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Abstract— Non-raster methods in atomic force microscopy
seek to reduce imaging time through efficient means of infor-
mation acquisition. In this work we consider the local raster-
scan algorithm for imaging biopolymers and other string-like
samples. Through feedback control, the scheme drives the tip
along the sample to ensure measurements are collected from
information-rich areas. Noise in the system, however, can cause
the tip to deviate from the sample and the algorithm to fail. In
this paper we use a geometric analysis to derive the probability
that a loss of tracking event is due to noise. This probability
is expressed in terms of the user-defined scan parameters. In
turn, this allows us to quantify the probability that the sample
will be scanned completely.

I. INTRODUCTION

With its ability to acquire images with sub-nanometer
spatial resolution, the atomic force microscope (AFM) [1]
continues to play an important role in the fields of molecular
biology, materials science, nanotechnology, and more. Its
resolution, ability to measure forces at the picoNewton scale,
its adaptability to different environments, and its wide variety
of operation modes make it a versatile instrument. Despite
these advantages, however, its temporal resolution remains
poor, with commercial instruments taking seconds to minutes
to generate a single image.

Recent results in high-speed AFM have yielded video rate
imaging in specialized instruments [2]–[4]. Approaches have
included the use of alternative physical designs [5], [6], as
well as the application of advanced control techniques [7],
[8]. All these methods rely on a raster-scan to build the
image, reducing image time by increasing the speed at which
the tip can be moved while maintaining image quality.

The imaging process can also be viewed as a problem
in gathering information about a spatially (and possibly
temporally) varying system using a short-range (even point-
like) sensor. Viewed in this light, one can begin to consider
replacing the raster-scan with alternative sampling schemes
to reduce the imaging time. The challenge is to do so without
degrading image quality. Many samples of interest are string-
like in nature, including biopolymers such as DNA, actin,
and microtubulues, as well as edges, domain boundaries,
and similar features. In prior work, we have designed an
algorithm termed local raster-scanning which uses the in-
formation acquired by the AFM in real-time to steer the tip
such that it remains near the sample of interest [9], [10].
By not wasting time sampling the completely uninteresting
substrate, overall imaging time can be reduced by an order-
of-magnitude or more, depending on the sample.

Under our scheme, the tip follows a smooth trajectory,
crossing back and forth across the sample. One such path
is illustrated in Fig. 1. In this image the local raster-scan
trajectory is superimposed on a standard raster-scan image
of a strand of DNA. Note that the algorithm does not
have access to the image but only to the measurements
it has acquired along the trajectory. After completing a
scan, an image is generated from the data acquired. The
measurements are no longer regularly spaced, however, and
thus generating an image is non-trivial. In related work, we
have presented a solution to this problem using a modified
Kriging interpolation scheme [11].

Fig. 1. Illustration of smooth local raster AFM tip trajectory scanning
a DNA strand sample. The path of the tip under the local raster-scan
algorithm is shown in blue, superimposed on a standard raster-scan image
of the sample. Clearly, the local raster-scan approach concentrates the
measurements to the vicinity of the sample.

As in any physical system, the measurements in AFM
are corrupted by noise. Given the length scale of interest,
such noise arises not only from the electronic components
in the system but also due to thermal noise in the dynamics
of the cantilever itself. Under a raster-scan, these sources
simply reduce the quality of the acquired image. In the local
raster-scan algorithm, however, such noise can drive the tip
trajectory off of the sample, leading to loss of tracking. Of
course, loss of tracking can also occur because the sample
itself has ended. Because the two cannot be distinguished
from the measurements, it is important to provide the user
with information as to the likelihood that when the algorithm
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terminates, complete scanning has occurred.
In this paper, we develop a framework to analyze this

issue and then use it to derive the probability that loss of
tracking was due to noise. The analysis starts from studying
the geometric relationship between the designed tip trajectory
and the true sample path. The uncertainties arising from the
measurements are then included to account for the stochastic
nature of the process.

In [12] we considered an earlier version of this problem.
In that work, we considered error between the estimated and
true curvatures but did not account for any difference in the
error in the estimate of the heading direction of the sample.
This paper takes a more comprehensive approach, accounting
for both errors and introducing a probabilistic framework
driven by the measurement noise.

The remainder of this paper is organized as follows. Sec.
II gives a brief description of the local raster-scan algorithm
and then establishes the geometric structure for the analysis
to follow. This framework is used in Sec. III to derive limits
on the estimation error for which detection of the underlying
sample within the next scan cycle is guaranteed. In Sec. IV,
these bounds are used to derive the probability of tracking
the sample.

II. TIP TRAJECTORY AND ANALYSIS FRAMEWORK

We give a brief overview of the local raster-scan algorithm.
Details can be found in [10].

We model the underlying sample as a planar curve r(·) and
describe its evolution by the Frenet-Serret frame equations,

r′(s) = q1(s),
q′1(s) = κ(s)q2(s),
q′2(s) = −κ(s)q1(s),

(1)

where the prime denotes derivative with respect to arclength
s, q1(s) and q2(s) are respectively the tangent and normal to
the curve at s, and κ(s) is the curvature at s.

The tangent and normal can be expressed using a single
parameter, termed the heading direction θ(s), according to

q1(s) =
[

cos(θ(s))
sin(θ(s))

]
, q2 =

[
−sin(θ(s))
cos(θ(s))

]
.

The evolution of the curve can thus be predicted from
knowledge of the curvature and heading direction by solving
(1).

Under the local raster scan algorithm, the tip trajectory is
given by

rtip(s) = r(s)±Asin(ωs)q2(s). (2)

This path is designed to scan the tip back and forth across
the sample using a smooth trajectory so as to avoid exciting
unwanted dynamics in the actuators. Here A is the amplitude
of the scan (analogous to image size) and ω is the scan
frequency (analogous to 1/(image resolution)). These values
are defined by the user prior to a scan. An illustration of a
typical trajectory is given in Fig. 1.

When the tip crosses the sample, the transition between
sample and substrate is detected based on the cantilever mea-
surements (see [13] for a discussion of detection methods).

Based on these detected crossing points, an estimate of the
curvature and heading direction are generated. To mitigate
the impact of measurement noise, these estimates are passed
through a Kalman filter to produce θe and κe. Using these
values, the Frenet-Serret frame equations in (1) are solved to
produce the estimated curve, re(·). Note that the curvature is
held constant until the next measurement update. Upon the
next detected transition, the estimates are calculated again
and the process repeated.

In this work, we consider the problem of loss of tracking
that can occur when, due to noise, modeling error, or other
factors, the true sample path diverges sufficiently far from
the estimated path so that no intersection occurs. To setup
the analysis, consider the geometric framework depicted in
Fig. 2. Let the point of the most recent detection be labeled
O and let it represent the origin of a coordinate frame. The
predicted normal direction defines the negative x–axis and
the predicted tangent the positive y–axis. The figure shows
the relationship between the estimated and true paths. The
estimated sample evolution, re(·) (dashed-dotted black line),
gives rise to the tip trajectory, rtip(·) (solid black line). As
shown, the true sample, rt(·) (solid red line) will in general
not follow the predicted path exactly.
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Fig. 2. Illustration of the geometric relationship between the true curve
(solid red) and the predicted curve (dashed black). The tip trajectory
(dashed-dotted black) is give by (2). The local frame is defined by the last
intersection point (O) and the predicted Frenet-Serret frame at that point.

With this choice of coordinate system, the initial estimated
heading direction is always vertical and thus we choose
to measure θe counter-clockwise from the y–axis. The true
initial heading direction may differ from zero as illustrated in
the figure. Although not shown, the evolution of the predicted
curve is driven by the constant curvature κe(·) and that of
the true curve by the true curvature κt(·). Note that since a
detection occurred at O, we assume the two curves are co-
incident there, ignoring the measurement error at that point.
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Doing so allows us to focus on error arising from mismatch
between the heading direction and curvature. As those two
values are generated by taking numerical derivatives of the
measured trajectory, noise in those parameters is expected to
be significantly higher than in the position measurement.

We assume that the true curvature remains (approximately)
constant over the span of one cycle of the tip trajectory by
applying the notion of the persistence length of a biopoly-
mer [14]. This length captures the stiffness of the polymer
and expresses the length-scale over which a biopolymer is
approximately rod-like. For example, DNA has a persistence
length of approximately 50 nm [15], actin of approximately
15 µm [16], and microtubules of approximately 6 mm [17].
At distances much shorter than these, samples are typically
approximated as straight lines. Here we asssume instead that
the curvature does not change significantly such that over the
persistence length the biopolymer is well-approximated as an
arc of a circle. Since the algorithm is designed for imaging,
it is reasonable to assume that the resolution is chosen well
below the persistence length such that the image will have
sufficient resolution to capture the details of the sample.

III. DETECTION LIMITS

As illustrated in Fig. 2, the path of the tip defined by (2)
sweeps out a finite area. Clearly, only true curves within
this area can be detected. The goal of this section is to
establish the geometric relationship between the curves that
will guarantee they will intersect in the first period of the tip
trajectory.
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Fig. 3. Geometric relationship between the true sample path and the tip
trajectory with an intersection at arclength s. Using this geometry, the center
of curvature at C can be calculated and from that the corresponding initial
heading direction can be calculated as in (6) and (7).

Our approach is as follows. Given a tip trajectory, we first
fix a choice of true curvature. We then solve the intersection

equation,

rtip(A,ω,re(θe,κe),s) = rt(θt ,κt) (3)

for each value of the arclength s in [0,2π/ω]. The bounds on
θt for a given κt are then found by determining the maximum
and minimum values. In the following section, we use these
results, combined with a distribution over the possible values
of the true curvature and heading direction, to calculate the
probability of intersection.

Consider Fig. 3. Assuming an intersection at arclength s,
the true curve rt is a circular arc spanning between the two
points O and rtip(s). Using the known curvature κt , the center
of curvature can be determined as follows. Let C denote this
center of curvature. By definition, the distance from C to
any point on the circle, including rtip(s) and O, is given by
1/κt . It then follows that C falls on the normal bisector of
the line Ortip. Denote this point as D and let r⊥tip(s) denote a
unit vector at D, pointing normal to rtip(s) and inward with
respect to the circular arc. Then the center of curvature is
given by

C(s) =
1
2

rtip(s)+ l(s)r⊥tip(s), (4)

where l(s) is the distance from D to C. Since ÔCD is a right
triangle, we have that

l(s) =

√(
1
κt

)2

−
(

1
2
||rtip(s)||

)2

. (5)

Let θt(0;s) denote the angle of the true curve intersecting
the tip path at s. From the geometry in Fig. 3, this angle is
given by

θt(0;s) = arctan
(
[C(s)]y
[C(s)]x

)
− π

2
, (6)

where [·]{x,y} denotes the {x,y} components of the vector.
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Fig. 4. Geometric relationship between the tip trajectory and the estimated
path.

To relate this angle to κe, the path of the tip must be
expressed in terms of this curvature. Consider, then, Fig.(4).

6280



θt(0;s) = arctan


[

1
κe
(−1+ cos(κes))−Asin(ωs)sin(κes)

]
− l(s)

[
1
κe

sin(κes)+Asin(ωs)cos(κes)
]

[
1
κe

sin(κes)+Asin(ωs)cos(κes)
]
+ l(s)

[
1
κe
(−1+ cos(κes))−Asin(ωs)sin(κes)

]
− π

2
(7)

By assumption, the estimated path is an arc of a circle of
radius 1/κe. By choice of the reference coordinate system,
the center of curvature is located at [−κ−1

e 0]T . We then
immediately have that

re(s) =
1
κe

[
−1+ cos(κes)

sin(κes)

]
. (8)

Substituting (8) into (2) and using

q2e(s) =
[
−sin(κes)
cos(κes)

]
,

yields

rtip(s) =
1
κe

[
−1+ cos(κes)

sin(κes)

]
(9)

±Asin(ωs)
[
−sin(κes)
cos(κes)

]
Finally, substituting (4), (5), and (9) into (6) yields the

expression in (7) for the value of θt(0) that intersects the tip
trajectory at s for any s ∈ [0,2π/ω].

To determine the bounds on the detection range for a
given true curvature κt and a given estimated path, one
must find the maximum and minimum of (7) over the range
s ∈ [0,2π/ω]. We therefore define

θ+ = maxs∈[0,2π/ω] θt(s),
θ− = mins∈[0,2π/ω] θt(s).

(10)

As an example, consider a scan with the parameters A =
5 nm and ω = 0.63 rad/nm and an estimated curvature of
κe = 0.17 nm−1. The initial estimated heading direction is,
by choice of the coordinate system, zero. The corresponding
evolution of the estimated path of the sample as well as the
tip trajectory is shown in Fig. 5.

Assume now the true curvature is κt = 0.05 nm−1.The
value of the initial true heading angle as a function of the
arclength of the point of intersection, given by (7), is shown
in Fig. 6. The maximum and minimum values of this curve,
corresponding to θ+ and θ− are indicated.

Clearly the bounds on θt(0;s) for detection depend on
the (unknown) true curvature through the length l(s). This
is illustrated in Fig. 7 in which this angle is plotted with
respect to both s and the true curvature.

IV. TRACKING PROBABILITY

The results of the previous section characterize the loss of
tracking due a mismatch between the estimated parameters
(θe,κe) and the true parameters (θt ,κt). The result in (10)
gives the limiting range on the mismatch in the heading di-
rection such that tracking is guaranteed. This range, however,
depends on full knowledge of the four parameters A, ω , κe,
and κt . While the first three are known, the third is not.
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estimated path of the sample (dash-dot black) has a curvature of κe = 0.17
nm−1 while the true curvature is κt = 0.05 nm−1. The tip trajectory (solid
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Fig. 6. Initial heading angle as a function of the arclength of the point of
intersection as calculated from (7) for the example in Fig. 5.

Under the local raster-scan scheme, the estimates of the
curvature and the heading direction are viewed as noisy
measurements of the true values. These measurements are
filtered using a Kalman filter. Under the assumption that the
initial state and the noise processes are all Gaussian, the
distributions for the curvature and heading direction are also
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Fig. 7. Initial heading angle as a function of the arclength of the point
of intersection and the true curvature, κt , as calculated from (7) for the
example in Fig. 5.

always Gaussian. Since the Kalman filter yields the mean and
covariance, the distributions are known. With this framework,
we can take a probabilistic approach to the question of
determining whether tracking will be lost.

Let the joint probability distribution over the true heading
direction and curvature be denoted fΘ,K(θt ,κt). As noted
above, by assumption this is taken to be a joint Gaussian
distribution whose statistics are updated by the Kalman filter.
Since a hit will occur if and only if the true heading angle
is within the bounds (θ−,θ+), the probability of hitting the
true sample curve is given by

Pr(Hit|κe) =

∞∫
−∞

θ+∫
θ−

fΘ,K(θt ,κt)dθtdκt . (11)

The true curvature is allowed to range over all values since
under the Gaussian assumption the distribution has infinite
support.

In practice, one may know a priori bounds on the cur-
vatures which the sample can take. Such bounds can be
deduced, for example, from models based on the persistence
length of a biopolymer. Given such bounds, denoted as κ+

and κ−, the probability of a hit becomes

Pr(Hit|κe) =

κ+∫
κ−

θ+∫
θ−

fΘ,K(θt ,κt)dθtdκt . (12)

In (12), the distribution should be conditioned on the known
bounds of the curvature and is thus no longer Gaussian.
The Kalman filter, however, only updates the mean and
covariance and thus in practice the use of (12) represents
an approximation.

Equations (11) and (12) provide a “one-step” probability.
That is, they give the probability that a hit will occur
given that a crossing of the sample was just detected. This
probability can be interpreted in two ways. First, if no hit
occurred in the cycle as the arclength increases from 0 to

2π/ω , (11) (or (12)) yields the probability that this was due
to the sample ending as opposed to loss of tracking.

Alternatively, the scheme can be used to estimate the a
priori probability that the entire sample will be scanned. The
probability calculated by (11) or (12) is conditioned on the
fact that a hit just occurred. Thus, a worst-case scenario can
be determined by taking the minimum of (11) or (12) over all
values of κe. As above, one may know bounds on the possible
range of the true curvature. In that case it is reasonable to
project the estimates into this range. The a priori probability
that a successful scan will occur is thus

Pr(Success) = min
κe∈[κ−,κ+]

κ+∫
κ−

θ+∫
θ−

fΘ,K(θt ,κt)dθtdκt . (13)

Note that this probability in turn depends upon the user
parameters A and ω and can provide guidance to the user
in selecting the image size and resolution so as to ensure
successful imaging.

V. CONCLUSION

In this paper, we provided an analysis framework for the
local raster-scan algorithm and derived an expression for the
probability that tip trajectory will intersect the sample in its
next scan cycle. The result relies on knowing the probability
distribution function on the curvature and heading direction
of the sample and provides a means to both interpret a
loss-of-tracking event and to describe the probability that
a sample will be scanned given the user-defined parameters.

The probability distribution function itself is determined
by the covariances of the noise parameters used in the
Kalman filter. In practice, the measurements of the curvature
and heading direction are generated numerically from the
measurements of the crossing positions of the tip trajectory
with the sample. The source of noise, then, is noise in
this detection and noise in the measurements of the lateral
position of the tip. These noise sources are further amplified
through the numerical derivatives yielding the curvature and
heading direction.

Ideally, one would like an analytical expression relating
the original noise to the noise parameters used in the
Kalman filter. Due to the nonlinearities of the equations,
however, determining such an expression is a non-trivial
task. Alternatively, one can characterize the noise through
calibration experiments, that is by performing a local raster
scan on samples of known geometry. The derivation of such
procedures is the topic of ongoing research.

The results derived in this work are specific to the local
raster-scan algorithm for high-speed imaging in AFM. The
algorithm and this analysis, however, can also be applied
in other contexts such as contour following and similar
information acquisition problems using a point-like sensor.
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