
Learning User Preferences in Mechanism Design

Anil Kumar Chorppath and Tansu Alpcan

Abstract—In designing a mechanism for allocation of a divisi-
ble resource, the designer needs to know the player utility func-
tions, which are often infinitely dimensional, in order to choose
the appropriate pricing and allocation rules. This paper utilizes
Gaussian process regression learning techniques to infer general
player preferences by a designer in a mechanism design setting.
In pricing mechanisms, the price taking players are charged with
the appropriate value of Lagrange multiplier, in order to achieve
efficiency. This value is obtained iteratively through learning.
Likewise, the reserve price in auction mechanisms with price
anticipating players, a parameter in allocation and pricing rules,
is modified iteratively using online learning to move the system
solution to near efficiency. A numerical example illustrates the
approach and demonstrates the online learning algorithm.

I. INTRODUCTION

In strategic (noncooperative) games, the players (users) in-

teract with each other over time and each user responds to the

actions of others. While operating under limited information,

learning methods are useful tools for a player to learn and

estimate its environment. Learning theory has been utilized

in the context of game theory for many years [1]. Also, in

recent years, there has been substantial work on algorithmic

aspects of games, in the area of algorithmic game theory [2].

In mechanism design, in addition to the competing players

with their own objectives, there is a designer with a system

level or social goal. In order to achieve this goal, the designer,

however, needs to know about the player preferences. In this

paper, we use learning concepts for the preference elicitation

of players in mechanism design.

We consider a scenario in which unlike most of the previous

works in mechanism design, the designer explicitly models

and learns the preferences or utilities of players through

observations. In this setting, mechanisms can be interpreted

as a method for learning players utility functions [3]. The

concave or non-concave utility functions of players are private

information to them, yet the designer requires them for optimal

resource allocation and pricing. Here, the interactions in the

iterative process in mechanisms are used to learn the marginal

utilities of the users by the designer. The designer is assumed

to be more powerful and can learn the hidden information

observing the action of the players.

In this paper, the mechanism designer learns these utility

functions using regression techniques based on the bids re-

ported or actions taken by the users. Specifically, a Gaussian

This work has been supported by Deutsche Telekom Laboratories.
Anil Kumar Chorppath is with Technical University of Berlin,

Deutsche Telekom Laboratories, 10587 Berlin, Germany. Tansu Alp-
can is with the Department of Electrical and Electronics Engineer-
ing, The University of Melbourne, Australia. He was with Techni-
cal University of Berlin, Deutsche Telekom Laboratories during this
research. anil.chorppath@sec.t-labs.tu-berlin.de and
tansualpcan@gmail.com

process regression learning [4] technique is used to estimate

the marginal utilities of the players. The best response of

the players to the prices and rules imposed by the designer

constitutes the training data set. Once the marginal utilities

are estimated with small number of training data points, the

optimal point is searched in order to satisfy the optimality

conditions. The nature of the optimal point may depend on

the specific problem formulation. In the specific problem con-

sidered here, the optimality condition becomes full utilization

of the resource given the marginal utilities of the users.

Two types of mechanisms are considered in this paper.

In pricing mechanisms, the price taking players take best

response actions to the the price charged by the designer. We

use Gaussian process regression learning to approximate the

utility function of players from the their actions, which are

considered to be the input data points. Once the marginal

utilities of players are learned, the space of the Lagrange

multiplier of the total resource constraint in the designer

problem is searched to obtain the optimal point.

In auctions the players bid as a response to the price and

allocation designed by the designer. In a similar way as in

pricing, the marginal utilities are learned through Gaussian

process regression. Then, the reserve bid parameter in the

price and allocation functions is updated until the optimality

conditions are satisfied.

The main contributions of this paper is the application of

regression learning methods to infer user utilities in mecha-

nism design. Such learning schemes decrease the communica-

tion requirements considerably and allow usage of successive

scalar bids or actions from the users for divisible resource

allocation, even though the users have infinitely-dimensional

utility functions. We apply these learning schemes to both

pricing and auction mechanisms.

In the area of mechanism design for allocation of divisible

resources, there have been many works to approximate the

infinite dimensional utility function with finite quantities. In

[5], the players are asked to bid on a scalar parameter of

an allowable class of scalar parameterized utility functions

which are named as surrogate utility functions. Since the

payment and allocation is using Vicrey-Clarke-Groves(VCG)

mechanism but based on scalar parameterized surrogate utility

functions, they call it scalar parameterized VCG mechanism.

The outcome results in at least one efficient Nash equilibrium

(NE), when the marginal utility from actual utility function of

user and marginal utility from using the declared parameter

of surrogate utility function become equal. However, there

can be other multiple Nash Equilibria, which are not efficient,

due to the approximation by surrogate valuation functions. In

[6], an iterative algorithm is proposed for VCG and scalar

parameterized VCG mechanisms which reduces the amount

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5349

of overhead information by appropriate selection of the initial

value of bids. The appropriate selection takes into account

the previous bids and plays an important role in convergence

to a NE. But they do not attempt any learning of the utility

function.

An iterative auction iBundle [7] is proposed in a setting in

which users take myopic best-response bidding as response

to the bid of other users and rules set by the designer.

The optimality of proposed iterative auction is proved with

connection to primal-dual optimization theory.

In [3], the authors reduce mechanism design problems to

standard algorithmic problems using techniques from sample

complexity. They considered a prior-free setting for revenue

maximization. The approach in [8] considers a learning phase

followed by an accepting phase, and is careful to handle

incentive issues for agents in both the phases. They study a

limited-supply online auction problem, and construct value-

and time-strategyproof auctions. The scenario when the users

are strategic and they may manipulate the labeling for their

individual benefit is considered in [9].

The next section presents the underlying game and the

learning model. Section III analyses pricing mechanisms using

regression learning. In Section IV auction mechanisms are

considered. Numerical simulations and their results are shown

in Section V. The paper concludes with remarks of Section VI.

II. GAME AND LEARNING MODEL

At the center of the game and mechanism design model is

the designer D who influences N players, denoted by the

set A, and participating in a strategic (non cooperative)

game. These players are autonomous and independent decision

makers, who share and compete for limited resources under

the given constraints of the environment. Concurrently, the

designer tries to ensure that the outcome of the game satisfies

the desirable properties of efficiency and truthfulness.

Let us define an N -player strategic game, G, where each

player i ∈ A has a respective decision variable xi such that

x = [x1, . . . , xN] ∈ X ⊂ R
N ,

where X is the decision space of all players. Let

x−i = [x1, . . . , xi−1, xi+1, . . . xN] ∈ X−i ⊂ R
N−1,

be the profile of decision variable of players other than ith

player and X−i is the respective decision space. As a starting

point, this paper assumes scalar decision variables and a

compact and convex decision space. The decision variables

may represent, depending on the specific problem formulation,

player flow rate, power level, investment, or bidding in an

auction. Due to the inherent coupling between the players, the

decisions of players directly affect each other’s performance

as well as the aggregate allocation of limited resources.

The users have separable utility functions

Ui(xi) : X → R, ∀i ∈ A,

which are chosen to be continuous and differentiable for

analytical tractability. In this paper, the utility functions are

assumed to be concave which is an assumption that captures

marginal diminishing utility from the resource.

We consider two specific examples of concave, non-

decreasing utility functions in order to demonstrate the results,

1) θ-Utility function, i.e.,

Ui(xi;αi) =

{

αi
x
(1−θ)
i

−1

1−θ
, if θ ≥ 0 and θ 6= 1

αi log(xi), if θ = 1

2) Exponential:

Ui = 1− e−αixi ∀i ∈ A.

We note however that the presented approach is applicable

to any nonparametric utility function. The techniques are also

independent whether the utility functions are concave or not

and separable or non-separable. Therefore, the approach here

case can be generalized to more general cases.

The designer D devises a mechanism M , which can be

represented by the mapping M : X → R
N , implemented

by introducing incentives in the form of rules and prices to

players. The latter can be formulated by adding it as a cost

term such that the player i has the cost function

Ji(x) = ci(x)− Ui(x). (1)

Thus, the player objective is to solve the following individual

optimization problem in the strategic game

min
xi

Ji(x), (2)

under the given constraints of the strategic game, and rules

and prices imposed by the designer.

We consider two different types of mechanisms, pricing and

auctions, which vary on the assumption on the nature of users

and the rules imposed by the designer.

In the case of pricing mechanism, designer D introduces

incentives in the form of prices Pi to the price taking users.

The incentives can be formulated by adding it as a cost term

such that the player i. With the pricing mechanism in place,

each player i’s cost is given by

Ji(x) = Pixi − Ui(xi), (3)

which is strictly convex in xi.
In the case of auctions, the designer D imposes on a price

anticipating user i ∈ A a user-specific

• resource allocation rule, Qi(x),
• resource pricing, Pi(x),

where x denotes the vector of player bids. Thus, the cost

function of player i can be written as

Ji(x) = Pi(x)Qi(x)− Ui(Qi(x)), (4)

which is strictly convex with respect to Qi under the assump-

tions made.

The designer objective, e.g. maximization of aggregate user

utilities or social welfare, can be formulated using a smooth

objective function V for the designer:

V (x, Ui(x), ci(x)) : X → R,

5350

where ci(x) and Ui(x), i = 1, . . . , N are player-specific

pricing terms and player utilities, respectively. Hence, the

global optimization problem of the designer is simply

maxx V (x, Ui(x), ci(x)), which it solves indirectly by setting

rules and prices. The formal definitions of properties of mech-

anisms considered in this paper are given in the Appendix.

The users have utility functions private to them which

are functions on their actions x. Therefore, the designer can

learn these utility functions from the actions taken by the

users. Consider any function f(.) and a set of M data points

D = {x1, . . . , xM}, and the corresponding vector of scalar

values is {f(x1), f(x2)...., f(xM)}. A regression learning

algorithm uses the training data set to give a learned function

f̂ which minimizes the error from f and follows the real

shape of f . Assume that the observations are distorted by

a zero-mean Gaussian noise, n with variance σ ∼ N (0, σ).
Then, the resulting observations is a vector of Gaussian

y = f(x) + n ∼ N (f(x), σ).

A Gaussian Process (GP) is formally defined as a collection

of random variables, any finite number of which have a joint

Gaussian distribution. It is completely specified by its mean

function m(x) and covariance function C(x, x̃), where

m(x) = E[f̂(x)]

and

C(x, x̃) = E[(f̂(x)−m(x))(f̂(x̃)−m(x̃))], ∀x, x̃ ∈ D.

Let us for simplicity choose m(x) = 0. Then, the GP

is characterized entirely by its covariance function C(x, x̃).
Since the noise in observation vector y is also Gaussian, the

covariance function can be defined as the sum of a kernel

function W (x, x̃) and the diagonal noise variance

C(x, x̃) =W (x, x̃) + σI, ∀x, x̃ ∈ D, (5)

where I is the identity matrix. While it is possible to choose

here any (positive definite) kernel W (·, ·), one classical choice

is

W (x, x̃) = exp

[

−
1

2
‖x− x̃‖2

]

. (6)

Note that GP makes use of the well-known kernel trick here

by representing an infinite dimensional continuous function

using a (finite) set of continuous basis functions and associated

vector of real parameters in accordance with the representer

theorem [10].

The training set (D, y) is used to define the corresponding

GP, GP(0, C(D)), through the M ×M covariance function

C(D) =W +σI , where the conditional Gaussian distribution

of any point outside the training set, ȳ ∈ X , ȳ /∈ D, given the

training data (D, t) can be computed as follows. Define the

vector

k(x̄) = [W (x1, x̄), . . .W (xM , x̄)] (7)

and scalar

κ =W (x̄, x̄) + σ. (8)

Then, the conditional distribution p(ȳ|y) that characterizes the

GP(0, C) is a Gaussian N (f̂ , v) with mean f̂ and variance v,

f̂(x̄) = kTC−1y and v(x̄) = κ− kTC−1k. (9)

This is a key result that defines GP regression. The mean

function f̂(x) of the GP provides a prediction of the objective

function f(x). Furthermore, the variance function v(x) can be

used to measure the uncertainty level of the predictions with

the mean value f̂ .

Here the designer learns the marginal utility functions U ′
i

of each user using their best response bids or actions as data

points.

III. LEARNING IN PRICING MECHANISMS

In this section, regression techniques are used to learn the

user private marginal utilities by the designer for implemen-

tation of pricing mechanisms. The users are not considered to

be price anticipating here because we consider a distributed

network in which there is an information asymmetry between

the users and the designer. The users do not know the action

and utility function of other users or the nature of pricing

function. Hence, they cannot anticipate the exact impact of

their action on the pricing function and they just adopt a best

response strategy by taking the price as a constant given by

the designer.

We consider the case of a divisible resource of amount B
is allocated among users having separable utility functions.

The resource can be spectrum in wireless communication

systems or bandwidth in the Internet. Due to the selfish nature

of the individual users, without designer intervention there

will be an inefficient distribution of the divisible resource

(Price of Anarchy). The prices are designed to bring the Nash

Equilibrium of the resulting game to an efficient point.

The user optimization problem will be to find the action

level which minimizes his individual cost given in equation(3),

i.e.,

min
xi

Pixi − Ui(xi).

Consequently, the general condition for player best response

obtained from first order derivative is

Pi −
dUi(xi)

dxi
= 0, ∀ i ∈ A. (10)

The best response will be,

xi = (
dUi

dxi
)−1(Pi), ∀ i ∈ A. (11)

The designer want to achieve the maximum social welfare,

i.e the net utility of users is to be maximized. Therefore, the

social objective is,

V = max
x

∑

i

Ui(xi), such that
∑

i

xi ≤ B.

The Lagrangian is given by

L =
∑

i

Ui(xi) + λ(
∑

i

xi −B).

where λ > 0 is the unique Lagrange multiplier.

5351

The resulting Karush-Kuhn-Tucker (KKT) conditions will

give,

U ′
i(xi) = λ, ∀i ∈ A, (12)

and

λ(
∑

i

xi −B) = 0, ∀i,

Since the individual user utility functions are concave and non-

decreasing, the optimum point will ensure boundary solution.

By comparing (12) and (10), we conclude that for aligning

designer and user objectives, the designer needs to set λ as

the price for every user for solving designer and user problems.

Therefore, from the criterion of full resource usage, it follows

that
∑

i

x∗i =
∑

i

(U ′
i)

−1
(λ∗) = B. (13)

where x∗ and λ∗ are the optimal points.

Each user i sends a response to the sample prices

{Pi1, · · · , PiM} set by the social planner which con-

tains the action vector {xi1, · · · , xiM}. The correspond-

ing scalar marginal utility values at those points are

U ′
i(xi1, · · · , U

′
i(xiM) , ∀i. Assume that the observations are

distorted by a zero-mean Gaussian noise, n with variance

σ ∼ N (0, σ). Now let the Gaussian vector obtained in the

case of user i is {yi1, · · · , yiM}, where

yim = U ′
i(xim) + ni ∀i.

A Gaussian regression technique as described in Section II

is used to estimate the marginal utility functions Ũ ′
i . After that,

the λ values are obtained by an online learning algorithm. The

optimal points λ∗ and x∗ are selected at which

λ∗ = Ũ ′
i = Ũ ′

j , ∀i, j

and
∑

i x
∗
i = B.

The algorithm which also shows the information flow for

the regression learning method is given below in Algorithm

1. First an initial estimation of marginal utilities are obtained

using M data points. Then the best value of λ is found using

an iterative search by the designer

λn+1 = λn + κD
(

∑

i

xi −B
)

, (14)

where n is the time step and κD is the step size. The corre-

sponding values of x are obtained using the estimated marginal

utility curves by setting λn as the marginal utility values. By

checking the full utilization condition the converging value

λnew is obtained. It is important to note that this computation

is done by the designer alone and does not require any player

involvement. The converged value λnew is sent to the players

as the new prices, and new actions xnew are observed. The

noisy version of value of λnew (which is the value of the

function at xnew) and xnew are added next to the initial data

set. Using the regression this new data set gives a better

estimate of marginal utilities near the optimal point. From

this new estimate of marginal utilities the iteration given by

equation (14) is run to obtain a new converging value of λ and

corresponding values of x. This online learning and estimation

is repeated till end of iteration.

Algorithm 1: Regression Learning of User utilities in

Pricing Mechanisms

Input: Designer: Global objective.

Input: Players (users): Utility functions Ui(xi)
Result: Learned utility functions Ũi(x) ∀i, optimal

prices, and efficient allocation vector x∗

1 Initialization: The designer obtains initial data points by

selecting values for the Lagrangian λ and makes an

initial estimate of Ũi for each user i using GP by setting

the prices accordingly and observing user responses;

2 repeat

3 begin Designer:

4 Update the value of λ using

λn+1 = λn + κD
(
∑

i xi −B
)

;

5 Using Ũi, find the corresponding values of x;

6 Continue until
∑

i xi = B and denote the

corresponding λn as λnew;

7 Set λnew as the user prices, Pi ;

8 begin Players:

9 foreach Player i do

10 Take action xinew as response to the

prices Pi;

11 end

12 end

13 Observe the player actions xinew ∀i,m ;

14 Add the values of λnew and xnew to the initial

data set points;

15 Update user utility estimates Ũi and variances vi
for all the users based on the updated data set

using GP;

16 end

17 until convergence;

Note that by using the online learning algorithm as above,

when the user preferences or parameters in utility function

change in the course of time, the designer can estimate the

new functions and can move the system to optimal point.

The numerical results which illustrate the learned functions

and convergence of the algorithm are given in Section V.

We can see that by using this online learning algorithm, the

designer can adapt the estimation if the utility functions or

utility parameters of the players change in the course of time.

IV. LEARNING IN AUCTIONS

We consider next iterative auctions similar to iterative

combinatorial auction or English auction for a divisible good.

The players decide on their bids or actions by minimizing their

cost which is a combination of their own utilities and prices

imposed by the designer. Specifically, the designer D imposes

on a player i ∈ A a user-specific resource allocation rule,

Qi(x), pricing, Pi(x) from the the vector of player bids x. We

consider here an additive resource sharing scenario where the

5352

players bid for a fixed divisible resource B and are allocated

their share captured by the vector Q = [Q1, . . . , QN] subject

to the resource constraint
∑

iQi ≤ B.

The total payment by the ith player is ci(x) = Pi(x)Qi(x).
The player utility function Ui is separable, i.e. it depends only

on the individual allocation of the player. It is also assumed

to be continuous, strictly concave, and twice differentiable in

terms of its argument Qi.

From a player’s perspective, who takes myopic best re-

sponse to the price and allocation given by the designer and

tries to minimize its cost in terms of the actual resources

obtained, the condition

∂Ji
∂Qi

=
∂ci
∂Qi

−
∂Ui

∂Qi

= c′i − U ′
i

is necessary and sufficient for optimality. Suppressing the

dependence of user cost on bids x, for the cost minimization,

it has to satisfy

Pi(Q) =
∂Ui(Qi)

∂Qi

∀i ∈ A. (15)

Furthermore, if additional assumptions are made on Ji(x), it

can be shown that the game admits a unique NE, Q∗ (or x∗)

[11].

Different from players, the designer D has two objectives:

maximizing the sum of utilities of players and allocating all

of the existing resource B, i.e. its full utilization. Hence, the

designer D solves the constrained optimization problem

max
Q

V (Q) ⇔ max
Q

∑

i

Ui(Qi) such that
∑

i

Qi ≤ B, (16)

in order to find a globally optimal allocation Q that satisfies

this efficiency criterion. The associated Lagrangian function

is then

L(Q) =
∑

i

Ui(Qi) + λ

(

B −
∑

i

Qi

)

,

where λ > 0 is a scalar Lagrange multiplier. Under the

convexity assumptions made, this leads to

∂L

∂Qi

⇒ U ′
i(Qi) = λ, ∀i ∈ A, (17)

and the efficiency constraint

∂L

∂λ
⇒
∑

i

Qi = B. (18)

In the specific resource sharing setting defined, an auction-

based mechanism, Ma, can be defined based on the bid of

player i,
xi := Pi(x)Qi(x), (19)

the pricing function

Pi :=

∑

j 6=i xj + ω

B
, (20)

for a scalar ω > 0 sufficiently large such that
∑

iQi ≤ B,

and the resource allocation rule

Qi :=
xi

∑

j 6=i xj + ω
B. (21)

which is differentiable. It is also possible to interpret the scalar

ω as a reserve bid [12]. Note that the bid of each player is

her willingness to pay i.e. the total amount she pays is her

bid ci(x) = xi. The cost function for the mechanism Ma

becomes in this case,

Ji(x) = xi − Ui(Qi(x)). (22)

Let us denote

Si =
∑

j 6=i

xj + ω,

and then equations (20) and (21) become

Pi :=
Si

B
, (23)

and

Qi :=
xi
Si

B. (24)

We obtain the best response as,

Q∗
i =

(

∂Ui

∂Qi

)−1

(
Si

B
), (25)

where Si/B is the argument of the inverse marginal utility

function.

From the general condition in equation (15), the marginal

utility is equal to the price

∂Ui

∂Qi

=
Si

B
=

∑

j 6=i xj + ω

B
. (26)

This equation can be rewritten as following

∂Ui

∂Qi

(xi) = ψ(x)−
xi
B
. (27)

where

ψ(x) =

∑

j xj + ω

B
. (28)

As in pricing, GP regression learning is used now to learn

the marginal utilities in auctions. For an initial value of ω,

an initial estimate of the marginal utilities of players are

constructed. The values of Qi’s will give the corresponding

values of xi’s for this initial value of ω.

Next, the value of ψ is varied over space of all possible

values, by changing the value of the reserve bid ω. This search

algorithm provides the value of λ for which
∑

iQi = B for

any general utility function and the corresponding value of ω.

This ω is then used to set the price and allocation, using which

the bids will converge to the efficient point. Since the reserve

bid is an independent parameter which does not depend on

user bids, the incentive compatible property of the mechanism

still holds.

To illustrate the approach, consider the case of logarithmic

utility function weighted by a positive scalar parameter α, i.e.,

Ui = αi logQi ∀i ∈ A.

5353

The best response is x∗i = αi. The unknown α’s are then

learned in single step from the bid which corresponds to

optimal point.

Consider next the alternative case of exponential user utili-

ties,

Ui = 1− e−αiQi ∀i ∈ A.

In this case

x∗i =
Si

Bαi

log
B

Si

.

So to learn α’s an iteration is needed and the optimal prices

based on these correct α’s will take the system to approxi-

mately efficient point.

In the case of general user utilities, however, multiple steps

of the Algorithm 1 are required in order for the designer

to characterize user utilities with sufficient accuracy and the

outcome converges to the optimal solution.

V. NUMERICAL RESULTS

In this section we provide some numerical results that

illustrate our theoretical analysis. We consider a system with 5

users having scalar parameterized logarithmic utility functions

in order to visualize the results. The learned marginal utility

curves of the users are plotted and compared with the actual

curves in Figure 1 for the pricing mechanism given in section

III with 5 initial data points. Next, learned marginal utility

curves of the users are plotted and compared with the actual

curves in Figure 2 with 15 initial data points. We observe

that as the number of data points increases from 5 to 15 the

marginal utility curves are estimated more accurately.

0.5 1 1.5 2
0.5

1

1.5

2

x

M
a

rg
in

a
l
U

ti
lit

ie
s

Comparison of Actual and Learned Marginal Utilities of 5 Users having Logarithmic Utilities using 5 Data Points

Learned function User 1

Learned function User 2

Learned function User 3

Learned function User 4

Learned function User 5

Actual function User 1

Actual function User 2

Actual function User 3

Actual function User 4

Actual function User 5

Data Points User 5

Fig. 1. Marginal Utility curve for logarithmic utilities constructed by GP
regression and actual ones for M = 5.

In Figure 3, the actual marginal utility curves for 3 users

with logarithmic utilities are compared with marginal utility

curves constructed using initial data points and the online

algorithm given in Algorithm 1. We can observe that near the

optimal lambda value the estimation of the function is better

with the online algorithm than with only initial data points, as

expected.

0.5 1 1.5 2
0.5

1

1.5

2

x

M
a

rg
in

a
l
U

ti
lit

ie
s

Comparison of Actual and Learned Marginal Utilities of 5 Users having Logarithmic Utilities using 15 Data Points

Learned function User 1

Learned function User 2

Learned function User 3

Learned function User 4

Learned function User 5

Actual function User 1

Actual function User 2

Actual function User 3

Actual function User 4

Actual function User 5

Data points User 5

Fig. 2. Marginal Utility curve for logarithmic utilities constructed by GP
regression and actual ones for M = 15.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

M
a

rg
in

a
l
U

ti
lit

ie
s

Comparison of Marginal Utilities obtained from initial data points and online regression around the optimal λ value

Initial of User 1

Initial of User 2

Initial of User 3

Final of User 1

Final of User 2

Final of User 3

Actual of User 1

Actual of User 2

Actual of User 3

Optimal λ

Fig. 3. Marginal Utility curve for logarithmic utilities constructed using initial
data points and the online algorithm given in Algorithm 1.

We next plot in Figure 4 social welfare (SW) and the value

of λ of 5 users having scalar parameterized logarithmic utility

functions with the number of data points varying from 3 to

25. We observe that the estimated social welfare and λ using

the learned marginal utility functions improve and approaches

the analytically obtained social welfare as the number of data

points increase.

VI. CONCLUSION

This paper used learning techniques as a tool for estimating

the utilities of the players by a mechanism designer. We

considered the problem of allocation of a divisible resource by

a designer to a number of players having infinite dimensional

utility functions and designer employing Gaussian process re-

gression method to obtain the marginal utility functions of the

players. In the pricing mechanisms, the Lagrange multiplier

of the total resource constraint, which is set as the price for

5354

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Variation of social welfare(SW) and λ obtained with number of initial data points

Number of Data points

S
o

c
ia

l
W

e
lf
a

re
 a

n
d

 λ

SW using Learned User utilities

Optimal SW

λ using Learned User utilities

Optimal λ

Fig. 4. Marginal Utility curve for logarithmic utilities constructed by GP
regression.

all the users, is used to navigate the allocation to the efficient

point using the estimated marginal utilities. In auctions, the

reserve bid parameter in the pricing and allocation rule is

varied for obtaining near efficient point. We proposed an online

algorithm which uses the best response action of users in each

time instance to give a better estimate of the utilities, near the

efficient point.

As future work we plan to extend the results in this paper

to the case of mechanisms with non-separable user utilities.

REFERENCES

[1] D. Fudenberg and D. Levine, The Theory of Learning in Games. The
MIT Press, 1998.

[2] N. Nissan, T. Roughgarden, and E. Tardos, Algorithmic Game Theory.
Cambridge University Press, 2007.

[3] M.-F. Balcan, A. Blum, J. D. Hartline, and Y. Mansour, “Reducing
mechanism design to algorithm design via machine learning,” J.

Comput. Syst. Sci., vol. 74, pp. 1245–1270, December 2008. [Online].
Available: http://portal.acm.org/citation.cfm?id=1460945.1461324

[4] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for

Machine Learning (Adaptive Computation and Machine Learning).
The MIT Press, 2005. [Online]. Available: http://www.amazon.com/
exec/obidos/redirect?tag=citeulike07-20&path=ASIN/026218253X

[5] R. Johari, S. Mannor, and J. Tsitsiklis, “Efficiency loss in a network
resource allocation game: the case of elastic supply,” IEEE Transactions

on Automatic Control, vol. 50, no. 11, pp. 1712–1724, November 2005.
[6] S. J. Kang, Y. Won, S. Lim, and M. van der Schaar, “Efficient resource

management with reduced overhead information,” in in IEEE Conference

on Personal, Indoor and Mobile Radio Communications, September
2009, pp. 1452– 1456.

[7] D. C. Parkes and L. H. Ungar, “Iterative combinatorial auctions: Theory
and practice,” in Proceedings of the Seventeenth National Conference on

Artificial Intelligence and Twelfth Conference on Innovative Applications

of Artificial Intelligence. AAAI Press, 2000, pp. 74–81. [Online].
Available: http://portal.acm.org/citation.cfm?id=647288.721579

[8] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes, “Adaptive limited-
supply online auctions,” in In Proceedings of the 5th ACM Conference

on Electronic Commerce. ACM Press, 2004, pp. 71–80.
[9] O. Dekel, F. Fischer, and A. D. Procaccia, “Incentive compatible

regression learning,” in Proceedings of the nineteenth annual ACM-

SIAM symposium on Discrete algorithms, ser. SODA ’08. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2008,
pp. 884–893. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1347082.1347179

[10] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[11] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. Philadelphia, PA: SIAM, 1999.

[12] J. Huang, R. Berry, and M. Honig, “Auction–based Spectrum Sharing,”
ACM Mobile Networks and Applications Journal, vol. 24, no. 5, pp.
405–418, June 2006.

VII. APPENDIX

Definitions:

The properties of mechanisms considered in this paper can

be formally defined as follows.

Definition 1: Efficiency: Efficient mechanisms

maximize designer objective, i.e. they solve the problem

maxx V (x, Ui(x), ci(x)).
Definition 2: Nash Equilibrium: The strategy profile x∗ =

[x∗1, . . . , x
∗
N] is in Nash Equilibrium if the cost of each player

is minimized at the equilibrium given the best strategies of

other players.

Ji(x
∗
i , x

∗
−i) ≤ Ji(xi, x

∗
−i), ∀i ∈ A, xi ∈ Xi

Definition 3: Dominant Strategy Equilibrium: The strat-

egy profile x̃ = [x̃1, . . . , x̃N] is in Dominant Strategy Equilib-

rium if the cost of each player is minimized at the equilibrium

irrespective of the strategies of other players.

Ji(x̃i, x−i) ≤ Ji(xi, x−i), ∀i ∈ A, xi ∈ Xi, x−i ∈ X−i

5355

