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Abstract—To achieve a cooperative objective in a multi-robot
system typically requires that the robots collaborate over a com-
munication network. In this paper, we design a control strategy
for repositioning and reorienting a group of wheeled robots
with nonholonomic constraints and limited communication and
sensing capabilities. Each robot knows the positions of only
those nodes within its sensing range and can only communicate
with nodes within its communication range. Thus, the objective
must be accomplished while ensuring that specified nodes stay

within each other’s sensing and communication ranges and that
the overall communication network stays connected. To achieve
these objectives, we develop a dipolar navigation function and
corresponding time-varying continuous controller. We show that
if the network is initially connected, the controller maintains
the specified communication links at all times while moving the
robots into the specified positions and orientations. We consider
the particular application of moving the robots to a common
rendezvous point with a specified orientation. Simulation results
verify the effectiveness of the proposed approach.

I. INTRODUCTION

A wide range of applications can benefit or potentially

require collaborative motion of a multi-robot system, e.g.,

foraging, surveillance, search, rescue and mobile target track-

ing. In general, the domain of multi-robot systems can be

divided into two types according to whether or not cooperation

among robots is required to achieve a task. Contrary to a non-

cooperative multi-robot system, where each agent makes an

independent decision based on its own states, a networked

multi-robot system requires robots to perform the task by

taking into account the states of other robots. Communication

and the mutual exchange of information among the team

members are key performance factors for such cooperative

multi-robot systems; however, difficulties arising from limited

communication and sensing capabilities on each robot can

cause the network to partition. When the network partitions,

communication between groups of robots can be permanently

severed, leading to a mission failure.

Motivated by the practical need to maintain network con-

nectivity, recent results have been developed to ensure con-

nectivity in flocking control [1], [2], formation control [3],

rendezvous [4]–[7] and other applications [8]–[10]. In most

1This research is supported by National Science Foundation grant number
CNS-0626863.

of the aforementioned work, only linear models of motion are

taken into account, i.e., the first order integrator. In this paper,

a group of wheeled mobile robots with nonholonomic con-

straints are considered. Each robot is assumed to be equipped

with a passive range sensor (e.g., a camera), to provide local

feedback of the relative trajectory of other robots within a

limited sensing region, and some form of transceiver that

can be used to broadcast information to immediate neighbors.

The objective is to steer the multi-robot system to a common

setpoint with a desired orientation, while maintaining network

connectivity during the evolution.

Due to the Brockett’s necessary smooth feedback stabi-

lization condition [11], a nonholonomic system can only be

stabilized to an equilibrium point using either a time-varying

continuous or time-invariant discontinuous state feedback

control law. Numerous results have been developed for the

stabilization of a single robot with nonholonomic constraints

in the past decades. However, such controllers may not be ap-

plicable for a networked multi-robot system with a cooperative

objective, e.g., maintaining network connectivity. Navigation

functions, a particular class of potential functions, provide an

alternative for the navigation of either a single mobile robot

or a multi-robot system. The navigation function developed

in [12] and [13] is a real-valued function that is designed so

that the negated gradient field does not have a local minima.

As such, closed-loop navigation function techniques guarantee

convergence to a desired destination. To facilitate the control

design for the nonholonomic navigation to the destination

with desired orientation, a dipolar navigation function was

proposed and a discontinuous time-invariant controller was

developed to navigate a single robot in [14]. The work in

[14] was then extended to a multi-robot system with both

holonomic and nonholonomic robots in [15] and extended to

navigate a nonholonomic system in three dimensions case in

[16]. However, only a time-invariant discontinuous controller

was developed in [14]–[16] when combined with the naviga-

tion function framework. A navigation function framework is

also used in [15], [17]–[20], where agents acted independently

and were not required to achieve a network objective, while

results in [21]–[23] use potential fields/navigation functions

to achieve a cooperative network objective (e.g., formation

control or consensus) under the assumption that the agents
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can always communicate (i.e., the graph nodes are assumed

to remain connected). When considering maintenance of the

network connectivity, a discontinuous controller, similar to

[14], was used to steer a multi-robot system with nonholo-

nomic constraints to rendezvous at a common position in [24].

However, each robot can only achieve the destination with

arbitrary orientation and has to reorient at the destination.

Moreover, the multi-robot system can not converge to any

arbitrary destination, and their destination only depends on

the initial deployment in [24].

In contrast, a continuous time-varying controller based on a

dipolar navigation function is developed in this paper to steer

a group of wheeled mobile robots to a specified common

setpoint with a desired orientation, while also achieving a

cooperative objective of maintaining the network connectivity.

Based on our previous work in [3], the dipolar navigation

function structure in [14] is modified to stabilize the non-

holonomic system and maintain connectivity of the network.

Distinguishing factors of this work include: 1) limited com-

munication and sensing capabilities are taken into account in

the control design, and the system is guaranteed to maintain

connectivity during the evolution if the initial system is con-

nected; 2) a time-varying continuous controller is developed

to steer the robots to a common destination with a desired

orientation; 3) by using the navigation function framework,

each robot is guaranteed to be steered and stabilized at the

destination without being trapped by local minima; 4) our

result is not restricted to the rendezvous problem, and it can be

easily extended to other applications by replacing the objective

function in the navigation function to accommodate different

tasks, such as formation control, flocking, and the consensus

problem.

II. PROBLEM FORMULATION

Consider a network composed of N Wheeled Mobile Ro-

bots (WMR) operating in the workspace F ∈ R2, where robot
i moves according to the following nonholonomic kinematics:

q̇i =




cos θi 0
sin θi 0
0 1



ui, i = 1, · · · , N (1)

where qi (t) denotes the states of robot i, defined as qi (t) �[
pTi (t) θi (t)

]T
∈ R3 with pi �

[
xi (t) yi (t)

]T
∈ R2

denoting the position of robot i, and θi ∈ (−π, π] denoting
its orientation with respect to the global coordinate frame

in F . In (1), the control input ui (t) ∈ R
2 is defined as

ui �
[

vi (t) ωi (t)
]T
, where vi (t) , ωi (t) ∈ R denotes

the linear and angular velocity of robot i.

The workspace F is assumed to be circular and bounded

with radius Rw, and ∂F denotes the boundary of F . Each

robot in F is assumed to have a limited communication

and sensing capability encoded by a disk area with radius

Rc and Rs respectively, and Rc ≥ Rs
1. For simplicity

1The assumption of Rc ≥ Rs ensures that two robots are able to
communicate with each other as long as they can sense each other.

and without loss of generality, the following development is

based on the assumption that the sensing area coincides with

the communication area, and represented by radius R, i.e.,

Rc = Rs = R. Two moving robots can communicate and

sense with each other if they stay within a distance of R.

Further, it is assumed that all the robots have equal actuation

capabilities.

One objective in this work is to lead the group of WMRs

to rendezvous at a common destination p∗ with a desired

orientation θ∗i , i.e., q∗i =
[
(p∗)T θ∗i

]T
for ∀i in the

workspace F . The inter-robot communication of the WMRs
is modeled as a communication graph, denoted as G(t) =
(V, E(t)), where V = {1, · · · , N} denotes the set of nodes,
and E(t)= {(i, j) ∈ V × V|dij ≤ R} denotes the set of time
varying edges, where node i and node j are located at a

position pi and pj , and dij ∈ R
+ is the relative distance

defined as dij = ‖pi − pj‖. In graph G(t), each node i

represents a robot, and the edge (i, j) denotes a link between
robot i and j when they stay within a distance ofR. Each node

i is assigned to a static subset Ni, called the communication
set, that includes the nodes with which it communicate. It is

also assumed that the communication graph G is undirected,
in the sense that i ∈ Nj ⇐⇒ j ∈ Ni for ∀i, j ∈ V, i �= j. Due

to the limited sensing and communication capabilities, robot i

has only knowledge of the states (i.e., positions) of the robots

within its sensing zone at each time instant, and exchange or

share information with robots that belong to Ni through radio
communication. Once robot j moves out of the sensing and

communication zone of robot i, robot i will no longer obtain

knowledge of the states of robot j directly. Hence, another

objective is to maintain connectivity of the communication

graph all the time.

The control objective is to derive a set of controllers to drive

each robot to a desired rendezvous point with a desired orien-

tation, while guaranteeing the communication graph remains

connected during the system evolution, provided the given

initial graph is connected. To achieve this goal, the subsequent

development is based on the following assumptions.

Assumption 1: The initial graph G is connected, and those
initial positions do not coincide with unstable equilibria (i.e.,

saddle points).

Assumption 2: The destination is achievable, which in-

dicates that the destination will not meet any constraints,

i.e., coincide with the workspace boundary, or lead to a

disconnectivity of existing communication links.

III. CONTROL DESIGN

A. Dipolar Navigation Function

The navigation function is a particular category of potential

function, whose negated gradient vector field is attractive

toward the goal configuration and repulsive with respect

to obstacles and the workspace boundary. Contrary to the

artificial potential field-based approach, where the problem

is the existence of local minima when attractive and repul-

sive force are combined, the navigation function is carefully
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Fig. 1. An example of a dipolar navigation function with workspace of
Rw = 5, and the destination located at the origion with a desired orientation
θ∗ = 0.

designed such that the negated gradient field does not have

any local minima and this closed-loop approach guarantees

the convergence to a desired destination, as well as collision

avoidance. Formally, a navigation function is defined as:

Definition 1: [12] [13], Let F ⊂ En be a compact con-

nected analytic manifold with boundary. A map ϕ : F → [0, 1]
is a Navigation Function, if it is: 1) smooth on F (at least

a C2 function); 2) admissible on F , (uniformly maximal on
∂F and constraint boundary); 3) polar on F , (qd is a unique

minimum); and 4) a Morse function, (critical points of the

navigation function are non-degenerate).

Specifically, property 2) establishes that the generated tra-

jectories are collision-free, since the resulting vector field is

transverse to the boundary of F , while property 3) indicates
that, using a polar function on a compact connected manifold

with boundary, all initial conditions are either brought to a

saddle point or to the unique minimum qd. The last property

ensures that the initial conditions that bring the system to

saddle points are sets of measure zero [12]. Given this

property, all initial conditions away from sets of measure zero

are brought to the unique minimum.

Without taking into account the nonholonomic constraints,

the original navigation functions, introduced in [12] and [13],

are not suitable for the control of WMRs, since the feedback

law generated from the gradient of the navigation function

can lead to undesired behavior, like having the vehicle rotate

in place. To overcome this undesired behavior, a Dipolar

Navigation Function was developed in [25] and [14] with the

advantage that the flow lines created in the potential filed

resemble a dipole, so that the flow lines are all tangent to

the desired orientation at the origin, and the vehicle is driven

there with the desired orientation. One example of the dipolar

navigation is shown in Fig. 1, where the potential field has

a unique minimum at the destination (i.e., p∗ = [0, 0]T and
θ∗ = 0), and achieves the maxima at the workspace boundary
of Rw = 5. Note that the surface x = 0 divides the workspace
into two parts, and forces all the flow lines to approach the

destination parallel to the y-axis.

To navigate the robots and maintain network connectivity,

the dipolar navigation function in [25] and [14] is modified

as ϕ : F → [0, 1],

ϕ(P) =
γ

(γα +Hnh · β)
1/α

, (2)

where α ∈ R
+ is a tuning parameter, and γ : R2 → R

+

is the goal function. The goal function γ in (2) encodes

the control objective for the WMRs, specified by the dis-

tance from P(t) ∈ R
2N to the common destination P∗ ∈

R
2N , where P (t) denotes the stacked current position states,

i.e., P (t)=
[

pT1 (t) · · · pTN (t)
]T

, and P∗ denotes the

stacked destination. The goal function is designed as

γ(P) = ‖P−P∗‖2 . (3)

The factor Hnh ∈ R in (2) creates the repulsive potential

of an artificial obstacle, used to align the trajectories at

the destination with the desired orientation. The repulsive

potential factor is designed as

Hnh = εnh +
∏N

i=1
ηnhi , (4)

where εnh is a small positive constant, and ηnhi ∈ R is

designed as

ηnhi =
(
(P−P∗)T · ndi

)2
,

where ndi ∈ R2N is designed as

ndi =
[
01×2(i−1) cos (θ∗i ) sin (θ∗i ) 01×2(N−i)

]T
.

The constraint function β : R2 → [0, 1] in (2) is designed as

β =
∏N

i=1
βi =

∏N

i=1

(
Bi0 ·

∏
j∈Ni

bij

)
, (5)

to ensure communication links exist between robots within

their sensing area and restrict the motion of each robot in the

specified workspace during each time instant. Specifically, the

constraint function in (5) is designed to vanish whenever node

i intersects with one of the constraints in the environment,

(i.e., if node i touches the workspace boundary, or departs

away from its adjacent nodes j ∈ Ni to a distance of Rc).

A collision region is defined for each agent i as a small disk

area with radius δ1 < R around the agent i. The function Bi0
in (5) is used to model the potential collision of node i with

the workspace boundary, where the positive scalar Bi0 ∈ R
is designed as

Bi0 =

{
− 1
δ2
1

d2i0 +
2
δ1
di0, di0 < δ1

1, di0 ≥ δ1,
(6)

where di0 ∈ R is the relative distance of the node i to the

workspace boundary defined as di0 = Rw − ‖qi‖ . To ensure
the graph connectivity, an escape region for each agent i is

defined as the outer ring of the communication area with

radius r, R−δ2 < r < R, where δ2 ∈ R+ is a predetermined
buffer distance. Edges formed with any node j ∈ Ni in the
escape region are in danger of breaking. The control law for

each robot i is designed to ensure the edges exist. In (5),
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bij � b(qi, qj) : R2 → [0, 1] ensures connectivity of the
network graph (i.e., guarantees that nodes j ∈ Ni will never
leave the communication zone of node i if node j is initially

connected to node i) and is designed as

bij =






1 dij ≤ R− δ2
− 1
δ2
2

(dij + 2δ2 −R)2

+ 2
δ2
(dij + 2δ2 −R)

R− δ2 < dij < R

0 dij ≥ R.
(7)

Assumption 2 guarantees that γ and β will not be zero

simultaneously. The navigation function candidate achieves

its minimum of 0 when γ = 0 and achieves its maximum of

1 when β = 0. From the definition of navigation function,

it is known that, if ϕ is a qualified navigation function,

almost all initial positions (except for a set of measure zero

points) asymptotically approach the desired destination. In

on our previous work [3], the original navigation function

modified to ensure connectivity, as designed in (7), is still a

qualified navigation function. In [15], it is also shown that

the navigation properties are not affected by the modification

to a dipolar navigation with the design of (4), as long as the

workspace is bounded, ηnhi can be bounded in the workspace,

and εnh is a small positive constant. As a result, the ϕ

proposed in (2) can be proven to be a qualified navigation

function. See [3] and [15] for further details.

B. Control Development

The desired orientation for robot i, denoted by θdi (t) , is
defined as a function of the negated gradient of the navigation

function (2) as follows

θdi � arctan 2
(
− ∂ϕ
∂yi

, − ∂ϕ
∂xi

)
, (8)

where arctan 2 (·) : R2 → R denotes the four quadrant inverse

tangent function, and θdi (t) is confined to the region θdi (t) ∈
(−π, π]. By defining θdi |p∗ = arctan 2 (0, 0) = θi |p∗ ,
θdi remains continuous along any approaching direction to

the goal position. Based on the definition of θdi in (8), the

following expression can be obtained

∇iϕ = −‖∇iϕ‖
[
cos (θdi) sin (θdi)

]T
, (9)

where ∇iϕ denotes the partial derivative of ϕ with respect to

pi, ∇iϕ =
[

∂ϕ
∂xi

∂ϕ
∂yi

]T
and ‖∇iϕ‖ denotes the Euclidean

norm of ∇iϕ. To quantify the navigation control objective,
the difference between the current orientation configuration

θi (t) and the desired orientation θdi (t) for robot i at each
time instant is defined as

θ̃i (t) = θi (t)− θdi (t) , (10)

where the desired θdi (t) is generated from the designed

navigation function in (2) and (8). Since ϕ in (2) is a

navigation function, the properties of a navigation function

guarantees that qdi (t)→ q∗i as t→∞.

Based on the open-loop system introduced in (1) and the

subsequent stability analysis, the controller for each robot is

designed as

vi = kv ‖∇iϕ‖ cos θ̃i, (11)

ωi = −kwθ̃i + θ̇di, (12)

where kv, kw ∈ R are positive, constant control gain. In

(11) and (12), ∇iϕ and θ̇di are computed from (2) and (8)

respectively as

∇iϕ =
α (Hnh · β)∇iγ − γ∇i (Hnh · β)

α(γα +Hnh · β)
1

α
+1

, (13)

where ∇iγ and ∇i (Hnh · β) are bounded in the workspace
F from (3) and (5), and

θ̇di = kv cos(θ̃i)

[
sin (θdi)
− cos (θdi)

]T
∇2iϕ

[
cos (θi)
sin (θi)

]
, (14)

where∇2iϕ denotes the Hessian matrix of ϕ with respect to

pi. Substituting (11) into (1), the closed-loop system can be

obtained
[

ẋi
ẏi

]
= kv ‖∇iϕ‖ cos θ̃i

[
cos θi
sin θi

]
. (15)

Taking the time derivative of θ̃i (t) in (10) and using (1), the
open-loop orientation tracking error system can be obtained as
·

θ̃i = ωi−θ̇di. Using (12), the closed-loop orientation tracking

error system is given by

·

θ̃i = −kwθ̃i, (16)

and (16) can be solved as θ̃i (t) = θ̃i (0) e
−kwt. From (13),

(16) and (14), ‖∇iϕ‖, θ̃i and θ̇di is bounded within the

workspace F . Hence, in (11) and (12), the control efforts can
be kept within the actuator constraints by choosing appropriate

control gains, kv and kw.

IV. CONNECTIVITY AND CONVERGENCE ANALYSIS

A. Connectivity Analysis

Theorem 1: If the graph G is connected initially and

j ∈ Ni, driven by the desired orientation in (8), nodes i

and j are ensured to be connected for all time, i.e., the set

{p |‖pi − pj‖ < R, j ∈ Ni } is invariant during the system
evolution.

Proof: Consider node i located at a point p0 ∈ F
that causes

∏
j∈Ni

bij = 0, which will be true when either
only one node j is about to disconnect from node i or when

more than one node are about to disconnect with node i

simultaneously. From (5), it indicates that βi = 0 , which
results that β = 0. The navigation function designed in (2)
achieves its maximum value whenever the constraints are met,

i.e., β = 0. Thus, the navigation function ϕ is maximized at

p0. Since the desired orientation for each robot i in (8) is

along the negated gradient of ϕ with respect to pi, no open

set of initial conditions can be attracted to the maxima of the

navigation function driven by the desired orientation in (8).
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Hence, it can be concluded node i will ensure connectivity

with all nodes j ∈ Ni for all time, provided that node i moves
according to the desired orientation in (8).

B. Convergence Analysis

Theorem 2: The controller developed in (11) and (12)

along with the dipolar navigation function ϕ in (2) ensure

the group of robots converge to the common point with the

desired orientation, such as ‖pi − p∗‖ → 0 and
∣∣∣θ̃i
∣∣∣→ 0, for

∀i ∈ N .

Proof: Consider a Lyapunov function candidate, V =
ϕ (P (t)). The time derivative of V is V̇ = ∇ϕ · Ṗ, where

∇ϕ ∈ R2N denotes the partial derivative of ϕ with respect

to the stacked state vector P. Using (15), the following

expression can be obtained

V̇ =
∑N

i=1

([
∂ϕ
∂xi

, ∂ϕ
∂yi

] [
ẋi
ẏi

])
(17)

=
∑N

i=1
kv ‖∇iϕ‖ cos θ̃i

(
∂ϕ

∂xi
cos θi +

∂ϕ

∂yi
sin θi

)
.

Substituting (9) into (17) and using a trigonometric identity,

V̇ can be computed as

V̇ =
∑N

i=1

(
−kv ‖∇iϕ‖

2 cos2
(
θ̃i

))
≤ 0.

Based on (3) and (7), it is clear that ∂ϕ
∂xi

, ∂ϕ
∂yi

∈ L∞
on workspace F ; hence (11) can be used to conclude that
vi (t) ∈ L∞. Providing θ̇di (t) ∈ L∞ in (14) on F , (12)
can be used to show that ωi (t) ∈ L∞. Applying LaSalle’s

invariance principle, the trajectories of the system converge

to the largest invariant set contained in the set

S =
{
‖∇iϕ‖ = 0 or cos

2
(
θ̃i

)
= 0, ∀i ∈ V

}
. (18)

Using the fact that θ̃i (t) → 0 exponentially from (16),

cos2
(
θ̃i

)
→ 1, hence, set S is reduced to the set

S′ = {‖∇iϕ‖ = 0, ∀i ∈ V} . (19)

The set in (19) is formed whenever the potential functions

either reach the destination or a saddle point. Since ϕ in (2)

is a navigation function, it is shown that the saddle points of ϕ

are isolated in [3]. Thus the set of initial conditions that lead

to saddle points are sets of measure zero [26]. The largest

invariant set constrained is the set of destination [27]. Hence,

‖∇iϕ‖ = 0 indicates that ‖pi − p∗‖ → 0 for ∀i.

V. SIMULATION

To illustrate the performance of the controller proposed

in (11) and (12), a preliminary numerical simulation was

performed to navigate a group of four mobile robots with the

kinematics in (1) from an initially connected condition q(0),

to the common destination
[
(p∗)T , θ∗

]T
, which are specified

as 




qT1 (0)
qT2 (0)
qT3 (0)
qT4 (0)




 =






−2 1.5 −1.4137
−2 0.7 −1.5708
−2 −0.7 1.7279
−2 −1.5 1.0996




 ,
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Fig. 2. Plot of the trajectory evolution for each mobile robot.
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Fig. 3. Position and orientation error for each mobile robot.

and
[
(p∗)T θ∗

]
=
[
0 0 0

]T
. The robots are distrib-

uted in a workspace of Rw = 5 m. Each node is assumed to

have a limited communication and sensing zone of R = 2 m

and δ1 = δ2 = 0.5 m. The control inputs designed in (11)

and (12) were utilized to drive the group of mobile robots

to the destination of p∗ with the desired orientation θ∗. The

tuning parameter α in (2) is α = 1.5, while the control gains
kv and kw are adjusted to kv = 0.9 and kw = 1.

The system is simulated for 40s and the simulation results
are shown in Fig. 2, Fig. 3, Fig. 4 and Fig. 5. The actual

trajectory evolution for each robot is shown in Fig. 2, where

each robot is represented by a circle and the associated arrow

indicates its current orientation. The resulting position and

orientation errors for each mobile robot are depicted in the

Fig. 3, which indicates that each robot achieves the common

destination with desired orientation. The control inputs v(t)
and ω(t) for each robot is also shown in Fig. 4, which indicate
a bounded control input. To show the communication links

are always connected, the evolution of inter-robot distance is

shown in Fig. 5. Since the inter-robot distance is less than the

radius R = 2m during the motion, connectivity is maintained.
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Fig. 4. Control actuation (i.e., linear velocity and angular velocity) for each
mobile robot.
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Fig. 5. The evolution of inter-robot distance.

VI. CONCLUSION

Based on the dipolar navigation function formalism, a

time-varying continuous controller is developed for a multi-

robot system to achieve a network cooperative goal, that is

navigating the mobile robots to a common destination with

a desired orientation, and ensuring the network is connected

for all time, provided that the network is connected initially.

Due to the limited communication and sensing capabilities, the

robot is required to obtain the states of other robots through

communication. Future research directions will include the

development of a completely decentralized controller, which

uses only local information within its sensing and communi-

cation zone, and results in radio silence during the motion.
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