 that the relative degree of BeM is
three, which concurs with the theoretical relative degree. One
can see from Fig. 2 that for SoM the discontinuity appears
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Fig. 1. BeM output and its derivatives, response to an step function u =
H(x−15). A discontinuity appears in the third derivative, a sudden change
of slope is seen in the second derivative, then the model’s practical relative
degree is clearly 3.

Fig. 2. SoM output and its derivatives, response to an step function u =
H(x−15). A discontinuity is first seen in the third derivative, and a sudden
change of slope in the second then it is possible to control this system with
a third order controller, due to its practical relative degree is 3.

at t = 15m, in the third derivative and the second derivative
has a inflection change. Thus, both models have the same
practical relative degree rp = 3, and the same controller can
be applied to both models.

VI. CONTROLLER

Quasi Continuous Control (QC-HOSMC) [23] was chosen
in this work, for it produces less chattering than the Nested
Control. QC-HOSMC u, is chosen according to the system
relative degree 3, since it has been shown that BeM and SoM
have the same practical relative degree rp = 3.

u = −α[σ̈ + β2(|σ̇|+ β1|σ|2/3)1/2(σ̇ + (18)
β1|σ|2/3signσ)]/[|σ̈|+ β2(|σ̇|+ β1|σ|2/3)1/2]

where β1 = 0.2, β2 = 0.4, α = 30. The first and second

derivatives of σ are calculated using finite differences [26],
with a sample step δ = 0.1m, according to an amperometric
glucose sensor sample time [27].

According to the glycemic recommendations for non-
pregnant adults with diabetes of the American Diabetes
Association (ADA), 1-2 hours after a meal ingestion blood
glucose concentration (G) should be G < 180mg/dl. ADA
considers hypoglycemia for G ≤ 70mg/dl.

The control aim is to lower the blood glucose concen-
tration in a smooth way to avoid a hypoglycemia episode.
Therefore reference is created as a dynamical profile based
on BeM and the parameters tuned in order to satisfy ADA
recommendations (p1 = 0.022, p2 = 0.0123, p3 = 6.92e−6,
γ = 0.0039, n = 0.2659, h = 79.0353, Gb = 90, Ib = 7).

Simulations represent a postprandial event of a poorly con-
trolled diabetic patient starting in 350mg/dl. The controller
was tested with SoM and BeM, with no special retuning. For
each model three different in silico patients.

Fig. 3. Glucose concentration for BeM, representing a postprandial event,
controlled by a third order QC-HOSMC. There is no hypoglycemic overshot,
and normoglycemia is achieved in acceptable time (100 min). Controller
gains are the same for the three patients.

Fig. 4. Insulin dose prescribed by the controller to achieve normoglycemia.
Notice the different dose for each patient.

It is seen from Figs. 3 and 5 that for BeM and SoM the
final target is achieved. It means controller can be designed
according to the practical relative degree identified for SoM.

The insulin infusion remains constant in Fig. 6 after the
basal level is achieved, since SoM describes the insulin effect
not only on glucose extraction, but also on hepatic glucose
production. Therefore a small infusion is needed to maintain
a balance in glucose concentration. In BeM this effect is not
taken into account, hence the insulin infusion is zero, as soon
as the equilibrium point is achieved (see Fig. 4).

VII. CONCLUSIONS
High-order sliding-mode controllers for blood glucose reg-

ulation can designed based on the relative degree approach.
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Fig. 5. Glucose concentration for SoM, representing a postprandial event,
controlled by the same third order QC-HOSMC, as BeM. SoM relative
degree is 5, but its practical relative degree is 3. There is no hypoglycemia
overshot.

Fig. 6. Insulin dose prescribed by the controller to achieve normoglycemia.
Notice the different dose for each patient.

Two different well-known mathematical models, Bergman
Minimal Model (BeM) and Sorensen Model (SoM), are used.
Obviously, the complete model of any biological system
never exists. This means that the true relative degrees and
orders of biological models are unknown, since they vary
from model to model. Therefore, it is difficult to analytically
determine a system’s relative degree. Experimental identifi-
cation of the practical relative degree is proposed for these
kind of systems. In this work the practical relative degree of
the glucose-insulin regulatory system is determined, based on
BeM and SoM. The practical relative degree of the both mod-
els is found to be rp = 3. And, therefore, the same HOSM
controller is applied. The controller has been tested via
simulation for 6 in silico patients, and the results demonstrate
the accurate robust regulation of blood glucose concentration
for both mathematical models of glucose dynamics.
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